Synthesis, Verification, and Inductive Learning

Sanjit A. Seshia

EECS Department UC Berkeley

Joint work with Susmit Jha (UTC)

Dagstuhl Seminar → Verified SW Working Group August 2014 → July 15, 2015

Messages of this Talk

[Seshia DAC'12; Jha & Seshia, SYNT'14, ArXiV'15]

1. Synthesis Everywhere

- Many (verification) tasks involve synthesis
- 2. Effective Approach to Synthesis: Induction + Deduction + Structure
 - Induction: Learning from examples
 - Deduction: Logical inference and constraint solving
 - Structure: Hypothesis on syntactic form of artifact to be synthesized
 - "Syntax-Guided Synthesis" [Alur et al., FMCAD'13]
 - Counterexample-guided inductive synthesis (CEGIS) [Solar-Lezama et al., ASPLOS'06]

3. Analysis of Counterexample-Guided Synthesis

- Counterexample-driven learning
- Sample Complexity

Artifacts Synthesized in Verification

- Inductive invariants
- Auxiliary specifications (e.g., pre/post-conditions, function summaries)
- Environment assumptions / Env model / interface specifications
- Abstraction functions / abstract models
- Interpolants
- Ranking functions
- Intermediate lemmas for compositional proofs
- Theory lemma instances in SMT solving
- Patterns for Quantifier Instantiation

• ...

Formal Verification as Synthesis

Inductive Invariants

Abstraction Functions

One Reduction from Verification to Synthesis

NOTATION

Transition system M = (I, δ) Safety property Ψ = G(ψ)

VERIFICATION PROBLEM

Does M satisfy Ψ?

SYNTHESIS PROBLEM

Synthesize of s.t.

$$I \Rightarrow \phi \wedge \psi$$

$$\phi \wedge \psi \wedge \delta \Rightarrow \phi' \wedge \psi'$$

Two Reductions from Verification to Synthesis

NOTATION

Transition system M = (I, δ), S = set of states Safety property Ψ = $G(\psi)$

VERIFICATION PROBLEM

Does M satisfy Ψ?

SYNTHESIS PROBLEM #1

Synthesize • s.t.

$$I \Rightarrow \phi \wedge \psi$$

$$\phi \wedge \psi \wedge \delta \Rightarrow \phi' \wedge \psi'$$

SYNTHESIS PROBLEM #2

Synthesize
$$\alpha: S \to \hat{S}$$
 where $\alpha(M) = (\hat{I}, \hat{\delta})$ s.t. $\alpha(M)$ satisfies Ψ iff M satisfies Ψ

Common Approach for both: "Inductive" Synthesis

Synthesis of:-

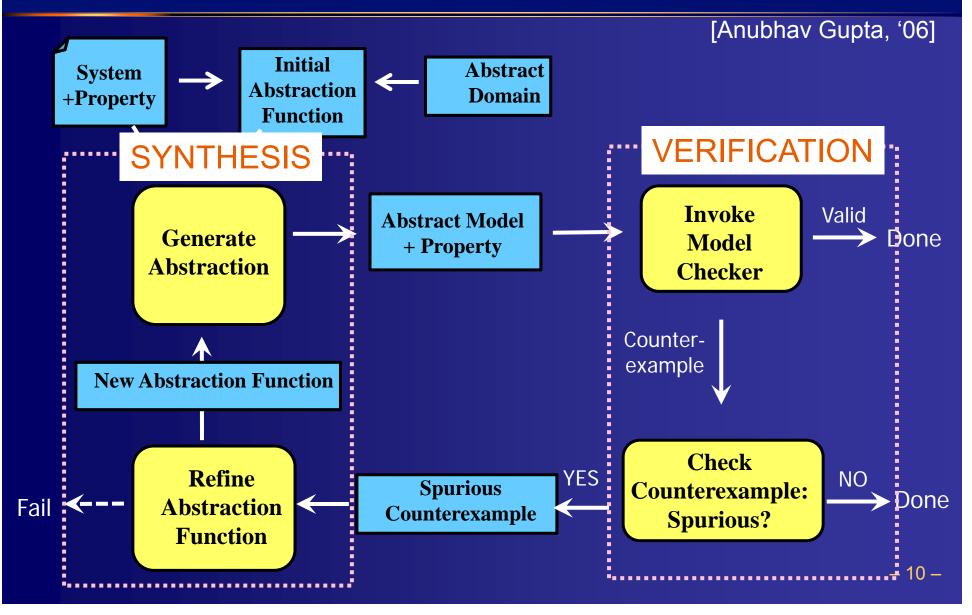
Inductive Invariants

- Choose templates for invariants
- Infer likely invariants from tests (examples)
- Check if any are true inductive invariants, possibly iterate

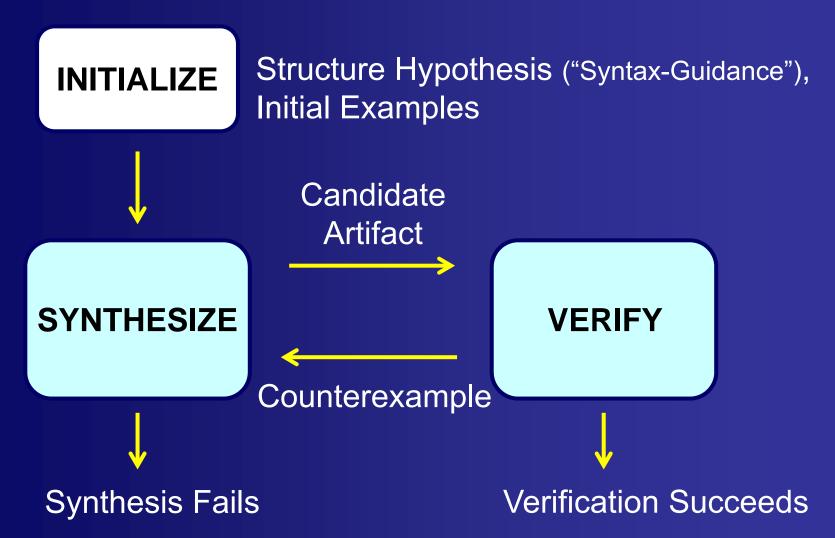
Abstraction Functions

- Choose an abstract domain
- Use Counter-Example Guided Abstraction Refinement (CEGAR)

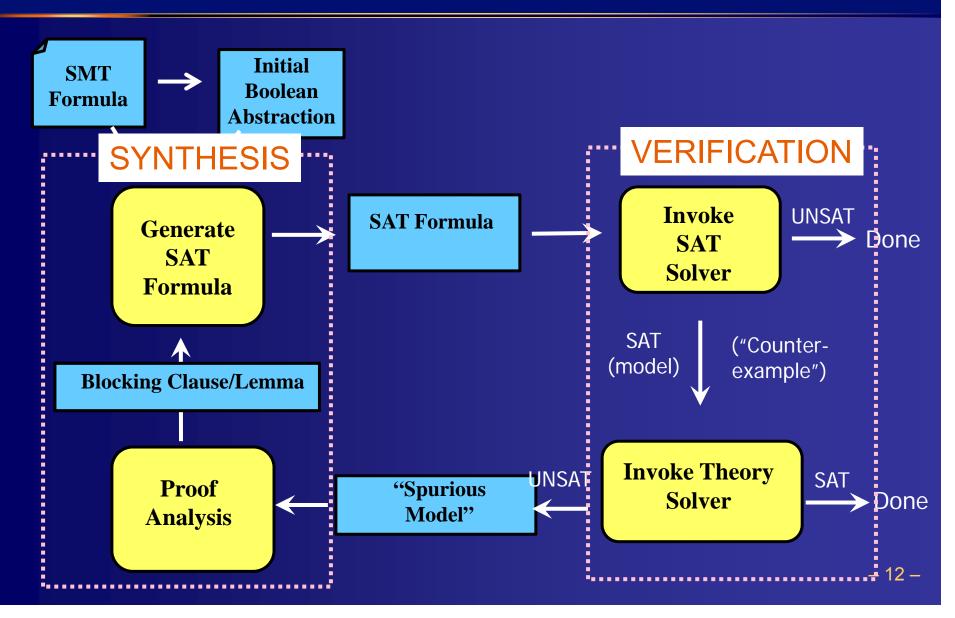
Counterexample-Guided Abstraction Refinement is Inductive Synthesis



CEGAR = Counterexample-Guided Inductive Synthesis (of Abstractions)

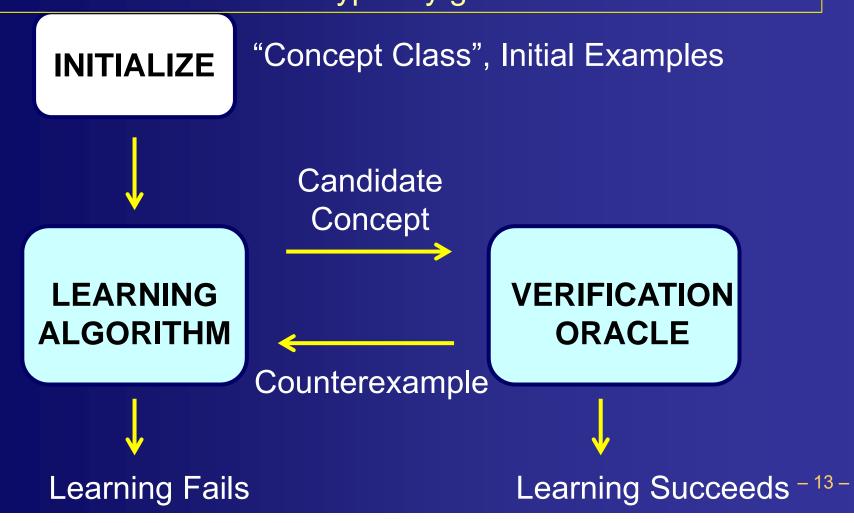


Lazy SMT Solving performs Inductive Synthesis (of Lemmas)



CEGAR = CEGIS = Learning from (Counter)Examples

What's different from std learning theory: Learning Algorithm and Verification Oracle are typically general Solvers

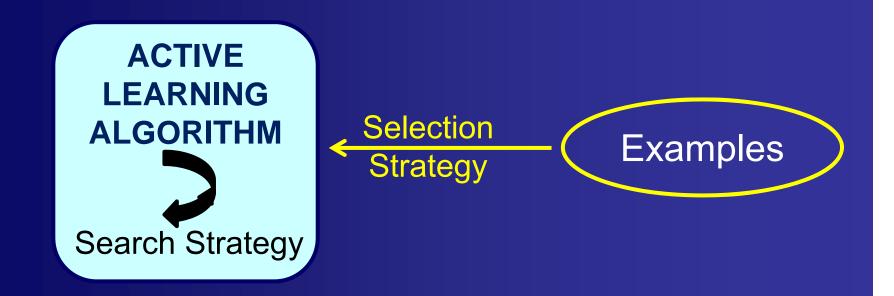


Comparison*

Feature	Formal Inductive Synthesis	Machine Learning
Concept/Program Classes	Programmable, Complex	Fixed, Simple
Learning Algorithms	General-Purpose Solvers	Specialized
Learning Criteria	Exact, w/ Formal Spec	Approximate, w/ Cost Function
Oracle-Guidance	Common (can control Oracle)	Rare (black-box oracles)

^{*} Between typical inductive synthesizer and machine learning algo

Active Learning: Key Elements



- 1. Search Strategy: How to search the space of candidate concepts?
- 2. Example Selection: Which examples to learn from?

Counterexample-Guidance: A Successful Paradigm for Synthesis and Learning

- Active Learning from Queries and Counterexamples [Angluin '87a,'87b]
- Counterexample-Guided Abstraction-Refinement (CEGAR) [Clarke et al., '00]
- Counterexample-Guided Inductive Synthesis (CEGIS) [Solar-Lezama et al., '06]

•••

- All rely heavily on Verification Oracle
- Choice of Verification Oracle determines
 Sample Complexity of Learning
 - # of examples (counterexamples) needed to converge (learn a concept)

Questions

- Fix a concept class
 - abstract domain, template, etc.
- 1. Suppose Countexample-Guided Learning is guaranteed to terminate. What are lower/upper bounds on sample complexity?
- 2. Suppose termination is not guaranteed. Is it possible for the procedure to terminate on some problems with one verifier but not another?
 - Learner (synthesizer) just needs to be consistent wth examples; e.g. SMT solver
 - Sensitivity to type of counterexample

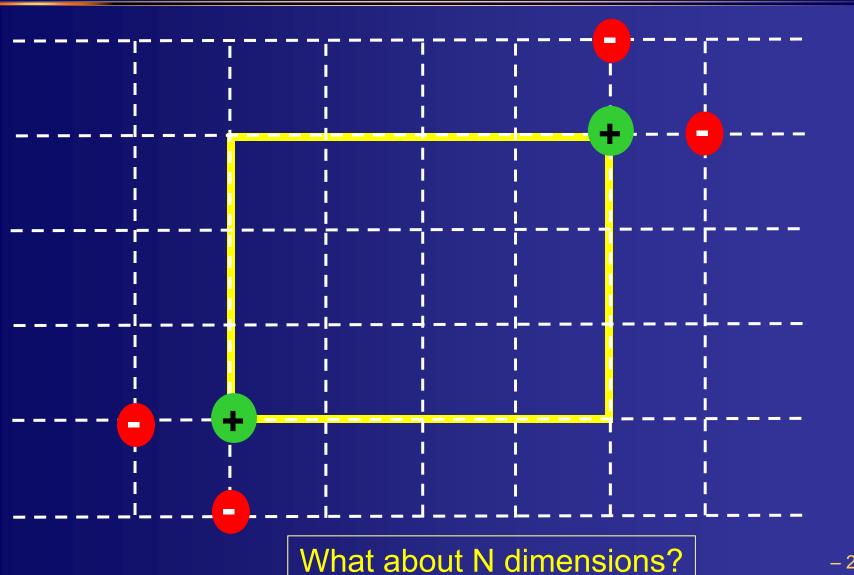
Problem 1: Bounds on Sample Complexity

Teaching Dimension

[Goldman & Kearns, '90, '95]

The minimum number of (labeled) examples a teacher must reveal to uniquely identify any concept from a concept class

Teaching a 2-dimensional Box



Teaching Dimension

The minimum number of (labeled) examples a teacher must reveal to uniquely identify any concept from a concept class

$$TD(C) = \max_{c \in C} \min_{\sigma \in \Sigma(c)} |\sigma|$$

where

- C is a concept class
- c is a concept
- σ is a teaching sequence (uniquely identifies concept c)
- Σ is the set of all teaching sequences

Theorem: *TD(C)* is lower bound on Sample Complexity

- Counterexample-Guided Learning: TD gives a lower bound on #counterexamples needed to learn any concept
- Finite TD is necessary for termination
 - If C is finite, $TD(C) \leq |C|-1$
- Finding Optimal Teaching Sequence is NP-hard (in size of concept class)
 - But heuristic approach works well ("learning from distinguishing inputs")
- Finite TD may not be sufficient for termination!
 - Termination may depend on verification oracle

Problem 2: Termination of Counterexample-guided loop

Query Types for CEGIS

LEARNER

Positive Witness

 $x \in \phi$, if one exists, else \bot

ORACLE

Equivalence: Is
$$f = \phi$$
?

Yes / No + $x \in \phi \oplus f$

Subsumption: Is f ⊆ φ?

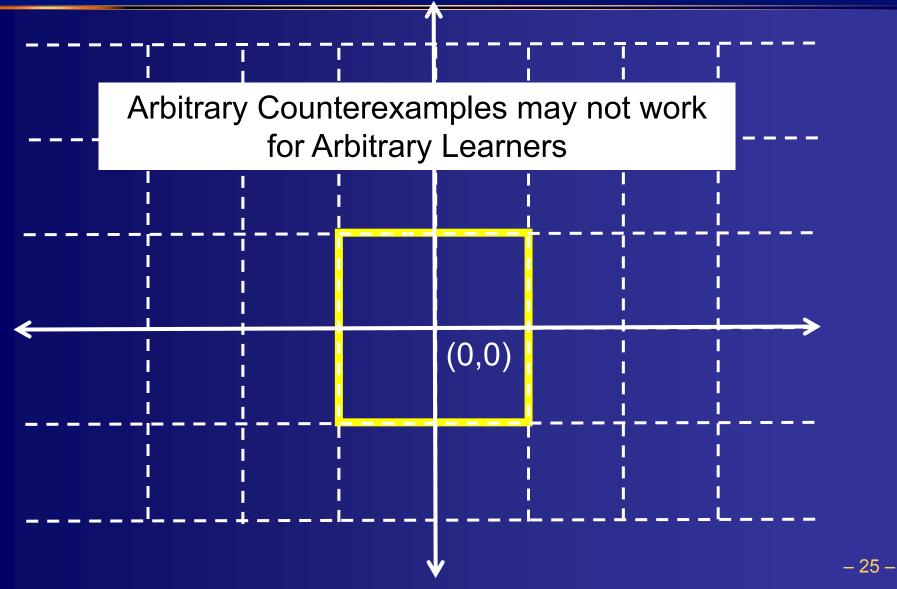
Yes / No + $x \in f \setminus \phi$

 Finite memory vs Infinite memory

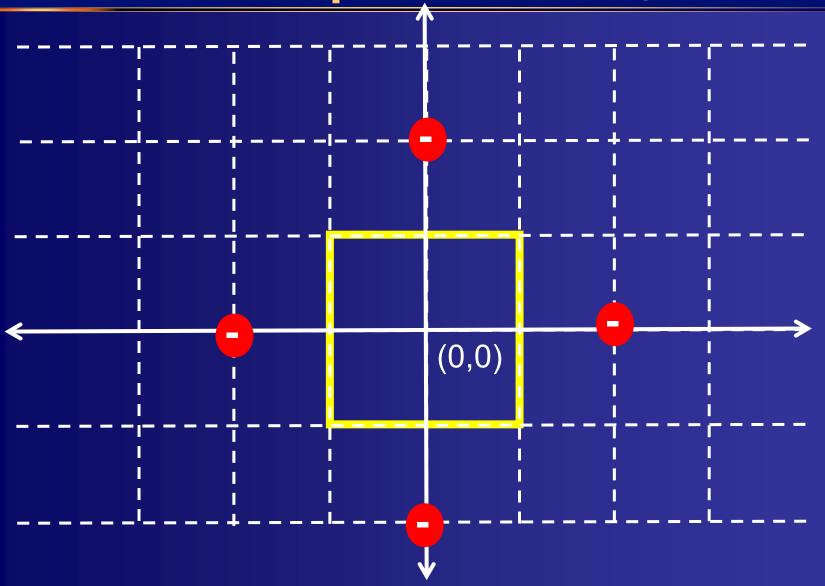
 Type of counterexample given

Concept class: Any set of recursive languages

Learning $-1 \le x \le 1 \land -1 \le y \le 1$ (C = Boxes around origin)



Learning $-1 \le x, y \le 1$ from Minimum Counterexamples (dist from origin)



Types of Counterexamples

Assume there is a function size: $D \rightarrow N$

- Maps each example x to a natural number
- Imposes total order amongst examples
- CEGIS: Arbitrary counterexamples
 - Any element of f ⊕ φ
- MinCEGIS: Minimal counterexamples

 - Motivated by debugging methods that seek to find small counterexamples to explain errors & repair

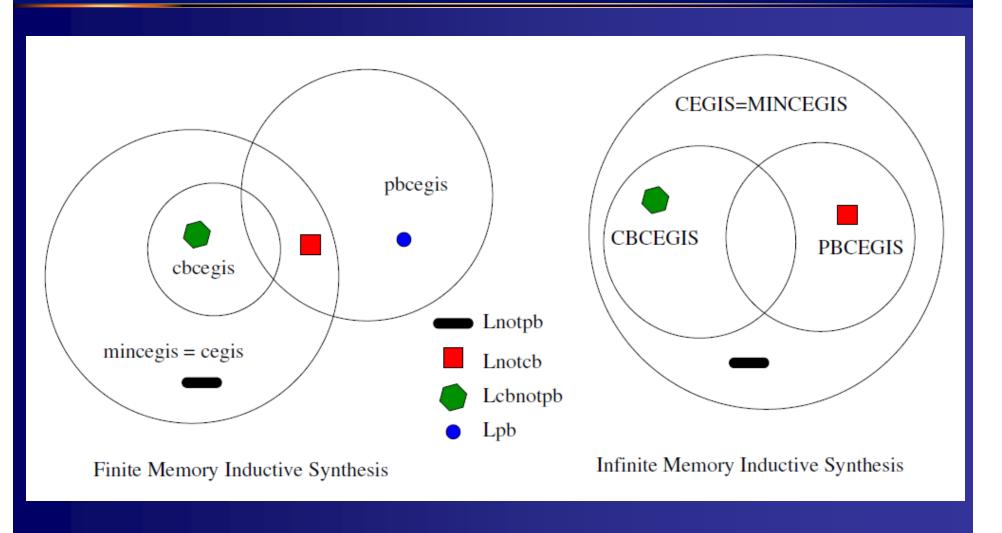
Types of Counterexamples

Assume there is a function size: $D \rightarrow N$

- CBCEGIS: Constant-bounded counterexamples (bound B)
 - An element x of $f \oplus \phi$ s.t. size(x) < B
 - Motivation: Bounded Model Checking, Input Bounding, Context bounded testing, etc.
- PBCEGIS: Positive-bounded counterexamples
 - An element x of $f \oplus \phi$ s.t. size(x) is no larger than that of any positive example seen so far
 - Motivation: bug-finding methods that mutate a correct execution in order to find buggy behaviors

Summary of Results

[Jha & Seshia, SYNT'14; TR'15]



Summary

- Verification by reduction to Synthesis
- Counterexample-guided Synthesis is Inductive Learning
- Teaching Dimension relevant for analyzing counterexample-guided learning
- Termination analysis for CEGIS can be nontrivial for infinite domains (concept classes)
- Lots of scope for future work in understanding efficiency / termination behavior of inductive learners based on deductive/verification oracles