
Boundaries of Formal 
Program Verification

Yannick Moy – AdaCore



SPARK – the language

pointers
exception handlers
controlled types
function with effects

Ada
features 
outside 

the SPARK 
subset

Core 
language 

constructs 
common to 

Ada and 
SPARK

Additional 
SPARK 
aspects

Ada

SPARK

Abstract_State
Initializes

Initial_Condition
Contract_Cases

Global
Depends

strong typing 
low level programming

generics
object orientation

concurrency

2



SPARK – flow analysis

Specification 
of effects

Flow 
analysis

Program 
implements 
specification

3



SPARK – proof 

Specification 
of properties Proof

Program 
implements 
specification

4



SPARK – demo 

5



Bounding the language

Previous SPARK based on its own grammar subset of Ada
à many restrictions on program structure, control flow, language 

features
à very hard to show value to new users before commitment!

David A. Wheeler: “Be a good date; commitment happens later”

Now only exclude features that make formal analysis impossible: 
catching exceptions, using pointers (but ownership pointers on the way)



Bounding the program

Previous SPARK based on opt-out only (with annotation #hide)
à Need for shadow (spec) files at boundaries (libraries, hardware, OS)
à Not adapted to retrospective analysis

Now a mix of opt-in, opt-out and opt-auto (for included specs)

Choice of boundary at top-level for mixing unit-level test & proof
à Choice is questioned by some users requiring more flexibility



Code-level specifications and beyond

Previous SPARK based on logical specifications only (#pre, #post)

Now based on executable specifications by default (with escape hatch):
- preconditions, postconditions on subprograms
- predicates, invariants on types

Looking at expanding the specification towards design models:
- data-flow programs in Simulink
- design models in VDM, AADL+AGREE, SysML+SpeAR



Analysis at function level and beyond

Previous SPARK: only function-level analysis (dataflow analysis or proof)
à Requires too much specification effort

Current SPARK: mostly function-level analysis, but…
- Read/write effects are generated if needed
- Instances of generics (templates) are separately analyzed
- Read/write concurrent accesses are analyzed globally
- Subprograms may be inlined, loops may be unrolled…



Bounding the expertise

From the start, SPARK aimed at “good engineering”

Peter Amey, foreword of “High Integrity Software – the SPARK 
Approach to Safety and Security”, 2002:
“The migration of static analysis from a painful, post-hoc verification 
exercise to an integral part of a sound development process is now well-
established.”

Most companies still found the expertise required too high



Example of required expertise: manual proof

Verification Condition 
in SPARK 2005

Manual Proof
in SPARK 2005



Bounding the expertise

Critical change in new SPARK: specification is code
- same semantics in code and specification
- same tools to operate on specification: IDE, compiler, debugger, test
- users never look at Verification Conditions

Tool support is most needed to help users with:
- modularity – counterexamples, safety guards, smoke detectors
- induction – loop invariant generation, loop unrolling, loop patterns
- undecidability – guidance on how to address unproved properties



From tour-de-force to run-of-the-mill
Example: Skein cryptographic hash algorithm in SPARK (Chapman, 2011)

initial version (SPARK 2005) current version (SPARK 2014)
41 non-trivial contracts for effects and 
dependencies

1 – effects and dependencies are 
generated

31 conditions in preconditions and 
postconditions on internal subprograms

0 – internal subprograms are inlined

43 conditions in loop invariants 1 – loop frame conditions are generated

24 cuts to avoid combinatorial explosion 0 – no combinatorial explosion

22 hint assertions to drive proof 0 – no need

23 manual proofs 0 – no need



Building the expertise



Bounding the effort



Expanding to application on legacy software

Traditional SPARK development known as “Correct-by-Construction”
à Not possible to “sparkify” existing codebases
à Not applicable to legacy codebases

David A. Wheeler: “If a system works, it’s a legacy system”

Moving towards application to legacy codebases
à Levels of assurance are critical to support progressive adoption



Expanding the user base

Traditional SPARK customers: military, avionics, space, security

More recent applications to medical device, automotive, autonomous 
vehicles
à All in the context of industrial R&D projects / POC
à Still need for general awareness, education, case studies, etc.

Example of successful spreading: seL4 highly visible success ➔ Muen
separation kernel in SPARK ➔ SPARK kernels at ANSSI, ETH Zurich, etc.


