Proving Backward Compatibility for
Object-Oriented Libraries

Yannick Welsch and Arnd Poetzsch-Heffter

University of Kaiserslautern

15.07.2014

“Interfaces of systems are collections of classes rather
than methods”
[Tony Hoare, Meeting of the IFIP WG 1.9, Vienna, 15.7.14]

General motivation

» practical motivation:
— software maintenance and evolution

General motivation

» practical motivation:
— software maintenance and evolution

> principle motivation:
— behavioral subtyping at the code level

General motivation

>

practical motivation:
— software maintenance and evolution

principle motivation:
— behavioral subtyping at the code level

conceptual motivation:
— components with complex interfaces

General motivation

» practical motivation:
— software maintenance and evolution

> principle motivation:
— behavioral subtyping at the code level

» conceptual motivation:
— components with complex interfaces

package p;
public interface IT { IT m(); }

public class UselT {
public IT runM(IT x) {
return x.m();
}
}

Overview

> Introduction to backward compatibility
> A fully abstract semantics of LPJava

> Proving backward compatibility

Introduction to backward compatibility

Program
(class) (class) (class) (class)
Library

Introduction to backward compatibility

Library v1.0 JIRTEEEENE

Introduction to backward compatibility

Program

(class) (class) (class) (class)

Program
2

(class) (class) (class) (class)
evolve
Library v1.0 Lo Library v2.0
(class) (class)
(class) (class)

Introduction to backward compatibility

Program Program
?
(class) (class) (class) (class) (class) (class) (class) (class)
evolve
Library v1.0 PR Library v2.0
(class) (class)

(class) (class)

Introduction to backward compatibility

Program

eJoJolelelololo]

Library v1.0

B

Program

OO
PPP00000

Library v2.0

o,

(class)

(class)

(class)

(class)

Example: Is library v2.0 backward compatible with v1.07?

package cells;
public interface Val {}

public class Cell {

private Val v;
public void set(Val nv) {
V =nv;

}
public Val get() {
returnv;
}
}

package cells;

public interface Val {}
public class Cell {
private Val v1, v2;
private boolean f;
public void set(Val nv) {
f=1f;
if (f) v1 = nv; else v2 = nv;
1
public Val get() {
if (f) return v1; else return v2;
1
public Val getPrevious() {
if (f) return v2; else return v1;
1
}

Backward compatibility: Two aspects

backward compatibility

source compatibility
+
behavioral compatibility

Source compatibility: Separation by compiling

package problem1; package problem1;
interface | { L T ., bublic class C {

public D f;
} public C g;

publicCm(){ ... }
public abstract class C }
implements | {
public | f; class D {

protected C g;
} }

Source compatibility: Separation by used libraries

package problem2; R package problem2;

public class C { public class C {
public p.D f; public p.D f;

} private p.E g;
}

Behavioral compatibility:

package problem3;

public interface A {
int m1();
int m2();

}

public class B implements A {
public int m1() { return 42;}
public int m2() { return m2(); }
}

Separation by application code

package problem3;

* public interface A {

int m1();
int m2();
}

public class B implements A {
public int m1() { return 42;}
public int m2() { return 42;}
}

A fully abstract semantics of LPJava

Challenge and approach

Definition (Backward compatibility)

A library Y is backward compatible with X if for any program context K
of X: KXl implies KY;,;| (adopted from [Morris 68])

Challenge and approach

Definition (Backward compatibility)

A library Y is backward compatible with X if for any program context K
of X: KXl implies KYy;d

Proving backward compatibility is challenging:

1. Heaps and stacks in program configurations significantly different

2. Infinitely many possible contexts

Challenge and approach

Definition (Backward compatibility)
A library Y is backward compatible with X if for any program context K

of X: KXl implies KYy;d
Proving backward compatibility is challenging:
1. Heaps and stacks in program configurations significantly different
— Use trace-based semantics that abstracts from internal representation of library

Theorem (Trace semantics captures all relevant information)

Y is backward compatible with X if and only if
for any program context K of X: Traces(KX) € Traces(KY).

2. Infinitely many possible contexts

Challenge and approach

Definition (Backward compatibility)

A library Y is backward compatible with X if for any program context K
of X: KXl implies KYy;d

Proving backward compatibility is challenging:

1. Heaps and stacks in program configurations significantly different
— Use trace-based semantics that abstracts from internal representation of library

Theorem (Trace semantics captures all relevant information)

Y is backward compatible with X if and only if
for any program context K of X: Traces(KX) € Traces(KY).

2. Infinitely many possible contexts
— Construct most general context k , that simulates all contexts of X

Theorem (Most general context generates all possible behaviors)
Traces(kx X) = | J Traces(KX)
K

Setting - LPJava

K., X,Y = Q
Q,R := packagep; D
D = [public] class c extends p.c implements p.i { F M }
| [public] interface i extends p.i { M }
F = private p.t f;
M = public p.t m(p.tv) (1 {E})
E

x| null|new p.c() | E.f| Ef=E| E.m(E
letp.tx=EinE|E==E?E:E|(p.t)
cli

)
tE

where ¢ € class names, i € interface names, p, g € package names, f € field names,
m € method names and x € variable names.

From program runs to traces

v

Start with standard small-step operational semantics (similar to FJ)
» (KX, Heap, Stack) ~» (KX, Heap', Stack”)

A\

Characterize library behavior by the interactions between code
belonging to library (X) and code belonging to program context (K)

v

Generate a label if control flow passes from K to X or vice-versa

v

Augment configurations

v

Program runs then generate traces (i.e. sequences of labels)

From program runs to traces

> Start with standard small-step operational semantics (similar to FJ)
» Characterize library behavior by the interactions between code
belonging to library (X) and code belonging to program context (K)

(class) (class) (class) (class)

A

iy L

> Generate a label if control flow passes from K to X or vice-versa
» Augment configurations
> Program runs then generate traces (i.e. sequences of labels)

From program runs to traces

v

v

v

v

v

Start with standard small-step operational semantics (similar to FJ)

Characterize library behavior by the interactions between code
belonging to library (X) and code belonging to program context (K)

Generate a label if control flow passes from K to X or vice-versa

> Only method calls and returns relevant
> Label records all relevant information:

>

>
| 4
>

direction and method name

method call / return

exposed objects

abstraction of types of exposed objects

Augment configurations

Program runs then generate traces (i.e. sequences of labels)

From program runs to traces

v

Start with standard small-step operational semantics (similar to FJ)

\

Characterize library behavior by the interactions between code
belonging to library (X) and code belonging to program context (K)
> Generate a label if control flow passes from K to X or vice-versa
» Augment configurations

» Tag stack frames whether code originates from K or X

v

Program runs then generate traces (i.e. sequences of labels)

From program runs to traces

v

Start with standard small-step operational semantics (similar to FJ)

» Characterize library behavior by the interactions between code
belonging to library (X) and code belonging to program context (K)

A\

Generate a label if control flow passes from K to X or vice-versa

A\

Augment configurations

v

Program runs then generate traces (i.e. sequences of labels)

(Simplified) trace examples

// Program context K // Library X
public class Valuelmpl public interface Val {}
implements Val { ... } public class Cell {
private Val v;
public class Main { public void set(Val nv) {
public void main() { vV =nv;
Cell ¢ = new Cell(); }
Val v = new Valuelmpl(); public Val get() {
c.set(v); return v;

Val v2 = c.get(); }
} }
}

(Simplified) trace examples

// Program context K // Library X
public class Valuelmpl public interface Val {}
implements Val { ... } public class Cell {
private Val v;
public class Main { public void set(Val nv) {
public void main() { vV =nv;
Cell ¢ = new Cell(); }
Val v = new Valuelmpl(); public Val get() {
c.set(v); return v;
Val v2 = c.get(); }

} }
}

Traces(KX) = { call 0;.set(o0,)d1 - rtrn _th - call o;.get()& - rtrn oot}

(where o, # 0, are arbitrary object identifier)

(Simplified) trace examples

// Program context K

public class Valuelmpl
implements Val { ... }

public class Main {
public void main() {
Cell ¢ = new Cell();
Val v = new Valuelmpl();
c.set(v);
Val v2 = c.get();
}
}

Traces(KX) = { call o,.set(o,) -

rirn _th - call o;.get()& -

// Library Y

public interface Val {}
public class Cell {
private Val v1, v2;
private boolean f;
public void set(Val nv) {
f=1f;
if (f) v1 = nv; else v2 = nv;
}
public Val get() {
if (f) return v1; else return v2;
e
}

rtrn ooth }

(where o0, # 0, are arbitrary object identifier)

= Traces(KY)

Construction of Most General Context

» Extend LPJava by nondeterministic expression (E ::= ... | nde)

Construction of Most General Context

» Extend LPJava by nondeterministic expression (E ::= ... | nde)
» Evaluation of nde leads to sequences of:

or normal/abrupt program termination

Construction of Most General Context

» Extend LPJava by nondeterministic expression (E ::= ... | nde)
» Evaluation of nde leads to sequences of:
> creation of new objects (of public class type)

or normal/abrupt program termination

Construction of Most General Context

» Extend LPJava by nondeterministic expression (E ::= ... | nde)
» Evaluation of nde leads to sequences of:

> creation of new objects (of public class type)

> cross-border method call or return using exposed objects

or normal/abrupt program termination

Construction of Most General Context

» Extend LPJava by nondeterministic expression (E ::= ... | nde)
» Evaluation of nde leads to sequences of:
> creation of new objects (of public class type)
> cross-border method call or return using exposed objects
or normal/abrupt program termination
» Augment configurations

Construction of Most General Context

» Extend LPJava by nondeterministic expression (E ::= ... | nde)
» Evaluation of nde leads to sequences of:
> creation of new objects (of public class type)
> cross-border method call or return using exposed objects
or normal/abrupt program termination
» Augment configurations
> Tag objects whether they have been created by code of K or X

Construction of Most General Context

» Extend LPJava by nondeterministic expression (E ::= ... | nde)
» Evaluation of nde leads to sequences of:
> creation of new objects (of public class type)
> cross-border method call or return using exposed objects
or normal/abrupt program termination
» Augment configurations
> Tag objects whether they have been created by code of K or X
> Tag objects whether they have been exposed / internal

Construction of Most General Context

» Extend LPJava by nondeterministic expression (E ::= ... | nde)
» Evaluation of nde leads to sequences of:
> creation of new objects (of public class type)
> cross-border method call or return using exposed objects
or normal/abrupt program termination
» Augment configurations
> Tag objects whether they have been created by code of K or X
> Tag objects whether they have been exposed / internal

» Construction of program context k i is solely based on library X:

public class Main { public void main() { nde; } }

public class Cell_1 extends Cell {}
public class Cell_2 extends Cell { public void set(Val nv) { nde; } }
public class Cell_3 extends Cell { public Val get() { return nde; } }
public class Cell_4 extends Cell {

public void set(Val nv) { nde; }

public Val get() { return nde; }
}

Full abstraction

1. Traces capture all relevant information about the behavior

2. Ky represents exactly all possible program contexts for X

Theorem (Full abstraction)

Y is backward compatible with X if and only if
Traces(k x X) C Traces(kyY).

> More details in Welsch/Poetzsch-Heffter. A fully abstract
trace-based semantics for reasoning about backward compatibility
of class libraries (Science of Computer Prog. 92, pp. 129-161, Oct. 2014)

> Related work:

Java Jr. (Jeffrey/Rathke 2005)

> Reasoning about class behavior (Koutavas/Wand 2007)

> Ownership confinement ensures representation independence for
object-oriented programs (Banerjee/Naumann 2005)

v

Proving backward compatibility

Proving backward compatibility and equivalence

Two Approaches

1. Simulation proof based on abstract models:

» Develop (or mine) abstract models of the libraries
» Prove models correct vs. code (Hoare-logic)

» Prove equivalence on the model level

» First experiences using ITP

Proving backward compatibility and equivalence

Two Approaches

1. Simulation proof based on abstract models:

» Develop (or mine) abstract models of the libraries
» Prove models correct vs. code (Hoare-logic)

» Prove equivalence on the model level

» First experiences using ITP

2. Simulation proof based on coupling relation:
> Coupling relation between runtime configs of k x X and xx Y
> Prove simulation for all possible input messages
> Automatic checking based on an embedding into Boogie (FTfJP’12)

Coupling relation for Cell example

Specification:

invariant forall old Cell o1, new Cell 02 :: 01 ~ 02
==> if 02.f then 01.c ~ 02.c1 else o1.c ~ 02.c2;

Checking technique and tool

BCVerifier:

> Specification language for coupling invariants

Checking technique and tool

BCVerifier:

> Specification language for coupling invariants
» Check source compatibility

Checking technique and tool

BCVerifier:

> Specification language for coupling invariants

> Check source compatibility

» Generate verification conditions for Boogie to prove that coupling
invariant is a simulation:
> Corresponding inputs lead to corresponding outputs
> Coupling invariant preserved by interactions

Checking technique and tool

BCVerifier:

> Specification language for coupling invariants

> Check source compatibility

» Generate verification conditions for Boogie to prove that coupling
invariant is a simulation:

> Corresponding inputs lead to corresponding outputs
> Coupling invariant preserved by interactions

Remark:
Needs a bit of twisting as Boogie is not designed for simulations

Coupling in Boogie

Coupling invariant:

function Inv(heap1:Heap, heap2:Heap, related:Bij) returns (bool) {
(forall 01,02:Ref :: related[o1,02] && heap2[02,f]
==> RelNull(heap1[o1,c], heap2[02,c1], related)) &&
(forall 01,02:Ref :: related[o1,02] && heap2[02,f]
==> RelNull(heap1[o1, c], heap2[02,c2], related))
}
function RelNull(r1:Ref, r2:Ref, related:Bij) returns (bool) {
(r1 == null && r2 == null) || (r1 != null && r2 != null && related[r1,r2])

}

allows to verify Cell example

BCVerifier example: OneOfLoop

1 public class C { 1 public class C {
2 public int m(int n){ 2 public int m(int n){
3 intx=0; 3 intx=0;
4 for(int i=0; i<n; i++){ 4 inti=1;
5 X +=i; 5 while(i<n){
6 } 6 X +=i;
7 return x; 7 i++;
8 } 8 }
9 } 9 return x;
10}
11}

BCVerifier example: OneOfLoop

1 public class C { 1 public class C {
2 public int m(int n){ 2 public int m(int n){
3 intx=0; 3 intx=0;
4 for(int i=0; i<n; i++){ 4 inti=1;
5 X +=i; 5 while(i<n){
6 } 6 X +=i;
7 return x; 7 i++;
8 } 8 }
9 } 9 return x;
10}
11}

local place inLoop1 = line 5 of old C when i > 0;
local place inLoop?2 = line 6 of new C;

local invariant at(inLoop1) && at(inLoop2) ==>
eval(inLoop1, n) == eval(inLoop2, n)
&& eval(inLoop1, x) == eval(inLoop2, x)
&& eval(inLoop1, i) == eval(inLoop2, i);

The END

Conclusions:

> Principles of proving backward compatibility

The END

Conclusions:

> Principles of proving backward compatibility

» Backward compatibility needs no specs: can be transferred to
behavioral subtyping

The END

Conclusions:

> Principles of proving backward compatibility

» Backward compatibility needs no specs: can be transferred to
behavioral subtyping

> Abstract semantics of packages/components

The END

Conclusions:

> Principles of proving backward compatibility

» Backward compatibility needs no specs: can be transferred to
behavioral subtyping

> Abstract semantics of packages/components

The END

Conclusions:

> Principles of proving backward compatibility

» Backward compatibility needs no specs: can be transferred to
behavioral subtyping

> Abstract semantics of packages/components

Aspects for the future:

> Design languages such that source compatibility is automatically
checkable

> Develop refined forms of backward compatibility

Questions?

