
FastLane is Opaque – A Case Study in
Mechanized Proofs of Opacity

Gerhard Schellhorn

Universität Augsburg, Germany

Monika Wedel Oleg Travkin

Jürgen König Heike Wehrheim

Universität Paderborn, Germany



Overview

I Software Transactional Memory (STM)

I Correctness of STM Implementations: Opacity.
Proof by refinement of TMS2-Automaton

I The FastLane implementation: Algorithm + Switching
I Mechanized proofs using the KIV theorem prover

I “FastLane refines TMS2” ⇒ FastLane is Opaque
I Switching between correct implementations
I Instantiation with FastLane+ Switching



Software Transactional Memory

I Synchronizing Threads on shared data using locks is often
difficult and error prone.

I Instead adapt the concept of transactions from data bases to
programs.

I Extend programming language with
success := tryatomic { <some code> }

I All threads may execute such atomic blocks using arbitrary
shared data.

I success = true: the transaction committed: It “looks like” the
code is executed atomically without interference.

I success = false: The execution aborted due to conflicting
accesses and there is no effect.
Retry with a while loop possible until success = true:
atomic { <some code> } automatically retries until success

I Very simple, inefficient implementation:
Use one global lock, always commit (or abort randomly)



Implementation of STM

I Implementation of an STM provides four programs:
BEGIN, READ, WRITE, END

I Compiler supports implementation by instrumenting code for
atomic blocks.

For code block success := tryatomic { x := x + y }
(with shared variables x,y) the compiler generates

BEGIN()

regx := READ(x)

regy := READ(y)

regx := regx + regy

WRITE(x, regx)

success := END()

Control structure is left as is. Load from/Store to main memory is
replaced with calls to READ/WRITE



Strategies for implementing STM

I There is a large number of different algorithms that
implement STM (NoRec, TL2, TML, . . . , FastLane)

I They can be classified according to two dimensions:
I The eager strategy updates main memory in WRITE, lazy

strategy collects all updates locally in a writeset and applies
them all in END.

I Pessimistic detection of conflicting reads/writes aborts
transaction already in READ/WRITE. Optimistic strategy detects
conflicts only in END.



Overview

I Software Transactional Memory (STM)

I Correctness of STM Implementations: Opacity.
Proof by refinement of TMS2-Automaton

I The FastLane implementation: Algorithm + Switching
I Mechanized proofs using the KIV theorem prover

I “FastLane refines TMS2” ⇒ FastLane is Opaque
I Switching between correct implementations
I Instantiation with FastLane + Switching



Correctness of STMs

I The simplest criterion is serializability: Aborted transactions
have no effect. The effect of committed transactions must be
as if they were executed sequentially. The memories in
between transactions are called snapshots.

I strict serializability additionally requires: if transaction T1
finishes before T2 starts then T1 must be before T2 in the
sequential order

I Opacity [Guerraoui, Kapalka, PPOPP, 2008] additionally
requires that aborted transactions read from a single snapshot
of memory.



Example for opacity

initially x = y = 0
snapshot invariant x = y

tryatomic {
x := x + 1
y := y + 1

}

tryatomic {
localx := x
localy := y
while localx 6= localy do skip

}

I Assume eager writing with checks for conflicts at the end

I Right transaction may loop forever if it reads x,y in between
the two updates of the left.

I Without opacity replacing the loop with
localz := 1/(localy − localx + 1) results in divide by zero.

I With opacity atomic code can be verified sequentially
assuming the snapshot invariant.



Verification of Opacity: IO Automata refinement

I An established strategy for verification of opacity is: Encode
the steps of the algorithms for BEGIN, READ, WRITE and END

as steps of a transition system IMPL

(formally: an IO Automaton).

I Show that IMPL refines the automaton TMS2 [Doherty, Groves,
Luchangco, Moir, FAC 2013] (IMPL ≤ TMS2). This implies
opacity.

An IO automaton A consists of

I state set states(A) and initial ones start(A) ⊆ states(A),

I internal and external actions act(A) = int(A) ∪̇ ext(A)

I transition relation steps(A) ⊆ states(A)× act(A)× states(A).

Refinement of C ≤ A require that for each concrete run there is an
abstract run with the same external actions



Opacity and the TMS2 automaton
External actions for Opacity are:

I inv(OP, tid , input): transaction tid invokes
OP ∈ {BEGIN, READ, WRITE, END} with input in

I ret(OP, tid , out): return from OP with output out

I TMS2 is a specification of opacity:
It stores all snapshots created by committed transactions.

I TMS2 has a single internal step for each of the four programs
(the effect point of the algorithm; similar to a lin. point).

I READ, WRITE are lazy: they use a readset/writeset.

I READ checks that all read values are from some single
snapshot (it aborts if this not the case)

I END checks that reads (and writes) are compatible with some
(the last) snapshot. Aborts, if not.

I BEGIN remembers the earliest snapshot it can read from.

I If END is successful, it creates a new snapshot.



Verification problem

Transaction 1

Transaction 2
BEGIN

TMS2

ENDWRITE(z)

BEGIN END

mem2mem1snapshots

check both reads are
either from mem1 or mem2

READ(x) READ(y)



Forward Simulation

Define an forward simulation F, such that diagrams commute:
F may be assumed (continuous line) before the step,
must be shown (dashed line) after the step

FastLane

TMS2

inv(OP, tid, in)

F

ret(Op, tid, out)

Main problems of defining F:
Where to place the effect points (marked with ×)
How does main memory + local data correspond to snapshots?



Overview

I Software Transactional Memory (STM)

I Correctness of STM Implementations: Opacity.
Proof by refinement of TMS2-Automaton

I The FastLane implementation: Algorithm + Switching
I Mechanized proofs using the KIV theorem prover

I “FastLane refines TMS2” ⇒ FastLane is Opaque
I Switching between correct implementations
I Instantiation with FastLane+ Switching



The idea of FastLane

I Taken from [Wamhoff et al, 2013]

I Typical STM implementations IMPL(e.g. NoRec, TL2) are
tuned for optimal concurrency under high loads (many
threads)

I When there are few threads (e.g. below number of multicores)
then the overhead is quite noticeable.
⇒ Use the FastLane implementation.

I When there is a single thread, no instrumentation of the code
is necessary at all (READ is just “load from memory”).

I Idea: Generate three versions of the four programs: The
uninstrumented version SEQ, the FastLane code, and a
version for high loads: IMPL.

I Switch heuristically (in idle states) between the versions
depending on the number of threads active.



Details on the FastLane Algorithm

I The four programs of FastLane are ca. 80 lines of code.

I One thread is master (is on the “fast lane”).

I All other threads are helpers.

I Master writes directly (is eager), never aborts.

I Master uses a counter: value is odd iff a master is running.

I Variables have an additional dirty field overwritten by master
with counter

I Helpers collect reads and writes in a read and write set.

I Helpers remember initial value of counter, and use it in READ,
WRITE and END to ensure no interference.

I masterLock is used to switch master, helperLock protects
helpers from each other when committing



Overview

I Software Transactional Memory (STM)

I Correctness of STM Implementations: Opacity.
Proof by refinement of TMS2-Automaton

I The FastLane implementation: Algorithm + Switching
I Mechanized proofs using the KIV theorem prover

I “FastLane refines TMS2” ⇒ FastLane is Opaque
I Switching between correct implementations
I Instantiation with FastLane + Switching



FastLane ≤ TMS2

Crucial properties of simulation:

I If there is no master, then memory = latest snapshot.

I If there is a master, and it holds master Lock, then current
memory is last snapshot of TMS2 plus the writes done by
master (as stored in masters writeset of TMS2).

I If a helper holds master Lock while committing,
then for every variable x:

I dirty(x) 6= counter : memory has the value of latest snapshot.
I dirty(x) = counter : x stores the value of the helper

I Lots of properties specific to locations in the code
(ca. 80 lines of specification)



Switching between implementations

I Given correct implementations C1 and C2 of an interface A
(C1 ≤ A, C2 ≤ A)

I When is an implementation switch(C1,C2), that switches
between C1 and C2 correct: switch(C1,C2) ≤ A?

I In our case: SEQ ≤ TMS2, FastLane ≤ TMS2, and
IMPL ≤ TMS2

I Is switch(switch(SEQ, FastLane), IMPL) ≤ TMS2?
I Challenges

I Must allow for shared state between C1 and C2: main memory
I Must not fix a specific switching scheme
⇒ define a class of possible switch(C1,C2)

I Must talk about running processes rather than running
transactions (as TMS2 does)

I Steps have additional restrictions.



A class of switching automata

Given two automata C1 and C2 an automaton C is in
switch(C1,C2), if it satisfies the following criteria:

I All states sC ∈ states(C ) have a boolean mode-component.
sC .mode to determine which algorithm is active.

I All states sC ∈ states(C ) with sC .mode = true allow to
extract via sC .s1 ∈ states(C1). Similarly, there is a selector
sC .s2 ∈ states(C2), when sC .mode = false.

I The transition relation of step(C ) can be split into
step1, step2, step3: step1 and step2 must correspond to steps
of C1 and C2, step are new internal steps, that enable
switching.



Correctness of Switching

Theorem
Let C1 ≤(F1) A, C2 ≤(F2) A and C ∈ switch(C1,C2). Then
C ≤(F ) A with F defined as

F0(sC , sA) ⇐⇒ if sC .mode then F1(sA, sC .s1) ∧ Inv1(sC )

else F2(sA, sC .s2) ∧ Inv2(sC )

F (sC , sA) ⇐⇒ Inv(sC ) ∧ F0(sC , sA)

holds under the proof obligations given in the [SEFM 18] paper.

Intuition: When C1 is running (mode = true), then F1 holds, and
Inv1 guarantees that the state of C2 is not modified irrecoverably.
INV is a new invariant that glues together the implementations
and additional new state.



The combined implementation

The combined implementation has

I steps for (un)registering threads adding to a set
(to count number of threads)

I a map: registered threads 7→ running transactions

I switches only when no transaction is running

I switches to SEQ only when there is at most one thread

I Otherwise switches from FastLane to IMPL when number of
threads is bigger than constant c.



Correctness of combined implementation

Theorem
switch(switch(SEQ, FastLane), IMPL) ≤ TMS2, holds under certain
sanity conditions for IMPL:

I IMPL does not modify the registered threads

I IMPL correctly adds/removes a running transactions at the
start of BEGIN resp. the end of END.

I switching from and to IMPL establishes the required invariants.



Summary and Outlook

I We have verified opacity of the FastLane algorithm.

I A theory was developed for switching between
implementations, and the instance for FastLane was verified

I All proofs with the KIV tool are online at
http://www.informatik.uni-augsburg.de/swt/projects/FastLane.html

I Related Work on Opacity:
I Several papers verify opacity of other algorithms using TMS2
I Alternative: Model checking using reduction theorems has

been used

I Related for switching [Armstrong, Dongol, FORTE 17]:
Hybrid STMs, where individual threads switch between
hardware and software transactions.

I Open question: Are there other instances of switching?


