Boundaries of Formal
Program Verification

Yannick Moy — AdaCore

St
AdaCore aLTRan N «
RRRRRRR SHIP % §

< N
Uy 0RGI\’®®

SPARK —the language

pointers
exception handlers
controlled types

function with effects

strong typing
low level programming
generics

object orientation

concurrency

Core

Jz,:gﬂzgfs Additional
outside common to SPARK
the SPARK

Ada and

subset SPARK

Ada
features

aspects

Ada

A
v

v

A

SPARK

Abstract_State
Initializes
Initial_Condition
Contract_Cases
Global

Depends

2

SPARK — flow analysis

procedure Stabilize (Mode : 1n Mode T;

Success : out Boolean)

with Global => (Input => (Accel, Giro),
In Out => Rotors);

Specification Flow Program

of effects analysis

implements
specification

SPARK — proof

procedure Stabilize (Mode : in Mode T;
Success : out Boolean)
with Pre => Mode /= O0Off,
Post => (i1f Success then
Delta Change (Rotors'Old, Rotors));

Specification Program

of properties

implements
specification

SPARK — demo

| NON | GPS - device.ads - /Users/moy/spark2014/slides/AVoCS_2018_keynote/demo,
File Edit Navigate Find Code VCS Build SPARK Analyze Debug View Window Help

AEld 9¢C @«» @A

(0 # E|Q-filter = device.ads) device.adb) device_interfaces.ads

EA v M Demo 1 with Device_Interfaces; use Device_Interfaces;
a v 2
i / device.adb 2 + package Device 1is
C
= 5 type Mode T is (Takeoff, Steady_State, Landing, Off);
= / device_interfaces.ads 6
, =l 7 v procedure Stabilize (Mode : in Mode_T;
s 8 Success : out Boolean)
§ 9 v with Global = (Input = (Accel, Giro),
a 10 In_Out = Rotors),
11 Pre = Mode /~= Off,
12 Post = (if Success then
13 Delta_Change (Rotors'0Old, Rotors));
14

15 end Device;

Bounding the language

Previous SPARK based on its own grammar subset of Ada

— many restrictions on program structure, control flow, language
features

—> very hard to show value to new users before commitment!
David A. Wheeler: “Be a good date; commitment happens later”

Now only exclude features that make formal analysis impossible:
catching exceptions, using pointers (but ownership pointers on the way)

Bounding the program

Previous SPARK based on opt-out only (with annotation #hide)
- Need for shadow (spec) files at boundaries (libraries, hardware, OS)

- Not adapted to retrospective analysis

Now a mix of opt-in, opt-out and opt-auto (for included specs)

Choice of boundary at top-level for mixing unit-level test & proof

— Choice is questioned by some users requiring more flexibility

Code-level specifications and beyond

Previous SPARK based on logical specifications only (#pre, #post)

Now based on executable specifications by default (with escape hatch):
- preconditions, postconditions on subprograms
- predicates, invariants on types

Looking at expanding the specification towards design models:

- data-flow programs in Simulink
- design models in VDM, AADL+AGREE, SysML+SpeAR

Analysis at function level and beyond

Previous SPARK: only function-level analysis (dataflow analysis or proof)
- Requires too much specification effort

Current SPARK: mostly function-level analysis, but...

- Read/write effects are generated if needed

- Instances of generics (templates) are separately analyzed
- Read/write concurrent accesses are analyzed globally

- Subprograms may be inlined, loops may be unrolled...

High| iﬂfgﬁ

Softwa

Bounding the expertise ey

4

From the start, SPARK aimed at “good engineering”

Peter Amey, foreword of “High Integrity Software — the SPARK
Approach to Safety and Security”, 2002:

“The migration of static analysis from a painful, post-hoc verification
exercise to an integral part of a sound development process is now well-

established.”

Most companies still found the expertise required too high

Example of required expertise: manual proof

1.

prove c#1 by induction.
procedure push 5. i.
H1l: stack notfull (state~) . 1.
H2: ptr~ < maxstacksize . Verification Condition unwrap h#2.
H3: vector~ = fld vector(state~) . . inst 1.
H4: vector = fld vector (state) . N SPARK 2005 forw h#4.
HS5: ptr~ = fld ptr(state~) . replace h#4: sigma(l-1) by 0 using eq.
HG6: ptr = fld ptr(state) . y
H7: x >= integer first . infer sigma(l)=1 using eq.
HS: X <= integer last . infer c#1 using inequals.
HO: for all(i_ 1: ptrs, ((i__ 1 >= indexes first) and (prove c#2 by implication.

i 1 <= indexes last)) -> ((element (vector~, [unwrap h#2.

inst int i 1+1.

i 1]) >= integer first) and (element (vector~, [—
e o — forw h#9.
i 1]) <= integer last))) . 1 41: A by B
H10: ptr~ >= ptrs first . replace cals Y using eq-

4.
H11l: ptr~ <= ptrs_ last

H12: for all(i_1: ptrs, ((i__ 1 >= indexes_ first) and (i
i 1 <= indexes_last)) -> ((element (vector, [stand c#1. Manual Proof
i 1]) >= integer first) and (element (vector, [y]
i 1]) <= integer last))) . unwrap h#s. in SPARK 2005
H13: ptr >= ptrs first . inst int i 1.
H14: ptr <= ptrs_ last . forw h#10.
H15: ptr = ptr~ + 1 . replace c#l: A by B using eq.
H16: vector = update(vector~, [ptr], x) . 6.
Cl: state = append(state~, x) . y
stand c#l.
Yy
done

exit

Bounding the expertise

Critical change in new SPARK: specification is code
- same semantics in code and specification
- same tools to operate on specification: IDE, compiler, debugger, test
- users never look at Verification Conditions

Tool support is most needed to help users with:

- modularity — counterexamples, safety guards, smoke detectors

- induction — loop invariant generation, loop unrolling, loop patterns
- undecidability — guidance on how to address unproved properties

From tour-de-force to run-of-the-mill

Example: Skein cryptographic hash algorithm in SPARK (Chapman, 2011)

initial version (SPARK 2005) current version (SPARK 2014)

41 non-trivial contracts for effects and 1 — effects and dependencies are
dependencies generated

31 conditions in preconditions and 0 — internal subprograms are inlined
postconditions on internal subprograms

43 conditions in loop invariants 1 — loop frame conditions are generated
24 cuts to avoid combinatorial explosion 0 —no combinatorial explosion
22 hint assertions to drive proof 0 — no need

23 manual proofs 0 — no need

Building the expertise

compiler
correctness /.
- 7
Degree of automation .
’
’
s
s %,
PROPERTY etmore L7 %,
COMPLEXITY complex boolean + complex 7 Q{oﬁ
arith + quantifiers ./ %r
nonlinear -Q®
int arith “/." &
modular arith 2 Qo
. Qﬁ C
+ quantifiers %4 2 %
’ G/)) QO;. (Y
2% %
& % 4,
.))
0., gz %
boolean tases °o,./ 25
+ linear int arith 2

USER-PERCEIVED
COMPLEXITY

Bounding the effort

.....

Platinum: Full functional

~ requirements
£ -

S)(ills .~ Siver:

," Ianguage subset

“ Toward implementation guidance

\

“ Stone: Safer analysabfe

Only for a subset of the code subject to specific key

. integrity properties (functional,safety, security)

The default target for critical software
(subject to costs and limitations)

For the largest part of the code as
. possible

adoption

& An intermediate level during

/

Expanding to application on legacy software

Traditional SPARK development known as “Correct-by-Construction”
- Not possible to “sparkify” existing codebases
- Not applicable to legacy codebases

David A. Wheeler: “If a system works, it’s a legacy system” Implementation Guidance

for the Adoption of SPARK
Ada THALES

Moving towards application to legacy codebases _

— Levels of assurance are critical to support progressive adoption

Expanding the user base

Traditional SPARK customers: military, avionics, space, security

More recent applications to medical device, automotive, autonomous
vehicles

— All in the context of industrial R&D projects / POC

—> Still need for general awareness, education, case studies, etc.

Example of successful spreading: seL4 highly visible success = Muen
separation kernel in SPARK => SPARK kernels at ANSSI, ETH Zurich, etc.

