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“Interfaces of systems are collections of classes rather
than methods”
[Tony Hoare, Meeting of the IFIP WG 1.9, Vienna, 15.7.14]
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General motivation

» practical motivation:
— software maintenance and evolution

> principle motivation:
— behavioral subtyping at the code level

» conceptual motivation:
— components with complex interfaces

package p;
public interface IT { IT m(); }

public class UselT {
public IT runM( IT x ) {
return x.m();
}
}



Overview

> Introduction to backward compatibility
> A fully abstract semantics of LPJava

> Proving backward compatibility
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Example: Is library v2.0 backward compatible with v1.07?

package cells;
public interface Val {}

public class Cell {

private Val v;
public void set(Val nv) {
V =nv;

}
public Val get() {
returnv;
}
}

package cells;

public interface Val {}
public class Cell {
private Val v1, v2;
private boolean f;
public void set(Val nv) {
f=1f;
if (f) v1 = nv; else v2 = nv;
1
public Val get() {
if (f) return v1; else return v2;
1
public Val getPrevious() {
if (f) return v2; else return v1;
1
}



Backward compatibility: Two aspects

backward compatibility

source compatibility
+
behavioral compatibility



Source compatibility: Separation by compiling

package problem1; package problem1;
interface | { L T ., bublic class C {

public D f;
} public C g;

publicCm(){ ... }
public abstract class C }
implements | {
public | f; class D {

protected C g;
} }



Source compatibility: Separation by used libraries

package problem2; R package problem2;

public class C { public class C {
public p.D f; public p.D f;

} private p.E g;
}



Behavioral compatibility:

package problem3;

public interface A {
int m1();
int m2();

}

public class B implements A {
public int m1() { return 42;}
public int m2() { return m2(); }
}

Separation by application code

package problem3;

* public interface A {

int m1();
int m2();
}

public class B implements A {
public int m1() { return 42;}
public int m2() { return 42;}
}



A fully abstract semantics of LPJava
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Challenge and approach

Definition (Backward compatibility)

A library Y is backward compatible with X if for any program context K
of X: KXl implies KYy;d

Proving backward compatibility is challenging:

1. Heaps and stacks in program configurations significantly different
— Use trace-based semantics that abstracts from internal representation of library

Theorem (Trace semantics captures all relevant information)

Y is backward compatible with X if and only if
for any program context K of X: Traces(KX) € Traces(KY).

2. Infinitely many possible contexts
— Construct most general context k , that simulates all contexts of X

Theorem (Most general context generates all possible behaviors)
Traces(kx X) = | J Traces(KX)
K



Setting - LPJava

K., X,Y = Q
Q,R := packagep; D
D = [public] class c extends p.c implements p.i { F M }
| [public] interface i extends p.i { M }
F = private p.t f;
M = public p.t m(p.tv) ( 1 {E} )
E

x| null|new p.c() | E.f| Ef=E| E.m(E
letp.tx=EinE|E==E?E:E|(p.t)
cli

)
tE

where ¢ € class names, i € interface names, p, g € package names, f € field names,
m € method names and x € variable names.
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Start with standard small-step operational semantics (similar to FJ)

Characterize library behavior by the interactions between code
belonging to library (X) and code belonging to program context (K)

Generate a label if control flow passes from K to X or vice-versa

> Only method calls and returns relevant
> Label records all relevant information:

>

>
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direction and method name

method call / return

exposed objects

abstraction of types of exposed objects
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belonging to library (X) and code belonging to program context (K)
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From program runs to traces

v

Start with standard small-step operational semantics (similar to FJ)

» Characterize library behavior by the interactions between code
belonging to library (X) and code belonging to program context (K)

A\

Generate a label if control flow passes from K to X or vice-versa

A\

Augment configurations

v

Program runs then generate traces (i.e. sequences of labels)



(Simplified) trace examples

// Program context K // Library X
public class Valuelmpl public interface Val {}
implements Val { ... } public class Cell {
private Val v;
public class Main { public void set(Val nv) {
public void main() { vV =nv;
Cell ¢ = new Cell(); }
Val v = new Valuelmpl(); public Val get() {
c.set(v); return v;

Val v2 = c.get(); }
} }
}
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(Simplified) trace examples

// Program context K

public class Valuelmpl
implements Val { ... }

public class Main {
public void main() {
Cell ¢ = new Cell();
Val v = new Valuelmpl();
c.set(v);
Val v2 = c.get();
}
}

Traces(KX) = { call o,.set(o,) -

rirn _th - call o;.get()& -

// Library Y

public interface Val {}
public class Cell {
private Val v1, v2;
private boolean f;
public void set(Val nv) {
f=1f;
if (f) v1 = nv; else v2 = nv;
}
public Val get() {
if (f) return v1; else return v2;
e
}

rtrn ooth }

(where o0, # 0, are arbitrary object identifier)

= Traces(KY)
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Construction of Most General Context

» Extend LPJava by nondeterministic expression (E ::= ... | nde)
» Evaluation of nde leads to sequences of:
> creation of new objects (of public class type)
> cross-border method call or return using exposed objects
or normal/abrupt program termination
» Augment configurations
> Tag objects whether they have been created by code of K or X
> Tag objects whether they have been exposed / internal

» Construction of program context k i is solely based on library X:

public class Main { public void main() { nde; } }

public class Cell_1 extends Cell {}
public class Cell_2 extends Cell { public void set(Val nv) { nde; } }
public class Cell_3 extends Cell { public Val get() { return nde; } }
public class Cell_4 extends Cell {

public void set(Val nv) { nde; }

public Val get() { return nde; }
}



Full abstraction

1. Traces capture all relevant information about the behavior

2. Ky represents exactly all possible program contexts for X

Theorem (Full abstraction)

Y is backward compatible with X if and only if
Traces(k x X) C Traces(kyY).

> More details in Welsch/Poetzsch-Heffter. A fully abstract
trace-based semantics for reasoning about backward compatibility
of class libraries (Science of Computer Prog. 92, pp. 129-161, Oct. 2014)

> Related work:

Java Jr. (Jeffrey/Rathke 2005)

> Reasoning about class behavior (Koutavas/Wand 2007)

> Ownership confinement ensures representation independence for
object-oriented programs (Banerjee/Naumann 2005)

v
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Proving backward compatibility and equivalence

Two Approaches

1. Simulation proof based on abstract models:

» Develop (or mine) abstract models of the libraries
» Prove models correct vs. code (Hoare-logic)

» Prove equivalence on the model level

» First experiences using ITP

2. Simulation proof based on coupling relation:
> Coupling relation between runtime configs of k x X and xx Y
> Prove simulation for all possible input messages
> Automatic checking based on an embedding into Boogie (FTfJP’12)



Coupling relation for Cell example

Specification:

invariant forall old Cell o1, new Cell 02 :: 01 ~ 02
==> if 02.f then 01.c ~ 02.c1 else o1.c ~ 02.c2;
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Checking technique and tool

BCVerifier:

> Specification language for coupling invariants

> Check source compatibility

» Generate verification conditions for Boogie to prove that coupling
invariant is a simulation:

> Corresponding inputs lead to corresponding outputs
> Coupling invariant preserved by interactions

Remark:
Needs a bit of twisting as Boogie is not designed for simulations



Coupling in Boogie

Coupling invariant:

function Inv(heap1:Heap, heap2:Heap, related:Bij) returns (bool) {
(forall 01,02:Ref :: related[o1,02] && heap2[02,f]
==> RelNull(heap1[o1,c], heap2[02,c1], related) ) &&
(forall 01,02:Ref :: related[o1,02] && heap2[02,f]
==> RelNull(heap1[o1, c], heap2[02,c2], related) )
}
function RelNull(r1:Ref, r2:Ref, related:Bij) returns (bool) {
(r1 == null && r2 == null) || (r1 != null && r2 != null && related[r1,r2])

}

allows to verify Cell example



BCVerifier example: OneOfLoop

1 public class C { 1 public class C {
2 public int m(int n){ 2 public int m(int n){
3 intx=0; 3 intx=0;
4 for(int i=0; i<n; i++){ 4 inti=1;
5 X +=i; 5 while(i<n){
6 } 6 X +=i;
7 return x; 7 i++;
8 } 8 }
9 } 9 return x;
10}
11}



BCVerifier example: OneOfLoop

1 public class C { 1 public class C {
2 public int m(int n){ 2 public int m(int n){
3 intx=0; 3 intx=0;
4 for(int i=0; i<n; i++){ 4 inti=1;
5 X +=i; 5 while(i<n){
6 } 6 X +=i;
7 return x; 7 i++;
8 } 8 }
9 } 9 return x;
10}
11}

local place inLoop1 = line 5 of old C when i > 0;
local place inLoop?2 = line 6 of new C;

local invariant at(inLoop1) && at(inLoop2) ==>
eval(inLoop1, n) == eval(inLoop2, n)
&& eval(inLoop1, x) == eval(inLoop2, x)
&& eval(inLoop1, i) == eval(inLoop2, i);
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The END

Conclusions:

> Principles of proving backward compatibility

» Backward compatibility needs no specs: can be transferred to
behavioral subtyping

> Abstract semantics of packages/components

Aspects for the future:

> Design languages such that source compatibility is automatically
checkable

> Develop refined forms of backward compatibility



Questions?



