FastLane is Opaque — A Case Study in
Mechanized Proofs of Opacity

Gerhard Schellhorn

Universitat Augsburg, Germany

Monika Wedel Oleg Travkin
Jiirgen Konig Heike Wehrheim

Universitat Paderborn, Germany

Overview

v

Software Transactional Memory (STM)

v

Correctness of STM Implementations: Opacity.
Proof by refinement of TMS2-Automaton

v

The FastLane implementation: Algorithm + Switching
Mechanized proofs using the KIV theorem prover

» “FastLane refines TMS2" = FastLane is Opaque
» Switching between correct implementations
» Instantiation with FastLane+ Switching

v

Software Transactional Memory

» Synchronizing Threads on shared data using locks is often
difficult and error prone.

» Instead adapt the concept of transactions from data bases to
programs.

» Extend programming language with
success := tryatomic { <some code> }
» All threads may execute such atomic blocks using arbitrary
shared data.
> success = true: the transaction committed: It “looks like" the
code is executed atomically without interference.
» success = false: The execution aborted due to conflicting
accesses and there is no effect.
Retry with a while loop possible until success = true:
atomic { <some code> } automatically retries until success

» Very simple, inefficient implementation:
Use one global lock, always commit (or abort randomly)

Implementation of STM
» Implementation of an STM provides four programs:
BEGIN, READ, WRITE, END

» Compiler supports implementation by instrumenting code for
atomic blocks.

For code block success := tryatomic { x := x +y }
(with shared variables x,y) the compiler generates

BEGIN()

regx := READ(x)
regy := READ(y)
regx := regx + regy
WRITE(x, regx)
success := END()

Control structure is left as is. Load from/Store to main memory is
replaced with calls to READ/WRITE

Strategies for implementing STM

> There is a large number of different algorithms that
implement STM (NoRec, TL2, TML, ..., FastLane)
» They can be classified according to two dimensions:

» The eager strategy updates main memory in WRITE, lazy
strategy collects all updates locally in a writeset and applies
them all in END.

» Pessimistic detection of conflicting reads/writes aborts
transaction already in READ/WRITE. Optimistic strategy detects
conflicts only in END.

Overview

v

Software Transactional Memory (STM)

v

Correctness of STM Implementations: Opacity.
Proof by refinement of TMS2-Automaton

v

The FastLane implementation: Algorithm + Switching
Mechanized proofs using the KIV theorem prover

» “FastLane refines TMS2" = FastLane is Opaque
» Switching between correct implementations
» Instantiation with FastLane + Switching

v

Correctness of STMs

» The simplest criterion is serializability: Aborted transactions
have no effect. The effect of committed transactions must be
as if they were executed sequentially. The memories in
between transactions are called snapshots.

> strict serializability additionally requires: if transaction T1
finishes before T2 starts then T1 must be before T2 in the
sequential order

» Opacity [Guerraoui, Kapalka, PPOPP, 2008] additionally

requires that aborted transactions read from a single snapshot
of memory.

Example for opacity

initially x=y =0
snapshot invariant x = y

tryatomic {

}

tryatomic {
localx := x
localy .=y
while Jocalx # localy do skip

x:=x+1
y=y+1

}

Assume eager writing with checks for conflicts at the end

Right transaction may loop forever if it reads x,y in between
the two updates of the left.

Without opacity replacing the loop with

localz := 1/(localy — localx 4 1) results in divide by zero.

With opacity atomic code can be verified sequentially
assuming the snapshot invariant.

Verification of Opacity: 10 Automata refinement

> An established strategy for verification of opacity is: Encode
the steps of the algorithms for BEGIN, READ, WRITE and END
as steps of a transition system IMPL
(formally: an 10 Automaton).

» Show that IMPL refines the automaton TMS2 [Doherty, Groves,
Luchangco, Moir, FAC 2013] (IMPL < TMS2). This implies
opacity.

An 10 automaton A consists of
> state set states(A) and initial ones start(A) C states(A),

» internal and external actions act(A) = int(A) U ext(A)
» transition relation steps(A) C states(A) x act(A) x states(A).

Refinement of C < A require that for each concrete run there is an
abstract run with the same external actions

Opacity and the TMS2 automaton
External actions for Opacity are:
» inv(OP, tid, input): transaction tid invokes
OP € {BEGIN, READ, WRITE, END} with input in
» ret(OP, tid, out): return from OP with output out

» TMS2 is a specification of opacity:
It stores all snapshots created by committed transactions.

» TMS2 has a single internal step for each of the four programs
(the effect point of the algorithm; similar to a lin. point).

» READ, WRITE are lazy: they use a readset/writeset.

» READ checks that all read values are from some single
snapshot (it aborts if this not the case)

» END checks that reads (and writes) are compatible with some
(the last) snapshot. Aborts, if not.

» BEGIN remembers the earliest snapshot it can read from.
» If END is successful, it creates a new snapshot.

Verification problem

check both reads are
either from meml or mem?2

snapshots meml mem?2

Transaction 1 ------F

Transaction 2 - fe=ammd - - === ------ } f----} o -

Forward Simulation

Define an forward simulation F, such that diagrams commute:
F may be assumed (continuous line) before the step,
must be shown (dashed line) after the step

TMS2 | A N X A |

A A
FastLane — \ _\ ** __\ — '

inv(OP, tid, in) ret(Op, tid, out)

Main problems of defining F:
Where to place the effect points (marked with X)
How does main memory + local data correspond to snapshots?

Overview

v

Software Transactional Memory (STM)

v

Correctness of STM Implementations: Opacity.
Proof by refinement of TMS2-Automaton

v

The FastLane implementation: Algorithm + Switching
Mechanized proofs using the KIV theorem prover

» “FastLane refines TMS2" = FastLane is Opaque
» Switching between correct implementations
» Instantiation with FastLane+ Switching

v

The idea of FastLane

» Taken from [Wamhoff et al, 2013]

» Typical STM implementations IMPL(e.g. NoRec, TL2) are
tuned for optimal concurrency under high loads (many
threads)

» When there are few threads (e.g. below number of multicores)
then the overhead is quite noticeable.
= Use the FastLane implementation.

» When there is a single thread, no instrumentation of the code
is necessary at all (READ is just “load from memory").

> ldea: Generate three versions of the four programs: The
uninstrumented version SEQ, the FastLane code, and a
version for high loads: IMPL.

» Switch heuristically (in idle states) between the versions
depending on the number of threads active.

Details on the FastLane Algorithm

> The four programs of FastLane are ca. 80 lines of code.
» One thread is master (is on the “fast lane").

> All other threads are helpers.

» Master writes directly (is eager), never aborts.

» Master uses a counter: value is odd iff a master is running.

» Variables have an additional dirty field overwritten by master
with counter

» Helpers collect reads and writes in a read and write set.

» Helpers remember initial value of counter, and use it in READ,
WRITE and END to ensure no interference.

» masterLock is used to switch master, helperLock protects
helpers from each other when committing

Overview

v

Software Transactional Memory (STM)

v

Correctness of STM Implementations: Opacity.
Proof by refinement of TMS2-Automaton

v

The FastLane implementation: Algorithm + Switching
Mechanized proofs using the KIV theorem prover

» “FastLane refines TMS2" = FastLane is Opaque
» Switching between correct implementations
» Instantiation with FastLane + Switching

v

FastLane < TMS2

Crucial properties of simulation:
» If there is no master, then memory = latest snapshot.

» If there is a master, and it holds master Lock, then current
memory is last snapshot of TMS2 plus the writes done by
master (as stored in masters writeset of TMS2).

> If a helper holds master Lock while committing,
then for every variable x:

» dirty(x) # counter: memory has the value of latest snapshot.
» dirty(x) = counter: x stores the value of the helper

» Lots of properties specific to locations in the code

(ca. 80 lines of specification)

Switching between implementations

» Given correct implementations C1 and C2 of an interface A
(CI1<A C2<A)

» When is an implementation switch(C1, C2), that switches
between C1 and C2 correct: switch(C1, C2) < A?

» In our case: SEQ < TMS2, FastLane < TMS2, and
IMPL < TMS2

» |s switch(switch(SEQ, FastLane), IMPL) < TMS2?

» Challenges
» Must allow for shared state between C1 and C2: main memory
» Must not fix a specific switching scheme
= define a class of possible switch(C1, C2)
» Must talk about running processes rather than running
transactions (as TMS2 does)
» Steps have additional restrictions.

A class of switching automata

Given two automata C1 and C2 an automaton C is in
switch(C1, C2), if it satisfies the following criteria:

» All states s¢ € states(C) have a boolean mode-component.
sc.mode to determine which algorithm is active.

> All states s¢ € states(C) with sc.mode = true allow to
extract via sc.sl € states(C1). Similarly, there is a selector
sc.s2 € states(C2), when sc.mode = false.

» The transition relation of step(C) can be split into
stepl, step2, step3: stepl and step2 must correspond to steps
of C1 and C2, step are new internal steps, that enable
switching.

Correctness of Switching

Theorem
Let C1 <(F1) A, C2 <(p2) A and C € switch(C1, C2). Then
C <(F) A with F defined as

FO(sc,sa) <= if sc.mode then F1(sa,sc.s1) A Inv1(sc)
else F2(sa, sc.s2) A Inv2(sc)
F(sc,sa) <= Inv(sc) A FO(sc,sa)

holds under the proof obligations given in the [SEFM 18] paper.

Intuition: When C1 is running (mode = true), then F1 holds, and
Inv1 guarantees that the state of C2 is not modified irrecoverably.
INV is a new invariant that glues together the implementations
and additional new state.

The combined implementation

The

combined implementation has

steps for (un)registering threads adding to a set
(to count number of threads)

a map: registered threads — running transactions
switches only when no transaction is running
switches to SEQ only when there is at most one thread

Otherwise switches from FastLane to IMPL when number of
threads is bigger than constant c.

Correctness of combined implementation

Theorem
switch(switch(SEQ, FastLane), IMPL) < TMS2, holds under certain

sanity conditions for IMPL:
» IMPL does not modify the registered threads

» IMPL correctly adds/removes a running transactions at the
start of BEGIN resp. the end of END.

» switching from and to IMPL establishes the required invariants.

Summary and Outlook

» We have verified opacity of the FastLane algorithm.

» A theory was developed for switching between
implementations, and the instance for FastLane was verified
» All proofs with the KIV tool are online at
http://www.informatik.uni-augsburg.de/swt/projects/FastLane.html
» Related Work on Opacity:
» Several papers verify opacity of other algorithms using TMS2
> Alternative: Model checking using reduction theorems has
been used
» Related for switching [Armstrong, Dongol, FORTE 17]:
Hybrid STMs, where individual threads switch between
hardware and software transactions.

» Open question: Are there other instances of switching?

