Universitat
Augsburg

Overview ISSE_

Institute for
Software & Systems
Engineering

Flash Memory and Flash File Systems

Results of Flashix |
Current Result: Integration of write-back Caches

Outlook: Concurrency

N

Motivation (I)

ISS=

Institute for
Software & Systems
Engineering

Flash Memory

* increasingly widespread use
e also in critical systems
(server, aeronautics)

D shock resistant

D energy efficient

© specific write characteristics
—> complex software

Motivation (1) iSSE.

Institute for
Software & Systems
Engineering

Firmware errors

* Intel SSD 320: power loss
leads to data corruption

* Crucial m4, Sandforce:
drive not responding

e Samsung: crash during
reactivation from sleep state

Indilinx Everest SATA 3.0 SSD platform specs:

e Dual core 400 MHz ARM

* 1GB DDR3 RAM

* Up to 0,5 GB/s sequential read/write speed

Motivation (llI)

ISS=

Institute for
Software & Systems
Engineering

Mars Rover Spirit

* Loss of communication

* Error in the file system
implementation lead to
repeated reboots

* [Reeves, Neilson 05]

Mars Rover Curiosity

* Feb 27, March 16 2013:
Safe Mode because of data
corruption

* Switched to backup computer

* Pilot project of the Verification Grand Challenge:
Develop a formally verified state-of-the-art flash file system
[Rajeev Joshi und Gerard Holzmann 07]

Flash Memory () iSSE_

Institute for
Software & Systems
Engineering

block0

EEC

page3 page4d pageb

block0

page3 page4d page5

* Operations
— read page
— write empty page (no in-place overwrite, only sequential)

— erase block (expensive!)

Flash Memory () iSSE_

Institute for
Software & Systems
Engineering

blockO blockO
erase blockO
page3 page4 page5 page3 page4 page5

* Operationen
— read page
— write empty page

— erase block (expensive!)

Flash Memory (Il) I —

Institute for
Software_ & Systems

Engineerin g

* Limited lifetime: 10* — 10° Erase-cycles
— Distribute erase operations equally (Wear-Leveling)

e Out-of-place Updates
— Mapping logical = physical erase blocks
— Garbage collection

e SSDs, USB drives

— Built-in Flash-Translation-Layer (FTL)
* Embedded

— Specific filesystems (JFFS, YAFFS, UBIES)

12.05.2017

Flashix: System Boundaries ISSE.

Institute for
Software & Systems

_ —

Flashix: bin
* Functional Correctness 7
* Crash-Safety ° etC

home

N

Flashix: System Boundaries ISSE.

Institute for
Software & Systems
Engineering

e Sequential writing of
pages (no overwrite)
* Erasing whole blocks

FIaShiX: (slow, deteriorates

memory)

* Functional Correctness 7
* Crash-Safety

Block O

.\ / Page O Page 1 Page 2

Page 3 Page 4 Page 5

Overview ISSE_

Institute for
Software & Systems
Engineering

Flash Memory and Flash File Systems

Results of Flashix |
Current Result: Integration of write-back Caches

Outlook: Concurrency

W N e

Models (simplified)

I55=

[SSV‘12, VSTTE13]
Virtual Filesystem Switch
generic concepts: paths,

file handles, paging

File System Core
flash specific concepts
[FM‘09]

Transactional Journal

?

?

~

[ST,3LLISA]

[Persistence Interface

I —
AN

Overview: [ABZ‘14], Theory: [ABZ‘14] & [SCP’16]

Encoding FS Data
Structures + Layout

Institute for

Software & Systems

Engineering

-

[€T,0AH]

I/O Layer: Encoding EBM Data Structures

—@— Interface/Submachine

Refinement

Models: Highlights ISSE.

Institute for
Software & Systems
Engineering

* POSIX: very abstract, understandable specification (based on
algebraic trees)

* Generic, filesystem-independent part similar to VFS in Linux

* Orphaned Files and Hardlinks are considered

* Journal-based implementation for crash-safety

* Garbage Collection and Wear-Leveling

* Efficient B*-tree-based indexing

* Index on flash for efficient reboot

* Write-through Caches

Related:

* FSCQ [Chen et. al. 15]: no flash-specifics, generates Haskell
code, verified with Coq

e Data61 (NICTA) [Keller eta al 14]: only middle part of the
hierarchy considered, no crash-safety, verified code generator

Read: POSIX 1S5S=

Institute for
Software & Systems
Engineering

data asm specification

state variables
root : tree[fid]
fs : fid » seql[byte]
of : fh +» (fid x pos)

operations

posix_read(fh; buf, len)

{ /* error handling omitted */
let (fid, pos) = of[fh]

choose n with n < len A pos + n < # fs[fid] in
Ten :=n

buf
of [fh]

copy(fs[fid], pos, buf, 0, len)
(fid, pos + len)

[..]

Read: VFS

I=55=.

Institute for
Software & Systems
Engineering

vfs_read#(FD; BUF, N; ERR) {
ERR := ESUCCESS;
if - FD € OF
then ERR := EBADFD
else if OF[FD].mode = MODE_R
A OF[FD].mode = MODE_RW
then ERR := EBADFD
else Tet INODE = [?] in {
afs_iget#(OF[FD].ino; INODE, ERR);
if ERR = ESUCCESS
then {
if INODE.directory
then ERR := EISDIR
else let START = OF[FD].pos,

END = OF[FD].pos + N,
TOTAL = 0,
DST =0 1in

if START < INODE.size

then {

vfs_read_Tloop#;

OF[FD].pOS := START + TOTAL;
N := TOTAL

} else

N :=0

vfs_read_loop# {

vfs_read_block# {

Tet DONE = false, DST = DST in
while ERR = ESUCCESS A - DONE do
vfs_read_bTlock#

let PAGENO = (START + TOTAL) / PAGE_SIZE,
OFFSET = (START + TOTAL) % PAGE_SIZE,
PAGE = emptypage
in {
let N = min(END - (START + TOTAL),
PAGE_SIZE - OFFSET,
INODE.size - (START + TOTAL))
in
if N = 0 then {
afs_readpage#(INODE.ino, PAGENO; PAGE, ERR);
if ERR = ESUCCESS
then {
BUF := copy(load(PAGE),OFFSET,BUF,DST+TOTAL,N);
TOTAL := TOTAL + N
ks
} else {
DONE := true

Size of Models (LOC) ISSE.

Institute for
Software & Systems
Engineering

POSIX

50 :
150 error spec 300 algebraic

VES

500 ASM, including error handling alglez?aic

AFS

100 ASM 100 :
algebraic

Theoretical Result: Submachines ISSE

Institute for
Software & Systems
Engineering

Theorem [SCP 16] : Submachine Refinement is
compositional
AE C-> M(A) E M(C)

A M 0 A
M o A — : !
C M 6 C
submachine
composition refinement composition
Related:

* Simulations propagate [Engelhardt, deRoever]

12.05.2017

Goal: Crash-Safety ISSE.

Institute for
Software & Systems
Engineering

OP. OP. OP,

O——0—

OP,

Goal: A File System is crash-safe if a crash in the middle of an operation
leads to a state that is similar to

a) the initial state of the operation

b) some final state of a run of the operation

where similar = equal after reboot.

Motivation for ,similar”. open files handles are cleared = effect of reboot

Definition: Crash-Neutrality ISSE.

Institute for
Software & Systems
Engineering

Definition: An atomic operation is crash-neutral if it has a (,do nothing®) run

such that a crash after the operation leads to the same state as the crash before
the operation.

Motivation: operations on flash hardware always have a ,,do-nothing” run, since
the hardware can always refuse the operation

Proof Obligation:
pre(Op)(in, state)
A Crash(state, state’)
— < Op (in; state; out) > Crash(state, state’)

Crash-Safety: Refinement ISSE.

Institute for
Software & Systems
Engineering

) e N
A A + ACrash + ARec
 —— 4 ~ i
Refi tP : : : : Refi t+Crash P
efinement POs ! ‘ 3 k efinemen rash POs
C C + CCrash + CRec
——— \ J

Theorem [Ernst et. al., SCP 16]:

If

* All operations of C are crash-neutral

» Refinement PO for each operation, including { Crash; Recovery }

then C is a crash-safe implementation of A, written AC__ C.

— CS

Main difficulties:

« Additional data structures and algorithms required for recovery (e.g. journals,
persisted index structures, ...)

e Additional Invariants for these data structures required

* Refinement proof for { Crash; Recovery } must ensure that the entire RAM
state can be recovered

Crash-Safety: Submachines ISSE

[]
Institute for
() () Software & Systems
Engineerin
A M(A) gnesnng
— — —
C M(C)
- -

Theorem [Ernst et. al., SCP 16]:

Crash-Safe Submachine Refinement is compositional and transitive
« AE_C-> M(A) E, M(C)

* AE BandBE C>ALE_C

By transitivity of refinement we get:

POSIX E

)

VFS(...(MTD))

Related Work:

 Temporal extension of Hoare Logic to reason about all intermediate states
[Chen et. al. 15]

 Model-checking all intermediate states [Koskinen et. al., POPL16]

e Crashes as exceptions [Maric and Sprenger, FM2014]

Models: Size & Effort ISSE.

Institute for
Software & Systems
Engineering

e 21 models of 5 — 15 operations each
e 10 Refinements
* Models ASMs: 4k LoC
algebraic: 10k LoC
Ca. 3000 theorems to prove functional correctness,
crash-safety and quality of wear-leveling

e Effort:
— 2 PhDs
— Y individual problems < fully developed system

— Good, stable interfaces are crucial, but difficult to achieve; in
particular in the presence of errors and crashes

Design of Models (I) ISSE_

Institute for
Software & Systems
Engineering

* Modularization is key to success
— Design small abstract interfaces on many levels
— Use extra refinement levels to capture key concepts
— Horizontal structure: Use submachines!

* Middle-out strategy was key to bridge the wide gap
between POSIX and Flash Interface

Design of Models (1) ISSE_

Institute for
Software & Systems
Engineering

* Use expressive data types + control constructs

— (KIV’s) version of ASMs allows abstract models as well as
Code-like implementations

— Do not use program counters for control structure

— Expressive data types are helpful (various types of trees,
streams, pointer structures with separation logic library in
HOL).

— Sometimes we would have liked even more
expressiveness, e.g. dependent/predicative types.

Changing Models and Verification Support JS9&="

Institute for
Software & Systems
Engineering

* Models are bound to change:
modifications ripple through several models
—> great similarity to software refactoring

* Main reason for changes due to properly handling
hardware failures and power cuts

* Do not verify too early: testing and simulation can help a
lot! Better integration would help

e Support machines with crashes and generate VCs for
crash-safe refinement -> less error-prone, faster
refactoring

* Verification tool has to minimize redoing proofs:

— Compute minimal set of affected proofs
(Correctness Management)

— Replaying proofs is common

Open issues and limitations of Flashix | 1S5S-=

Institute for
Software & Systems
Engineering

e \VVerification of final C-code

— Idea: Use VCC/VeriFast to prove 1:1-correspondence
between C code and KIV-ASM annotated as ghost code

* Limitations:
— Concurrency has not been considered
— Limited use of write-back Caches

— Special files (e.g. pipes, symbolic links) have been left out,
but could be added orthogonally

Code Size & Performance ISSE.

Institute for
Software & Systems
Engineering

e CCode generated: 13k LoC
manually: 1k LoC (integration)
* Runs on embedded board (with Linux)

* Scala Code available (requires Linux FUSE library):
https://github.com/isse-augsburg/flashix

25
20
15
@ Flashix
@ UBIFS (immediate flush)
10 @ UBIFS (without flush)
> Write-back Cache,
g asynchronous
80 . write to flash
$ format mount read writes

12.05.2017

https://github.com/isse-augsburg/flashix

Overview ISSE_

Institute for
Software & Systems
Engineering

Flash Memory and Flash File Systems

Results of Flashix |
Current Result: Integration of write-back Caches

Outlook: Concurrency

W N

Caches in Flash File Systems ISSE.

Institute for
Sof‘tware_ & Systems

Engineeri ng

* Flashix uses several caches: index, superblock, etc...
* Most are recoverable from data stored on flash
* These just need an invariant in proofs:
Cache = recover(Flash)
* Invisible to the user of POSIX

e Other write-back Caches are visible to the user
e Write-buffer
* Inode/Page/Dentry-Cache in VFS (Future Work)

Flashix: Write Buffer (I)

Institute f
Softw. & System
Engineering

Flashix: Write Buffer (I)

ISS=

[]

* Low-Level View: Crash loses data in Cache

e Other higher-level Specifications (POSIX) cannot express this

* Therefore, Flashix | flushed the write buffer at the end of every AFS
operation (wastes space, less efficient)

Institute for
Software & Systems
Engineering

Block

Cache

* High-Level View: Crash retracts several operations (blue and gray)

Weak Crash-Safety ISSE.

Institute for
Software & Systems
Engineering

OP. OP,

Definition: The implementation of a machine is weak crash-safe if a crash in the
middle of an operation leads to a state that is similar to

a) the initial state of the operation

b) some final state of a run of an earlier operation

where similar = equal after reboot.

Flashix: Write Buffer ISSE.

Institute for
Software & Systems
Engineering

Block

T | cache

e High-Level View: Crash retracts several operations (blue and gray)

[| | — —

* Observation: Runs of operations are either
* retractable: Crashing before or after the operation has the
same effect (gray)
 completable: there is an alternative run that leads to a
synchronized state with empty cache (blue)

* Synchronized States are definable on abstract levels, e.g. POSIX:
every state after fsync

ldea: Weak Crash-Safety by Refinement ISSE,

Institute for
Software & Systems
Engineering

* Machines with synchronized states Sync € S
and Crash < Sync x Sync

* The write buffer implementation has
Sync = S and Crash = ,,delete cache”

* The abstract write buffer specification has
Sync = ,cache is empty”and Crash = identity

* Idea: Incrementally switch from low-level view to high-level view
by refinement)

Abstract Write buffer

)I

s ~

Write Buffer Implementation

\

Weak Crash-Safety: Refinement Type | ISSE_

Institute for
Software & Systems
Engineering

(\

A =M + ASync + ACrash

~ S

- ~
C =M + CSync + CCrash

(& J

Theorem [Pfiihler et. al., submitted to iFM17]:
If every run of every operation is either retractable or completable then C is a
weak crash-safe implementation of A, written AE . C.

PO for Op retractable or completable:
< Op(s) > (CCrash(s, s‘))
—> CCrash(s, s)

V < 0p(s) > (ASync A CCrash(s, s))

Weak Crash-Safety: Refinement Type |l ISSE,

Institute for
Software & Systems
Engineering

) e N
A A + ACrash + ARec
. —" o~ % Refinement + Crash POs
Refinement POs :~ 3 : + SyncPOs
M(C) M(C) + MCrash + MRec
——— \ J

Theorem [Pfiihler et. al., submitted to iFM17]:

If

e Ccrash-neutral

* Refinement PO for each operation, including { Crash; Recovery } assuming we
start in a synchronized state

* M has no additional persistent state

e ASync A abs - CSync

then AE, . M(C)

By transitivity of refinement we get:

POSIX E

— WCS

VES(...(MTD))

Weak Crash-Safety: Submachines ISSE

Institute for
Software & Systems
Engineering

A M(A)
C M(C)

Theorem [Pfiihler et. al., submitted to iFM17]:
Weak Crash-Safe Submachine Refinement is compositional and transitive
« AC, . C—> M(A) E, M(C)

— WCS

 AE, . BandCE, . C>ALE C

By transitivity of refinement we get:

POSIX C,,.. VFS(...(WriteBuffer(...(MTD))))

12.05.2017

Summary & Related Work 1ISS-=

Institute for
Software & Systems
Engineering

e Added KIV support for weak crash-safe machines
* Simplified Verification
500 - 300, 1050 - 1270 (proof interactions)
for the two specifications where we previously had
proofs
* 30-40% less waste of space for padding

Related Work:

* Specifying and Checking File System Crash-
Consistency Models [ASPLOS 16]

* Reducing Crash Recoverability to Reachability
[POPL 16]

Overview ISSE_

Institute for
Software & Systems
Engineering

Flash Memory and Flash File Systems

Results of Flashix |
Current Result: Integration of write-back Caches

Outlook: Concurrency

B whNh e

12.05.2017

Goals & Previous Research ISSE.

Institute for
Software & Systems
Engineering

Goals for Flashix:

 Parallel operations
— Garbage Collection, Wear-Leveling in background
— Allow parallel access to POSIX

* No Dead/Livelocks

Previous Research:

* Rely/Guarantee & Temporal Logic

* Linearizability

* Lock-free & starvation-free algorithms / data structures

Challenge in Flashix:
 Scale verification to a large case study with deep hierarchy of
refinements

[
Non-local Extension lSS:.

Institute for
Software & Systems
Engineering

Incremental Additional, concept-specific
Development Proof Obligations

M1 M1’ M1 61

M2 —p MZ" — M2
Mn Mn’ Mn

Non-local Extension with an Modularization following
additional concept the original refinements
Goal: Do not verify from scratch

[
Instances of Non-local Extensions ISS:.

Institute for
Software & Systems
Engineering

* Crash-Safety

— Modularization resulting in additional, orthogonal proof
obligations worked

* Write-back Caches and Weak Crash-Safety

* Concurrency?

— Making expensive operations concurrent seems to be a
standard problem in software engineering

— Related formal theories or verified case studies?
—> Interested in Feedback

Linearizability under Protocol (I) 1S95=

Institute for
Software & Systems
Engineering

[A] [Atomic(A) + CP(A)]
Data Refinement ‘ Linearizability under
: Protocol

(e}]

* Concurrency Protocol CP(A) specifies whether AOp(in;) | | AOp(in;) is allowed
* Restricts possible concurrent histories

=> only these have to be linearizable
e Examples in Flashix:

* Writing to the same block disallowed (only sequential writes)

* Wear-Leveling or block erase is allowed in parallel
* Examples outside Flashix:
* lterators may not be used concurrent with modifications
* Difference to general linearizability: we have a single known client M for C, while
linearizability requires C to work for any client

12.05.2017

Linearizability under Protocol (ll) 1S95=

Institute for
Software & Systems
Engineering

[A] [Atomic(A) + CP(A)]

Data Refinement ‘ Lmea:zatblllt\l/ under
: rotoco

(e}]

Open Issues:

* How to specify CP? Current assumption is that a predicate (AOp,, in; AOp; in;) is
sufficient

* What proof obligations show that calls of C opertions follow protocol CP(C)
assuming that calls to M(C) operations follow protcol CP(A)?

* Incrementally increase atomicity of M operations [Lipton 75], [EImas, Qadeer,
Tasiran 09] with ownership

* What granularity of atomic blocks remains and how do we then reuse the
sequential verification?

* Ideally, M(C) operations with locks are immediately atomic - nothing new must be proved

