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Definition of “Runtime Verification”

Definition (Runtime Verification)

Runtime Verification is the discipline of computer science dedicated to the
analysis of system executions, including checking them against formalized
specifications.




Runtime verification

@ Start with a system to monitor.

system




Runtime verification

@ Instrument the system to record relevant events.

instrumentation

system




Runtime verification

@ Provide a monitor.

monitor

instrumentation

system




Runtime verification

@ Dispatch each received event to the monitor.
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Runtime verification

o Compute a verdict for the trace received so far.
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Runtime verification

@ Possibly generate feedback to the system.
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Runtime verification

@ We might possibly have synthesized monitor from a property.
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Granting and releasing of locks

task

task

task

task

resource
arbiter
request
__grant
- _release
p ~ order




Resource allocation requirements

Requirement R;

A grant of a resource to a task must be followed by a release of that
resource by the same task, without another grant of that resource in
between (to the same task or any other task).




A state machine

Requirement R;

A grant of a resource to a task must be followed by a release of that
resource by the same task, without another grant of that resource in
between (to the same task or any other task).

grant

grant
~@_oO—0O

release



A state machine with parameters

Requirement R;

A grant of a resource to a task must be followed by a release of that
resource by the same task, without another grant of that resource in
between (to the same task or any other task).

grant (t,r)

h: grant (t’ ,r)@

release(t,r)



Consider the following trace

grant(ty, antenna)
grant(tp, motor,)

grant(tz, motors)



Monitor configuration after these three events

{52(ty, antenna), S2(tp, motory), S2(t3, motors) }
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Scala is a high-level unifying language

Object-oriented + functional programming features
Strongly typed with type inference

Script-like, semicolon inference

Sets, list, maps, iterators, comprehensions

Lots of libraries

Compiles to JVM

Lively growing community
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Data Automata

@ as an external DSL

@ small language with focused functionality
@ specialized parser programmed using parser generator
© advantages:

@ complete control over language syntax

@ analyzable

@ as an internal DSL

@ APl in ScarLAa
@ using SCALA's infra-structure (compiler, IDEs, ...)
© advantages:
@ expressive, the programming language is never far away
@ easier to develop/adapt (although, sometimes not)
@ allows use of existing tools such as type checkers, IDEs, etc.
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Resource allocation requirements

Requirement R;

A grant of a resource to a task must be followed by a release of that
resource by the same task, without another grant of that resource in
between (to the same task or any other task).

Requirement R,
A resource cannot be released by a task, which has not been granted the
resource.




R; and R, as a state machine in DAUT

monitor R1R2 {
init always Start {
grant(t, r) — Granted(t,r)
release (t, r) = —Granted(t,r) — error

}

hot Granted(t,r) {
release (t,r) — ok
grant(_,r) — error

}
}




top level abbreviation

monitor R1R2 {

grant(t, r) — Granted(t,r)

release (t, r)

—Granted(t,r) — error

hot Granted(t,r) {
release (t,r) — ok
grant(_,r) — error

}
}




Requirement R,

monitor R1 {
grant(t,r) — hot {
release (t,r) — ok
grant(_,r) — error
}
}




Syntax

(Specification) ::= (Monitor)*

(Monitor) ::= monitor (Id) ‘{' (Transition)* (State)* ‘}’

(State) := (Modifier)* (Id) [ ((Id)**) | [ ‘{' (Transition)* '}' ]
(Modifier) ::= init | hot | always

(Transition) ::= (Pattern) ‘::" (Condition) ‘—' (Action)**
(Pattern) = (Id) 'C{ld)***)’

(Condition) ::= (Condition) ‘A’ {Condition)

| (Condition) ‘v’ (Condition)

| ‘=" (Condition)

| ‘C{Condition)*)’

| (Expression) (relop) (Expression)
| (Id)y [ 'C{Expression)**')' ]

(Action) ::= ok
| error
| (Id) [ *C(Expression)**)" ]
| if ‘(" (Condition) ‘)’ then (Action) else (Action)
| (Modifier)* ‘{" (Transition)* '}’




Semantics part 1/3

€ /

con, con — b, con
e,b ,
con — con

e
con,s —— res

e
con, ss < res’

con, {} < (true, {}) E-ss

e
con,s U ss < res @ res’




Semantics part 2/3

e e
con,s.env,s.ts = | con,s.env,s.ts = res

E-S1

E-Sz
e e
con,s — true, {s} con,s — res

€
con,env,t — res

e
e con, env, ts = res'
con, env, Nil =L E-ts, "
con, env, (t) " ts => res| @, res’




Semantics part 3/3

t is ‘pat :: cond — rhs’

tis ‘pat :: cond — rhs’
P [pat]”env e = env’

P
at]|" env e =L
Lear]

. [cond]€ con env’ = false
con,env,t —1

e
con,env,t —_1

tis ‘pat :: cond — rhs’
P /
[pat] env e = env
|[cond]]ccon env' = true

[rhs]®con env’ = res
-3

€
con,env,t — res
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Abstract syntax

case class Specification (automata: List [Automaton])
case class Automaton(name: Id, states: List [StateDef])

case class StateDef(
modifiers : List [ Modifier],
name: Id,
formals: List[Id],
transitions : List [ Transition ])

case class Transition (
pattern: Pattern,
condition : Option[Condition],
rhs: List [StateExp])

trait Pattern
case class FormalEvent(name: Id, formals: List[Id]) extends Pattern
case object Any extends Pattern



Parser

object Grammar extends JavaTokenParsers {
def specification : Parser[ Specification ] =
rep(automaton) *" {
case automata = transform( Specification (automata))

}

def automaton: Parser[Automaton] =
"monitor" —ident ¥ ("{" — rep( transition ) ~ rep(statedef) < "}")
{
case name ~ (transitions ~ statedefs) =
if ( transitions .isEmpty)
Automaton(name, statedefs)
else { // derived form
val initialState =
StateDef( List ( init , always), "StartFromHere", Nil, transitions)
Automaton(name, initialState :: statedefs)

}

N



Interpreter interface

trait Monitor[Event] {
def verify (event: Event)
def end()

}



Interpreter

class Monitorlmpl(automaton: Automaton) extends Monitor[Event] {
case class State(name: Id, values: List[Value]) {
var env: Env = null

}

type Config = Set[State]
type Result = (Boolean, Config)

var currentConfig: Config = initialConfig (automaton)

def verify (event: Event) {
val (status, con) = eval(currentConfig )(event)
if (!status) println ("*x* error")
currentConfig = con

}



Indexing optimization

“grant”

Event pars: N/A

State pars: N/A Event pars: (1,2)

State pars: (t,r)

release

®,

“grant”
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Event type modeled in internal DSL

trait Event
case class grant(task: String, resource: String) extends Event
case class release (task: String, resource: String) extends Event



Properties modeled in internal DSL

class R1R2 extends Monitor[Event] {
Always {
case grant(t, r) = Granted(t, r)
case release (t, r) if !Granted(t, r) = error

}
case class Granted(t: String, r: String) extends state{
Watch {
case release (‘'t', ‘r‘) = ok
case grant(_, 'r') = error
}
}

}



Properties modeled in internal DSL

class R1 extends Monitor[Event] {
Always {
case grant(t, r) = hot {

[t

case release (‘t', ‘r‘) = ok

case grant(_, ‘'r') = error

}
}
}



Properties modeled in internal DSL

object Main {
def main(args: Array[String]) {
val obs = new R1R2

obs. verify (grant("t1", "A"))
obs. verify (grant("t2", "A"))
obs. verify ( release ("t2", "A"))
obs. verify ( release ("t1", "B"))
obs.end()



S. Hallé and R. Villemaire,

“Runtime enforcement of web service message contracts with data”,
IEEE Transactions on Services Computing, vol. 5, no. 2, 2012. —
formalized in LTL-FO™.

o>



XML based client server communication

XML

A
v

client server




Example of XML message

<CartAdd>
<CartId>1</CartId>
<Items>
<Item>
<ASIN>10</ASIN>
</Item>
<Item>
<ASIN>20</ASIN>
</Item>
</Items>
</CartAdd>



Amazon E-Commerce Service

ItemSearch(txt)
CartCreate(its)
CartCreateResponse(c)
CartGetResponse(c, its)
CartAdd(c, its)
CartRemove(c, its)
CartClear(c)
CartDelete(c)

N I B

search items on site
create cart with items
get cart id back
result of get query
add items

remove items

clear cart

delete cart



Definition of events

case class

Item(asin : String)

trait Event

case class
case class
case class
case class
case class
case class
case class
case class

[temSearch(text: String) extends Event

CartCreate(items: List [Item]) extends Event
CartCreateResponse(id: Int) extends Event
CartGetResponse(id:Int, items: List [Item]) extends Event
CartAdd(id:Int, items: List [Iltem]) extends Event
CartRemove(id:Int, items: List [Item]) extends Event
CartClear(id: Int) extends Event

CartDelete(id: Int) extends Event



From XML to objects

def xm|ToObject(xml:scala.xml.Node):Event =
xml match {
case x @ <CartAdd>{ _x* }</CartAdd> =
CartAdd(getld(x), getltems(x))

}
def xmlStringToObject(msg:String):Event = {

val xml = scala.xml.XML.loadString(msg)
xml|ToObject(xml)

def getld (xml:scala .xml.Node):Int =
(xml \ "CartId").text.tolnt

def getltems(xml:scala .xml.Node):List[ltem] =
(xml \ "Ttems" \ "Item" \ "ASIN").
toList .map(i = Item(i . text))



Properties

o Property 1 - Until a cart is created, the only operation allowed is
ItemSearch.

@ Property 2 - A client cannot remove something from a cart that has
just been emptied.

o Property 3 - A client cannot add the same item twice to the
shopping cart.

o Property 4 - A shopping cart created with an item should contain
that item until it is deleted.

o Property 5 - A client cannot add items to a non-existing cart.



Properties formalized

class Propertyl extends Monitor[Event] {
Unless {
case ItemSearch(_) = ok
case _ = error
H
case CartCreate(_) = ok
}
}

class Property2 extends Monitor[Event] {
Always {
case CartClear(c) = unless {
case CartRemove('c’, ) = error
H
case CartAdd(‘c’, ) = ok
}
}
}



class Property3 extends Monitor[Event] {
Always {
case CartCreate(items) = next {
case CartCreateResponse(c) = always {
case CartAdd(‘c’, items_) = items disjointWith items_

}
}
}
}

class Property4 extends Monitor[Event] {
Always {
case CartAdd(c, items) =
for (i € items) yield unless {

[

case CartGetResponse(‘c’, items_) = items_ contains i

H

case CartRemove('c’, items_) if items_ contains i = ok

}



class Property5 extends Monitor[Event] {
Always {
case CartCreateResponse(c) = CartCreated(c)
case CartAdd(c, ) if !CartCreated(c) = error

}

case class CartCreated(c:Int) extends state {
Watch {
case CartDelete(‘c’) = ok

}
}
}



Recall property 3

o Property 3 - A client cannot add the same item twice to the
shopping cart.



Property 3 made less strict

class Property3Liberalized extends Monitor[Event] {
Always {
case CartCreate(items) = next {
case CartCreateResponse(c) = CartCreated(c, items)

}
}

case class CartCreated(id: Int, items: List[ltem]) extends state {
Watch {
case CartAdd(‘id‘, items_) =
val newCart = CartCreated(id,items + items_)
if (items disjointWith items_) newCart else error & newCart
case CartRemove('id*, items_) = CartCreated(id, items diff items_)

}
}
}



Property 4 formulated on XML messages directly

class Property4 XML extends Monitor[scala.xml.Elem] {
Always {
case add @ <CartAdd>{_ x}</CartAdd> =
val ¢ = getld(add)
val items = getltems(add)
for (i € items) yield

unless {
case res @ <CartGetResponse>{_x}</CartGetResponse>
if ¢ == getld(res) = getltems(res) contains i
3

case rem @ <CartRemove>{ x}</CartRemove>
if ¢ == getld(rem) &&
(getltems(rem) contains i) = ok



Creating and applying a monitor

class Properties extends Monitor[Event] {
monitor(
new Propertyl(), new Property2(), new Property3(),
new Property4(), new Property5())

}

object Main {
def main(args: Array[String]) {
val m = new Properties
val file : String ="..."
val xmlEvents = scala.xml.XML.loadFile( file )

for (elem € xmlEvents \ "_") {
m. verify (xm|ToObject(elem))

}
m.end()
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Implementation

class Monitor[E <: AnyRef] {
val monitorName = this.getClass().getSimpleName()

var states : Set[state] = Set()
var monitors : List [Monitor[E]] = List()

def monitor(monitors: Monitor[E]*) {
this . monitors ++4= monitors

}




Example: submonitors

class Properties extends Monitor[Event] {
monitor(
new Propertyl(), new Property2(), new Property3(),
new Property4(), new Property5())

}

object Main {
def main(args: Array[String]) {
val m = new Properties
val file : String ="..."
val xmlEvents = scala.xml.XML.loadFile( file )

for (elem € xmlEvents \ "_") {
m. verify (xm|ToObject(elem))

}
m.end()



Implementation

type Transitions = PartialFunction[E, Set[state]]

def noTransitions : Transitions = {
case _if false = null

}

val emptySet : Set[state] = Set()




Example: transitions and states

class Property5 extends Monitor[Event] {
Always {
case CartCreateResponse(c) = CartCreated(c)
case CartAdd(c, ) if !CartCreated(c) = error

}

case class CartCreated(c:Int) extends state {
Watch {
case CartDelete(‘c’) = ok

}
}
}



Implementation

class state {
var transitions : Transitions = noTransitions
var isFinal : Boolean = true

def apply(event:E):Set[state] =
if ( transitions .isDefinedAt (event))
transitions (event) else emptySet

def Watch(ts: Transitions ) {
transitions = ts

}

def Always(ts: Transitions ) {
transitions = ts andThen (_ + this)

}

def Hot(ts: Transitions ) {
Watch(ts); isFinal = false

}




Implementation

def Whnext(ts: Transitions ) {
transitions = ts orElse {
case = ok

}
}

def Next(ts: Transitions ) {
Whext(ts); isFinal = false

}

def Unless(tsl: Transitions )(ts2: Transitions ) {
transitions = ts2 orElse
(tsl andThen (_ + this))
}

def Until (ts1: Transitions )(ts2: Transitions ) {
Unless(ts1)(ts2); isFinal = false

}
}




Implementation

case object ok extends state
case object error extends state

def error (msg:String): state = {
printin ("\n**x " + msg + "\n")
error

}




Example: inlined states

class Property3 extends Monitor[Event] {
Always {
case CartCreate(items) = next {
case CartCreateResponse(c) = always {
case CartAdd(‘c’, items_) = items disjointWith items_

}
}
}
}



Implementation

def watch(ts: Transitions ) = new state {Watch(ts)}
def always(ts: Transitions ) = new state {Always(ts)}
def hot(ts: Transitions ) = new state {Hot(ts)}

def wnext(ts: Transitions ) = new state {Wnext(ts)}
def next(ts: Transitions ) = new state {Next(ts)}

def unless(tsl: Transitions )(ts2: Transitions ) =
new state { Unless(tsl)(ts2) }

def until (tsl: Transitions )(ts2: Transitions ) =
new state { Until (ts1)(ts2) }




Implementation

def initial (s:state) { states +=s}
def Always(ts: Transitions ) { initial (always(ts)) }

def Unless(tsl: Transitions )(ts2: Transitions ) {
initial (unless(ts1)(ts2))

}




Example: objects as Boolean predicates

class Property5 extends Monitor[Event] {
Always {
case CartCreateResponse(c) = CartCreated(c)
case CartAdd(c, ) if !CartCreated(c) = error

}

case class CartCreated(c:Int) extends state {
Watch {
case CartDelete(‘c’) = ok

}
}
}



Implementation

implicit def stateAsBoolean(s: state ): Boolean =
states contains s




Implementation

implicit def ss1(u:Unit):Set[state] = Set(ok)

implicit def ss2(b:Boolean):Set[state] = Set(if (b) ok else error)
implicit def ss3(s: state ):Set[state] = Set(s)

implicit def ss4(ss: List [state] ): Set[state] = ss.toSet

implicit def ss5(sl:state) = new {
def &(s2:state ): Set[state] = Set(sl, s2)

}

implicit def ss6(set:Set[state]) = new {
def &(s:state ):Set[state] = set + s

}




Implementation

def stateExists (p: PartialFunction [ state ,Boolean]): Boolean = {
states exists (p orElse { case _ = false })

}




Implementation

var statesToRemove : Set[state] = Set()
var statesToAdd : Set[state] = Set()




Implementation

def verify (event:E) {
for (sourceState € states) {
val targetStates = sourceState(event)
if (! targetStates .isEmpty) {
statesToRemove += sourceState
for (targetState € targetStates) {
targetState match {
case ‘error ' = println ("*** " 4 monitorName + " error!")
case ‘ok' =
case = statesToAdd += targetState
}
}
}
}

states — —= states ToRemove; states ++= states ToAdd
statesToRemove = emptySet; statesToAdd = emptySet
for (monitor € monitors) {monitor. verify (event)}

}




Implementation

def end() {

val hotStates = states filter (!_.isFinal)

if (!hotStates.isEmpty) {
println ("hot " + monitorName + " states:")
hotStates foreach println

}

for (monitor € monitors) {
monitor.end()

}
}
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Results

trace nr.

2 3 7 5 3 7
memory 1 1 5 30 100 500 5000
length 30,033 | 2,000,002 | 2,100,010 | 2,000,060 | 2,000,200 | 2,001,000 1,010,000
parsing 3 sec 45 sec 47 sec 46 sec 46 sec 46 sec 24 sec
LocF 26 42 41 34 23 8 1
OGFIRE 1100 77:900 50:996 58:391 1.27:488 3:55:696 15:54:769
38 109 75 41 14 4 0.4
ReTe/UL 816 18:428 28:141 18524 2:26:983 §:25:867 13:33:366
10 8 9 9 8 7 3
DRrooLs 3.97 41758 3:47:535 3:34:648 7:14:497 1:36:608 5:4:505
R 95 138 78 0.8 0.034
ULER 326 14:441 77 45593 41:30:750 | 977:20:636 DNF
ouScors 17 15 7 2 0.4 0.09 0.01
OGoCOPE 1:842 | 2:11.008 | 4:54:605 | 21:42:389 | 76:17:31 | 369:25:312 | 2074:43:470
TRC ) 48 69 37 6 0.9 0.036
RUONTRACT | 545 28:851 57:428 5:58:407 | 36:29:504 | 019:5:134 DNF
D 49 34 86 89 90 86 80
AUT 631 23:847 24:338 22432 22298 23:287 12:612
D sos 102 192 79 24 8 2 0.18
AUT 302 10:435 26:438 122:727 7:19:697 16:27:990 92:2:26
—— 233 | 1715 770 373 195 54 5
AUT 133 1166 2729 5:368 10:236 36:029 3:6:560
M 595 1381 1559 1341 7143 7096 847
op 52 1.448 347 1491 280 282 1.193
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Conclusion

@ We have seen the concept of data automata
@ Implemented as an external as well as an internal DSL

@ Internal DSL is simple but hard to optimize if shallow
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Textual SysML modeling language

© 00

Should provide a textual alternative to graphic notation
Should support at least so-called parametric block diagrams

» elements
» relations
» constraints

Should support constraint solving
Related work: Alloy, Formula (from MSR), Z
And one can now ask: why does this have to be a different world than

the programming language mentioned above? We plan to experiment
with internal Scala DSL.



Will programming and specification merge?

@ Modern programming languages, such as Python, Scala, Fortress have
many things in common with specification language such as VDM.



Will programming and specification merge?

@ Modern programming languages, such as Python, Scala, Fortress have
many things in common with specification language such as VDM.

@ We see programming constructs such as:

functional programming combined with imperative programming
algebraic datatypes

sets, list and maps as built in data types with mathematic notation
predicate subtypes (N={i € Z | i 2 0})

design by contract: pre/post conditions, invariants on state

session types

predicate logic, quantification over finite sets (as functions)

vV VvV VY VvV VvYY



The six language elements

@ High-level programming constructs (like Scala, Python, ...)
@ Low-level programming constructs (like C, C++, ...)

@ Specification constructs (like VDM, Z, B, ...)

@ Support for verification, refinement

© Support for definition of DSLs (internal as well as external)

@ Support for visualization (static as well as dynamic)



The verifying compiler for a new language

@ FM community designs new language

@ and its verifying compiler



The suggestion

@ Form a group of people, which can be joined by anyone

@ Open source programming language design /verifying compiler project
© With project meetings etc.

@ A webpage for language design
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