
Teaching deductive verification to undergraduate
students
Sandrine Blazy

University of Rennes 1, CNRS IRISA, Inria

sandrine.blazy@irisa.fr

IFIP WG 1.9 / 2.15 Oxford 2018.07.13

mailto:sandrine.blazy@irisa.fr

The students

About 100 undergraduate students, 3rd year (2nd semester)

Expected prior experience:

• introduction to functional programming (Racket, 1st year)

• introduction to team programming : modules and interfaces, test driven

development, version control, contract programming (Scala, 2nd year)

• initiation to logic (propositional and predicate calculus, 3rd year)

• basic data structures (Java, 3rd year, 1st semester)

�2

Course organisation

• Lectures: (7-2) * 2 hours

• presentation of ideas and concepts

• interactive demos

• Exercises: 8 * 2 hours

• practice in group settings

• prepare labs

• Labs: 10 * 2 hours

• work in pair in small-group settings

• submit a Why file at the end of the session (can be improved until the

end of the week)

• Written exam (2 hours)

Total : 52h for each student (from January to April), mandatory course

�3

Deductive verification in Why3

WhyML programming language: a subset of OCaml with imperative features

Several provers in our Linux distribution (AltErgo, cvc4, Eprover, Z3)

Many examples borrowed from the Why3 gallery of verified programs

�4

verification
conditions

proof
specification 

+ 
program

Syllabus

1. First specifications

• Test of specifications

• First programs operating only over integers

• loops, loop invariants and variants

• immutability / mutable variables, let constructs

2. Type invariant

• Arrays, first sorts, matrices

3. Algebraic data types

4. Ghost code

• Recursive data types (incl. lists and trees) and programs

6. Weakest precondition calculus

�5

Writing formulas : hints

Many recipes are given to the students.

• to avoid bad practices

• verbose and difficult to read formulas

• too many variables, quantifiers,

• big formula that should be split (e.g. a post-condition)

• more than minimalistic formulas (e.g., the loop invariant is 0<i<N, so
that it becomes easier to prove)

• to help understand why a proof failed

• try other provers,

• then split the current goal until the formula becomes simple,

• then look at the goal and its hypotheses;

• if needed, add some assertions

Why3 is very useful !

�6

Testing a specification
What is a precise specification ?

�7

module Max

val max (i j : int) : int
ensures { result = i \/ result = j
}

end

module Max

val max (i j : int) : int
ensures { i<=j -> result = j }
ensures { i>j -> result = i }

end

module Test

let test () =
 let tmp = max 3 4 in
 assert { tmp = 4 }
end

Testing a specification

• Easily accepted by students

• but, may be difficult to assert by provers

�8

let test () =
 let a = make 3 0 in
 a[0] <- 7; a[1] <- 3; a[2] <- 1;
 selection_sort a;
 assert { a [0] = 1 };
 assert { a [1] = 3 };
 assert { a [2] = 7 }

ensures { sorted a /\ permut a (old a) }

Arrays, sorts, matrices :  
practising loop invariants

Basic examples where (part of) the loop invariant « looks like » the post-
condition (e.g. array search)

Many examples were studied so that the students managed to understand
loop invariants.

• Write the loop invariant first (e.g. Dutch flag)

Advanced examples with nested loops (e.g. insertion sort) and harder to
guess invariants (e.g. selection sort, bubble sort)

Encouraging results : Why3 is very useful to find the errors of the students

�9

Dealing with assertions and loop invariants

Difficult case : when an assertion is required in the program

Bad student practise :

• write an imprecise invariant and/or post-condition,

• then add the unproved formula into an assertion,

• and add more assertions

�10

Recursive programs

Programs manipulating lists and trees

• comparison between recursive and iterative programs

Well-known recursive programs (towers of Hanoi, a backtracking program)

Use of a ghost variable and a type invariant to handle a better suited data
structure

• ring buffer (array and sequence)

• trie (array and tree)

Axiomatisation of a recursive program, that is implemented using a loop

�11

function fibonacci int : int
…
axiom fibn: forall n:int. n>1 ->
 fibonacci n = fibonacci (n-1) + fibonacci (n-2)

Assessment

�12

progression
level students tasks methodology technicalities

Basic
click and see until all the

POs become green :  
easy and fun

Learn a new methodology and a
new syntax

Understand what is a precise
specification

The specification is the only
source of error.

• basic programs

• assertions only used in tests

Intermediate

Understand the 1st failures

Motto : take time to think

• long process

• almost black magic

for some students

Remember the methodology

Understand what does « the

code satisfies its spec » mean

I observed many inconsistencies !

• (all kinds of) loop invariants

• type invariants

• use of assertions  
➤ don’t forget to think

• many sources of errors

Advanced
more thinking : define and
use a data structure that

facilitates the proof
Understand the different POs

• ghost variable / code

• linking a recursive spec with

an imperative program

• add axioms (lemma

functions)

Questions ?

�15

