Monitoring with Data Automata

Klaus Havelund
Jet Propulsion Laboratory, USA

WG 1.9/2.15 Verified Software
July 14-16, 2014

NASA:!]PL Laboratory

Jet lPropuIslmI.aboaio i
California Institute of Technology for Reliable Software

Definition of “Runtime Verification”

Definition (Runtime Verification)

Runtime Verification is the discipline of computer science dedicated to the
analysis of system executions, including checking them against formalized
specifications.

Runtime verification

@ Start with a system to monitor.

system

Runtime verification

@ Instrument the system to record relevant events.

instrumentation

system

Runtime verification

@ Provide a monitor.

monitor

instrumentation

system

Runtime verification

@ Dispatch each received event to the monitor.

monitor

observe

instrumentation

system

Runtime verification

o Compute a verdict for the trace received so far.

monitor

verdict
—

observe

instrumentation

system

Runtime verification

@ Possibly generate feedback to the system.

verdict
monitor pr—
observe feedback
instrumentation

system

Runtime verification

@ We might possibly have synthesized monitor from a property.

property
verdict
monitor pr—
observe feedback
instrumentation

system

A

Granting and releasing of locks

task

task

task

task

resource
arbiter
request
__grant
- _release
p ~ order

Resource allocation requirements

Requirement R;

A grant of a resource to a task must be followed by a release of that
resource by the same task, without another grant of that resource in
between (to the same task or any other task).

A state machine

Requirement R;

A grant of a resource to a task must be followed by a release of that
resource by the same task, without another grant of that resource in
between (to the same task or any other task).

grant

grant
~@_oO—0O

release

A state machine with parameters

Requirement R;

A grant of a resource to a task must be followed by a release of that
resource by the same task, without another grant of that resource in
between (to the same task or any other task).

grant (t,r)

h: grant (t’ ,r)@

release(t,r)

Consider the following trace

grant(ty, antenna)
grant(tp, motor,)

grant(tz, motors)

Monitor configuration after these three events

{52(ty, antenna), S2(tp, motory), S2(t3, motors) }

A

Scala is a high-level unifying language

Object-oriented + functional programming features
Strongly typed with type inference

Script-like, semicolon inference

Sets, list, maps, iterators, comprehensions

Lots of libraries

Compiles to JVM

Lively growing community

References

http://www.havelund.com

Monitoring with Data Automata Klaus Havelund. I1SoLA 2014 — 6th
International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation. Track: Statistical Model Checking, Past Present and
Future. Organized by: K. Larsen and A. Legay. Editors: T. Margaria and B.
Steffen. Springer, LNCS. Corfu, Greece, October 8-11, 2014.

Data Automata in Scala Klaus Havelund. TASE 2014 - The 8th International
Symposium on Theoretical Aspects of Software Engineering, IEEE proceedings.
Changsha, China, September 1-3, 2014.

Rule-based runtime verification revisited Klaus Havelund. Software Tools for
Technology Transfer (STTT). Springer. April, 2014.

TraceContract: A Scala DSL for Trace Analysis Howard Barringer and Klaus
Havelund. FM 2011 - 17th International Symposium on Formal Methods.
Springer, LNCS 6664. Limerick, Ireland, June 20-24, 2011.

Data Automata

@ as an external DSL

@ small language with focused functionality
@ specialized parser programmed using parser generator

Data Automata

@ as an external DSL

@ small language with focused functionality
@ specialized parser programmed using parser generator
© advantages:

@ complete control over language syntax

@ analyzable

Data Automata

@ as an external DSL

@ small language with focused functionality
@ specialized parser programmed using parser generator
© advantages:

@ complete control over language syntax
@ analyzable

@ as an internal DSL

@ APl in ScarLAa
@ using SCALA's infra-structure (compiler, IDEs, ...)

Data Automata

@ as an external DSL

@ small language with focused functionality
@ specialized parser programmed using parser generator
© advantages:

@ complete control over language syntax

@ analyzable

@ as an internal DSL

@ APl in ScarLAa
@ using SCALA's infra-structure (compiler, IDEs, ...)
© advantages:
@ expressive, the programming language is never far away
@ easier to develop/adapt (although, sometimes not)
@ allows use of existing tools such as type checkers, IDEs, etc.

A

Resource allocation requirements

Requirement R;

A grant of a resource to a task must be followed by a release of that
resource by the same task, without another grant of that resource in
between (to the same task or any other task).

Requirement R,
A resource cannot be released by a task, which has not been granted the
resource.

R; and R, as a state machine in DAUT

monitor R1R2 {
init always Start {
grant(t, r) — Granted(t,r)
release (t, r) = —Granted(t,r) — error

}

hot Granted(t,r) {
release (t,r) — ok
grant(_,r) — error

}
}

top level abbreviation

monitor R1R2 {

grant(t, r) — Granted(t,r)

release (t, r)

—Granted(t,r) — error

hot Granted(t,r) {
release (t,r) — ok
grant(_,r) — error

}
}

Requirement R,

monitor R1 {
grant(t,r) — hot {
release (t,r) — ok
grant(_,r) — error
}
}

Syntax

(Specification) ::= (Monitor)*

(Monitor) ::= monitor (Id) ‘{' (Transition)* (State)* ‘}’

(State) := (Modifier)* (Id) [((Id)**) | [‘{' (Transition)* '}']
(Modifier) ::= init | hot | always

(Transition) ::= (Pattern) ‘::" (Condition) ‘—' (Action)**
(Pattern) = (Id) 'C{ld)***)’

(Condition) ::= (Condition) ‘A’ {Condition)

| (Condition) ‘v’ (Condition)

| ‘=" (Condition)

| ‘C{Condition)*)’

| (Expression) (relop) (Expression)
| (Id)y ['C{Expression)**')']

(Action) ::= ok
| error
| (Id) [*C(Expression)**)"]
| if ‘(" (Condition) ‘)’ then (Action) else (Action)
| (Modifier)* ‘{" (Transition)* '}’

Semantics part 1/3

€ /

con, con — b, con
e,b ,
con — con

e
con,s —— res

e
con, ss < res’

con, {} < (true, {}) E-ss

e
con,s U ss < res @ res’

Semantics part 2/3

e e
con,s.env,s.ts = | con,s.env,s.ts = res

E-S1

E-Sz
e e
con,s — true, {s} con,s — res

€
con,env,t — res

e
e con, env, ts = res'
con, env, Nil =L E-ts, "
con, env, (t) " ts => res| @, res’

Semantics part 3/3

t is ‘pat :: cond — rhs’

tis ‘pat :: cond — rhs’
P [pat]”env e = env’

P
at]|" env e =L
Lear]

. [cond]€ con env’ = false
con,env,t —1

e
con,env,t —_1

tis ‘pat :: cond — rhs’
P /
[pat] env e = env
|[cond]]ccon env' = true

[rhs]®con env’ = res
-3

€
con,env,t — res

A

Abstract syntax

case class Specification (automata: List [Automaton])
case class Automaton(name: Id, states: List [StateDef])

case class StateDef(
modifiers : List [Modifier],
name: Id,
formals: List[Id],
transitions : List [Transition])

case class Transition (
pattern: Pattern,
condition : Option[Condition],
rhs: List [StateExp])

trait Pattern
case class FormalEvent(name: Id, formals: List[Id]) extends Pattern
case object Any extends Pattern

Parser

object Grammar extends JavaTokenParsers {
def specification : Parser[Specification] =
rep(automaton) *" {
case automata = transform(Specification (automata))

}

def automaton: Parser[Automaton] =
"monitor" —ident ¥ ("{" — rep(transition) ~ rep(statedef) < "}")
{
case name ~ (transitions ~ statedefs) =
if (transitions .isEmpty)
Automaton(name, statedefs)
else { // derived form
val initialState =
StateDef(List (init , always), "StartFromHere", Nil, transitions)
Automaton(name, initialState :: statedefs)

}

N

Interpreter interface

trait Monitor[Event] {
def verify (event: Event)
def end()

}

Interpreter

class Monitorlmpl(automaton: Automaton) extends Monitor[Event] {
case class State(name: Id, values: List[Value]) {
var env: Env = null

}

type Config = Set[State]
type Result = (Boolean, Config)

var currentConfig: Config = initialConfig (automaton)

def verify (event: Event) {
val (status, con) = eval(currentConfig)(event)
if (!status) println ("*x* error")
currentConfig = con

}

Indexing optimization

“grant”

Event pars: N/A

State pars: N/A Event pars: (1,2)

State pars: (t,r)

release

®,

“grant”

A

Event type modeled in internal DSL

trait Event
case class grant(task: String, resource: String) extends Event
case class release (task: String, resource: String) extends Event

Properties modeled in internal DSL

class R1R2 extends Monitor[Event] {
Always {
case grant(t, r) = Granted(t, r)
case release (t, r) if !Granted(t, r) = error

}
case class Granted(t: String, r: String) extends state{
Watch {
case release (‘'t', ‘r‘) = ok
case grant(_, 'r') = error
}
}

}

Properties modeled in internal DSL

class R1 extends Monitor[Event] {
Always {
case grant(t, r) = hot {

[t

case release (‘t', ‘r‘) = ok

case grant(_, ‘'r') = error

}
}
}

Properties modeled in internal DSL

object Main {
def main(args: Array[String]) {
val obs = new R1R2

obs. verify (grant("t1", "A"))
obs. verify (grant("t2", "A"))
obs. verify (release ("t2", "A"))
obs. verify (release ("t1", "B"))
obs.end()

S. Hallé and R. Villemaire,

“Runtime enforcement of web service message contracts with data”,
IEEE Transactions on Services Computing, vol. 5, no. 2, 2012. —
formalized in LTL-FO™.

o>

XML based client server communication

XML

A
v

client server

Example of XML message

<CartAdd>
<CartId>1</CartId>
<Items>
<Item>
<ASIN>10</ASIN>
</Item>
<Item>
<ASIN>20</ASIN>
</Item>
</Items>
</CartAdd>

Amazon E-Commerce Service

ItemSearch(txt)
CartCreate(its)
CartCreateResponse(c)
CartGetResponse(c, its)
CartAdd(c, its)
CartRemove(c, its)
CartClear(c)
CartDelete(c)

N I B

search items on site
create cart with items
get cart id back
result of get query
add items

remove items

clear cart

delete cart

Definition of events

case class

Item(asin : String)

trait Event

case class
case class
case class
case class
case class
case class
case class
case class

[temSearch(text: String) extends Event

CartCreate(items: List [Item]) extends Event
CartCreateResponse(id: Int) extends Event
CartGetResponse(id:Int, items: List [Item]) extends Event
CartAdd(id:Int, items: List [Iltem]) extends Event
CartRemove(id:Int, items: List [Item]) extends Event
CartClear(id: Int) extends Event

CartDelete(id: Int) extends Event

From XML to objects

def xm|ToObject(xml:scala.xml.Node):Event =
xml match {
case x @ <CartAdd>{ _x* }</CartAdd> =
CartAdd(getld(x), getltems(x))

}
def xmlStringToObject(msg:String):Event = {

val xml = scala.xml.XML.loadString(msg)
xml|ToObject(xml)

def getld (xml:scala .xml.Node):Int =
(xml \ "CartId").text.tolnt

def getltems(xml:scala .xml.Node):List[ltem] =
(xml \ "Ttems" \ "Item" \ "ASIN").
toList .map(i = Item(i . text))

Properties

o Property 1 - Until a cart is created, the only operation allowed is
ItemSearch.

@ Property 2 - A client cannot remove something from a cart that has
just been emptied.

o Property 3 - A client cannot add the same item twice to the
shopping cart.

o Property 4 - A shopping cart created with an item should contain
that item until it is deleted.

o Property 5 - A client cannot add items to a non-existing cart.

Properties formalized

class Propertyl extends Monitor[Event] {
Unless {
case ItemSearch(_) = ok
case _ = error
H
case CartCreate(_) = ok
}
}

class Property2 extends Monitor[Event] {
Always {
case CartClear(c) = unless {
case CartRemove('c’,) = error
H
case CartAdd(‘c’,) = ok
}
}
}

class Property3 extends Monitor[Event] {
Always {
case CartCreate(items) = next {
case CartCreateResponse(c) = always {
case CartAdd(‘c’, items_) = items disjointWith items_

}
}
}
}

class Property4 extends Monitor[Event] {
Always {
case CartAdd(c, items) =
for (i € items) yield unless {

[

case CartGetResponse(‘c’, items_) = items_ contains i

H

case CartRemove('c’, items_) if items_ contains i = ok

}

class Property5 extends Monitor[Event] {
Always {
case CartCreateResponse(c) = CartCreated(c)
case CartAdd(c,) if !CartCreated(c) = error

}

case class CartCreated(c:Int) extends state {
Watch {
case CartDelete(‘c’) = ok

}
}
}

Recall property 3

o Property 3 - A client cannot add the same item twice to the
shopping cart.

Property 3 made less strict

class Property3Liberalized extends Monitor[Event] {
Always {
case CartCreate(items) = next {
case CartCreateResponse(c) = CartCreated(c, items)

}
}

case class CartCreated(id: Int, items: List[ltem]) extends state {
Watch {
case CartAdd(‘id‘, items_) =
val newCart = CartCreated(id,items + items_)
if (items disjointWith items_) newCart else error & newCart
case CartRemove('id*, items_) = CartCreated(id, items diff items_)

}
}
}

Property 4 formulated on XML messages directly

class Property4 XML extends Monitor[scala.xml.Elem] {
Always {
case add @ <CartAdd>{_ x}</CartAdd> =
val ¢ = getld(add)
val items = getltems(add)
for (i € items) yield

unless {
case res @ <CartGetResponse>{_x}</CartGetResponse>
if ¢ == getld(res) = getltems(res) contains i
3

case rem @ <CartRemove>{ x}</CartRemove>
if ¢ == getld(rem) &&
(getltems(rem) contains i) = ok

Creating and applying a monitor

class Properties extends Monitor[Event] {
monitor(
new Propertyl(), new Property2(), new Property3(),
new Property4(), new Property5())

}

object Main {
def main(args: Array[String]) {
val m = new Properties
val file : String ="..."
val xmlEvents = scala.xml.XML.loadFile(file)

for (elem € xmlEvents \ "_") {
m. verify (xm|ToObject(elem))

}
m.end()

A

Implementation

class Monitor[E <: AnyRef] {
val monitorName = this.getClass().getSimpleName()

var states : Set[state] = Set()
var monitors : List [Monitor[E]] = List()

def monitor(monitors: Monitor[E]*) {
this . monitors ++4= monitors

}

Example: submonitors

class Properties extends Monitor[Event] {
monitor(
new Propertyl(), new Property2(), new Property3(),
new Property4(), new Property5())

}

object Main {
def main(args: Array[String]) {
val m = new Properties
val file : String ="..."
val xmlEvents = scala.xml.XML.loadFile(file)

for (elem € xmlEvents \ "_") {
m. verify (xm|ToObject(elem))

}
m.end()

Implementation

type Transitions = PartialFunction[E, Set[state]]

def noTransitions : Transitions = {
case _if false = null

}

val emptySet : Set[state] = Set()

Example: transitions and states

class Property5 extends Monitor[Event] {
Always {
case CartCreateResponse(c) = CartCreated(c)
case CartAdd(c,) if !CartCreated(c) = error

}

case class CartCreated(c:Int) extends state {
Watch {
case CartDelete(‘c’) = ok

}
}
}

Implementation

class state {
var transitions : Transitions = noTransitions
var isFinal : Boolean = true

def apply(event:E):Set[state] =
if (transitions .isDefinedAt (event))
transitions (event) else emptySet

def Watch(ts: Transitions) {
transitions = ts

}

def Always(ts: Transitions) {
transitions = ts andThen (_ + this)

}

def Hot(ts: Transitions) {
Watch(ts); isFinal = false

}

Implementation

def Whnext(ts: Transitions) {
transitions = ts orElse {
case = ok

}
}

def Next(ts: Transitions) {
Whext(ts); isFinal = false

}

def Unless(tsl: Transitions)(ts2: Transitions) {
transitions = ts2 orElse
(tsl andThen (_ + this))
}

def Until (ts1: Transitions)(ts2: Transitions) {
Unless(ts1)(ts2); isFinal = false

}
}

Implementation

case object ok extends state
case object error extends state

def error (msg:String): state = {
printin ("\n**x " + msg + "\n")
error

}

Example: inlined states

class Property3 extends Monitor[Event] {
Always {
case CartCreate(items) = next {
case CartCreateResponse(c) = always {
case CartAdd(‘c’, items_) = items disjointWith items_

}
}
}
}

Implementation

def watch(ts: Transitions) = new state {Watch(ts)}
def always(ts: Transitions) = new state {Always(ts)}
def hot(ts: Transitions) = new state {Hot(ts)}

def wnext(ts: Transitions) = new state {Wnext(ts)}
def next(ts: Transitions) = new state {Next(ts)}

def unless(tsl: Transitions)(ts2: Transitions) =
new state { Unless(tsl)(ts2) }

def until (tsl: Transitions)(ts2: Transitions) =
new state { Until (ts1)(ts2) }

Implementation

def initial (s:state) { states +=s}
def Always(ts: Transitions) { initial (always(ts)) }

def Unless(tsl: Transitions)(ts2: Transitions) {
initial (unless(ts1)(ts2))

}

Example: objects as Boolean predicates

class Property5 extends Monitor[Event] {
Always {
case CartCreateResponse(c) = CartCreated(c)
case CartAdd(c,) if !CartCreated(c) = error

}

case class CartCreated(c:Int) extends state {
Watch {
case CartDelete(‘c’) = ok

}
}
}

Implementation

implicit def stateAsBoolean(s: state): Boolean =
states contains s

Implementation

implicit def ss1(u:Unit):Set[state] = Set(ok)

implicit def ss2(b:Boolean):Set[state] = Set(if (b) ok else error)
implicit def ss3(s: state):Set[state] = Set(s)

implicit def ss4(ss: List [state]): Set[state] = ss.toSet

implicit def ss5(sl:state) = new {
def &(s2:state): Set[state] = Set(sl, s2)

}

implicit def ss6(set:Set[state]) = new {
def &(s:state):Set[state] = set + s

}

Implementation

def stateExists (p: PartialFunction [state ,Boolean]): Boolean = {
states exists (p orElse { case _ = false })

}

Implementation

var statesToRemove : Set[state] = Set()
var statesToAdd : Set[state] = Set()

Implementation

def verify (event:E) {
for (sourceState € states) {
val targetStates = sourceState(event)
if (! targetStates .isEmpty) {
statesToRemove += sourceState
for (targetState € targetStates) {
targetState match {
case ‘error ' = println ("*** " 4 monitorName + " error!")
case ‘ok' =
case = statesToAdd += targetState
}
}
}
}

states — —= states ToRemove; states ++= states ToAdd
statesToRemove = emptySet; statesToAdd = emptySet
for (monitor € monitors) {monitor. verify (event)}

}

Implementation

def end() {

val hotStates = states filter (!_.isFinal)

if (!hotStates.isEmpty) {
println ("hot " + monitorName + " states:")
hotStates foreach println

}

for (monitor € monitors) {
monitor.end()

}
}

A

Results

trace nr.

2 3 7 5 3 7
memory 1 1 5 30 100 500 5000
length 30,033 | 2,000,002 | 2,100,010 | 2,000,060 | 2,000,200 | 2,001,000 1,010,000
parsing 3 sec 45 sec 47 sec 46 sec 46 sec 46 sec 24 sec
LocF 26 42 41 34 23 8 1
OGFIRE 1100 77:900 50:996 58:391 1.27:488 3:55:696 15:54:769
38 109 75 41 14 4 0.4
ReTe/UL 816 18:428 28:141 18524 2:26:983 §:25:867 13:33:366
10 8 9 9 8 7 3
DRrooLs 3.97 41758 3:47:535 3:34:648 7:14:497 1:36:608 5:4:505
R 95 138 78 0.8 0.034
ULER 326 14:441 77 45593 41:30:750 | 977:20:636 DNF
ouScors 17 15 7 2 0.4 0.09 0.01
OGoCOPE 1:842 | 2:11.008 | 4:54:605 | 21:42:389 | 76:17:31 | 369:25:312 | 2074:43:470
TRC) 48 69 37 6 0.9 0.036
RUONTRACT | 545 28:851 57:428 5:58:407 | 36:29:504 | 019:5:134 DNF
D 49 34 86 89 90 86 80
AUT 631 23:847 24:338 22432 22298 23:287 12:612
D sos 102 192 79 24 8 2 0.18
AUT 302 10:435 26:438 122:727 7:19:697 16:27:990 92:2:26
—— 233 | 1715 770 373 195 54 5
AUT 133 1166 2729 5:368 10:236 36:029 3:6:560
M 595 1381 1559 1341 7143 7096 847
op 52 1.448 347 1491 280 282 1.193

A

Conclusion

@ We have seen the concept of data automata
@ Implemented as an external as well as an internal DSL

@ Internal DSL is simple but hard to optimize if shallow

A

Textual SysML modeling language

© 00

Should provide a textual alternative to graphic notation
Should support at least so-called parametric block diagrams

» elements
» relations
» constraints

Should support constraint solving
Related work: Alloy, Formula (from MSR), Z
And one can now ask: why does this have to be a different world than

the programming language mentioned above? We plan to experiment
with internal Scala DSL.

Will programming and specification merge?

@ Modern programming languages, such as Python, Scala, Fortress have
many things in common with specification language such as VDM.

Will programming and specification merge?

@ Modern programming languages, such as Python, Scala, Fortress have
many things in common with specification language such as VDM.

@ We see programming constructs such as:

functional programming combined with imperative programming
algebraic datatypes

sets, list and maps as built in data types with mathematic notation
predicate subtypes (N={i € Z | i 2 0})

design by contract: pre/post conditions, invariants on state

session types

predicate logic, quantification over finite sets (as functions)

vV VvV VY VvV VvYY

The six language elements

@ High-level programming constructs (like Scala, Python, ...)
@ Low-level programming constructs (like C, C++, ...)

@ Specification constructs (like VDM, Z, B, ...)

@ Support for verification, refinement

© Support for definition of DSLs (internal as well as external)

@ Support for visualization (static as well as dynamic)

The verifying compiler for a new language

@ FM community designs new language

@ and its verifying compiler

The suggestion

@ Form a group of people, which can be joined by anyone

@ Open source programming language design /verifying compiler project
© With project meetings etc.

@ A webpage for language design

A

