Introduction to blockchain technology and
smart-contract programming

Sylvain Conchon
University Paris-Saclay

Blockchain Ledger

The database in a blockchain is
similar to a general ledger in
traditional accounting, which is a
record-keeping system used to track
financial transactions and balances

I TRIRRRER

However, the ledger in a blockchain is distinguished by its
decentralization, immutability, and cryptographic security
mechanisms, making it resistant to tampering and fraud

Distributed Ledger

, wallet

Blockchain ledgers are o

wallet :?;:;ifl_u G wallet
» shared (= = @. ‘

» synchronized e |7 G =
» accessible in P2P i“'-eﬁ:; ptp ---------- /

> Visible to everyone ol /

» immutable el T \ /o

/
wallet e G ! tedger @

Computers that maintain a complete copy of the ledger are
known as full nodes

> Resilience : decentralization makes the system more
robust against failures, attacks, and data loss

Chain of Blocks
The ledger of a blockchain is used to records transactions

Transactions are grouped into "blocks". A block is similar to a
page in a general ledger.

6/10/2024
niacl Hash(blocy,,) 6/10/2024

21h24m36s
o1
-0 L
bet..23 bet.2xd

6/10/2024
HBSh(b|UCk»1) 21h03mS52s

et
Bloc, Blocy,; @ *>>»@ Blocg,,

Chain of Blocks
The ledger of a blockchain is used to records transactions

Transactions are grouped into "blocks". A block is similar to a
page in a general ledger.

6/10/2024 6/10/2024 /10/2024

Hash(bloc, ;) 21h03mS2s 21h14m12s Hash(bloc,,,) 21h24m3ss
01
BN

bet. 2 e 005
I S | S . .
B et Bloc, Blocy,; @ *>>»@ Blocg,,
bot o2 e ber.123 et 1208

Chain of Blocks: Each block is linked to the previous one
through its hash (a kind of unique identifier), forming a
continuous chain of blocks—hence the name "blockchain"

Chain of Blocks
The ledger of a blockchain is used to records transactions

Transactions are grouped into "blocks". A block is similar to a
page in a general ledger.

6/10/2024

21h14m12s Hash(blocy,,) 6/10/2024

6/10/2024
Hash(bloc,.;) 21h03ms2s 21h24m36s

Bloc, Blocy,;

Chain of Blocks: Each block is linked to the previous one
through its hash (a kind of unique identifier), forming a
continuous chain of blocks—hence the name "blockchain"

Integrity. If a block is altered, its hash changes, invalidating all
subsequent blocks, ensuring the integrity of the ledger

Chain of Blocks
The ledger of a blockchain is used to records transactions

Transactions are grouped into "blocks". A block is similar to a
page in a general ledger.

6/10/2024
21h03ms2s

6/10/2024 6/10/2024
21h14m12s Hash(bloc,,) s

Hash(bloc, ;)
@@
@ 2

Blocy,,

Chain of Blocks: Each block is linked to the previous one
through its hash (a kind of unique identifier), forming a
continuous chain of blocks—hence the name "blockchain"

Integrity. If a block is altered, its hash changes, invalidating all
subsequent blocks, ensuring the integrity of the ledger

Immutability. Once a block is added to the blockchain, it
becomes nearly impossible to alter or delete, ensuring the
transparency and security of the ledger

Origins

Described in 2008 by a certain Satoshi Nakamoto in the paper
Bitcoin: A peer-to-peer electronic cash system

Bitcoin aims to build a distributed payment system, without
trusted third parties, for an arbitrary number of participants.

The main difficulty is to design a consensus protocol allowing
all participants to agree, without knowing the number of
participants.

The problem of distributed consensus with a known number
of participants has been studied since the late 1970s, notably
through the Byzantine Generals Problem (see later).

Double Spending

Unlike physical currency, an electronic coin can be copied
effortlessly, which potentially allows one to spend the same
coin multiple times.

This problem does not arise when the currency is managed in
a centralized manner by a bank (which is the only entity that
keeps the accounts and authorizes or rejects transactions).

In a distributed (or decentralized) system, one solution to
address this problem is for the participants to vote in order to
agree on the state of the accounts after each transaction.

Sybil Attack

The problem with a voting system involving an arbitrary
number of participants is that some may attempt to cheat by

creating multiple identities, in order to increase their voting
power.

This type of attack is known as a Sybil attack.

Proof-of-Work

Bitcoin’s solution to address double spending and Sybil
attacks is Proof-of-Work (PoW).

PoW: A block is valid if its hash begins with a certain number
of zeros. This condition can only be satisfied by brute force,
which makes block production very computationally
expensive (and therefore energy-intensive).

In Proof-of-Work, one vote = one CPU.

Thus, multiplying identities in this system amounts to having
more computational power, which comes at a high cost.

Longest Chain Rule

What happens if two participants produce a block at the same
time?

This problem is related to double spending, since spending
the same bitcoin twice only requires producing two blocks
with the same parent.

A fork in the blockchain occurs when two blocks have the
same parent.

When multiple branches exist in Bitcoin, the rule for adding a
new block is to choose the chain with the greatest cumulative
proof-of-work (often referred to as the longest chain).

Nakamoto Consensus

This clever combination of Proof-of-Work and the longest
chain rule is known as Nakamoto consensus.

The chain with the greatest accumulated proof-of-work (i.e.,
the longest chain) is considered valid.

As blocks are added and become older, they become less and
less likely to be reverted.

This concept is known as probabilistic finality: a block is
considered final with overwhelming probability and is
expected to remain permanently in the chain.

Bitcoin: Blockchain

(source:
F. Tschorsch and B. Scheuermann, Bitcoin and Beyond: A
Technical Survey on Decentralized Digital Currencies)

BlockHash <11 -~ |BlockHash <17 -l . |BlockHash
PrevBlockHash PrevBlockHash PrevBlockHash
MerkleRoot MerkleRoot MerkleRoot

Bitcoin: Addresses

A Bitcoin address B is generated from a public key P by first
hashing it with the SHA-256 function, then hashing the result
again with RIPEMD-160.

Finally, addresses are represented in Base58, a binary-to-ASClI
encoding that uses 58 characters (omitting easily confused
characters such as 0, O, |, 1, etc.).

This public key encoding allows both space savings and
obfuscation of the keys.

Bitcoin: Transactions

In Bitcoin, a user’s balance is represented by the set of
transactions they have received from other users (or earned
through mining or transaction fees) that have not yet been
spent.

To spend funds, one must "consume" unspent transactions
(UTXOs: Unspent Transaction Outputs) and link them to a new
UTXO, which can have multiple outputs.

[txHash | [tockTime

input output

revTxHash index
. scriptPubKey
scriptSig
prevOut -
prevTxHash scriptPubKey

scriptSig

The Bitcoin Script Engine

Each Bitcoin transaction corresponds to a small program
written in a language called Script.

This language allows controlling a stack-based virtual
machine using a set of instructions (over a hundred).

https://en.bitcoin.it/wiki/Script

Examples of instructions:
DUP
EQUAL
HASH160
EQUALVERIFY
CHECKSIG
CHECKMULTISIG
IF, ELSE, ENDIF

https://en.bitcoin.it/wiki/Script

Bitcoin: Scripts (1/2)

There are two types of Bitcoin scripts: locking scripts (Lock or
scriptPubKey) and unlocking scripts (Unlock or scriptSig).
Bitcoin transactions primarily use four families of scripts.

P2PK
Lock:

Unlock:

P2PKH :
Lock:

Unlock:

P2MS :
Lock:

Unlock:

P2SH :
Lock:

Unlock:

<pk>CHECKSIG
<sig>

DUP HASH160 <Hpk> EQUALVERIFY CHECKSIG
<sig> <pk>

<n> <pkh>...<pkh> <m> CHECKMULTISIG
<sig>..<sig>

HASH160 <hashscript> EQUAL
<sig>..<sig> <serialized_script>

Bitcoin: Scripts (2/2)

Here is a brief explanation of the main script types:

P2PK (Pay-to-Public-Key): Simple script where funds are locked to a
public key. To spend, the spender provides a valid signature.

P2PKH (Pay-to-Public-Key-Hash): The most common type. Funds are
locked to the hash of a public key, providing both space savings and
obfuscation. Spending requires providing the public key and a valid
signature.

P2MS (Pay-to-Multi-Sig): Funds are locked to multiple public keys
with an m-of-n spending condition. Requires m valid signatures to
spend.

P2SH (Pay-to-Script-Hash): Funds are locked to the hash of a
redeem script. The spender must provide the signatures and the
serialized script matching the hash. This allows complex scripts
without exposing them on-chain until spent.

Bitcoin : script example

Stack

Script

'sigBob pubKeyBob OP_DUP OP_HASH160 pubKeyBobHash
OP_EQUALVERIFY OP_CHECKSIG

sigBob pubKeyBob

OP_DUP OP_HASH160 pubKeyBobHash OP_EQUALVERIFY
OP_CHECKSIG

sigBob pubKeyBob pubKeyBob

OP_HASH160 pubKeyBobHash OP_EQUALVERIFY OP_CHECKSIG

sigBob pubKeyBob pubKeyBobHash

pubKeyBobHash OP_EQUALVERIFY OP_CHECKSIG

sigBob pubKeyBob pubKeyBobHash pubKeyBobHash

OP_EQUALVERIFY OP_CHECKSIG

sigBob pubKeyBob

OP_CHECKSIG

true

\begin{Practice}

Bitcoin scripts

Exercise : Identify a P2PKH on the Blockchain

Understand how a P2PKH script works in a real transaction.
1. Choose a recent transaction on a block explorer.

2. Identify one input and one output of the transaction.

3. Determine the type of the output script (scriptPubKey) and
check if it is a P2PKH.

Note the following:
» Destination address
> Amount sent
» Public key hash used in the script

20

Exercise: Analyze a P2SH Transaction

Understand how a P2SH script works and how multiple
signatures are used.

1. On a block explorer, find a transaction that uses P2SH (often
a multi-signature script).

2. Examine the corresponding output (scriptPubKey) and note
the hash of the redeem script.

3. Look at the input (scriptSig) that spends this output.

Identify: How many signatures were provided If the script
requires an m-of-n condition (e.g., 2-of-3 signatures)

21

\end{Practice}

Bitcoin Light Clients

Light Clients

A blockchain consists of two main types of nodes: miners and
wallets.

Wallets are light clients that do not operate as full nodes in
the P2P network: they do not attempt to mine blocks or
download the entire blockchain.

They simply track the transactions they are involved in by
querying a blockchain server.

The underlying technology behind these wallets is Simplified
Payment Verification (SPV), which allows users to verify that a
transaction is included in the blockchain without
downloading the entire chain.

24

Wallets

Light clients on a blockchain like Bitcoin are called wallets.

Unlike full nodes in the P2P network, wallets are used by
blockchain users to create transactions and track them.

To perform these operations, a wallet connects to a network
node to obtain the minimal information needed to verify that
a transaction is confirmed, without ever downloading the
entire blockchain.

This feature is called Simplified Payment Verification (SPV).

25

Problem Statement

How can we verify that a transaction is included in block i
without downloading all the transactions in that block, but by
using only the block header?

26

Transaction Hash List

One solution is to compute the digital hash of the list of
transactions in a block and store it in the block header.

27

Transaction Hash List

One solution is to compute the digital hash of the list of
transactions in a block and store it in the block header.

Given the list [Ho, H1, . . ., Hg] of transaction hashes, one could,
for example, compute the hash of the list as the hash of the
sum Ho + ... + Hg.

27

Transaction Hash List

One solution is to compute the digital hash of the list of
transactions in a block and store it in the block header.

Given the list [Ho, H1, . . ., Hg] of transaction hashes, one could,
for example, compute the hash of the list as the hash of the
sum Ho + ... + Hg.

To verify that a particular transaction v is included in block b;,
one can:

27

Transaction Hash List

One solution is to compute the digital hash of the list of
transactions in a block and store it in the block header.

Given the list [Ho, H1, . . ., Hg] of transaction hashes, one could,
for example, compute the hash of the list as the hash of the
sum Ho + ... + Hg.

To verify that a particular transaction v is included in block b;,
one can:

» Request (as proof) from a network node the list 7 of
hashes of all transactions in b;

27

Transaction Hash List

One solution is to compute the digital hash of the list of
transactions in a block and store it in the block header.

Given the list [Ho, H1, . . ., Hg] of transaction hashes, one could,
for example, compute the hash of the list as the hash of the
sum Ho + ... + Hg.

To verify that a particular transaction v is included in block b;,
one can:

» Request (as proof) from a network node the list 7 of
hashes of all transactions in b;

» Check that the hash of visin ¢

27

Transaction Hash List

One solution is to compute the digital hash of the list of
transactions in a block and store it in the block header.

Given the list [Ho, H1, . . ., Hg] of transaction hashes, one could,
for example, compute the hash of the list as the hash of the
sum Ho + ... + Hg.

To verify that a particular transaction v is included in block b;,
one can:

» Request (as proof) from a network node the list 7 of
hashes of all transactions in b;

» Check that the hash of visin ¢

» Recompute the hash of ¢ and verify that it matches the
hash of the transactions stored in the header of b;

27

Merkle Trees

To minimize the size of ¢, we organize the list of transaction
hashes as a tree.

This tree structure is called a Merkle tree. It was invented in
1979 by Ralph Merkle. Initially filed as a patent, Merkle later
published it in 1987 in the following paper:

R. Merkle. A digital signature based on a conventional
encryption function.

https://people.eecs.berkeley.edu/~raluca/
cs261-fl15/readings/merkle.pdf

28

https://people.eecs.berkeley.edu/~raluca/cs261-f15/readings/merkle.pdf
https://people.eecs.berkeley.edu/~raluca/cs261-f15/readings/merkle.pdf

Merkle Tree: Principle

A Merkle tree is a binary tree structure in which:
» Each leaf contains the hash of a transaction

» Each node contains the hash of the concatenation of its
two child hashes.

> Leaves Hy, ..., Hs contain the
hashes of transactions
Vo,...,V3

> Internal nodes H;_; are equal
to hash(H; + H}')

» Finally, the root Hg_1_,_3 is
equal to hash(Ho_1 + Ha_3)

29

Merkle Trees: Property

Merkle trees have the property that left subtrees are always
complete, meaning that all levels of these subtrees are fully
filled.

Therefore, a node at level n will necessarily have 2"~ leaves
in its left subtree.

Example:

30

Merkle Root

It is only the hash stored at the root of the Merkle tree that is
recorded in the block header of a blockchain.

Only the nodes of the blockchain’s P2P network store the
transactions, which are kept in each block in the form of
Merkle trees.

Merkle Proofs: Principle

To verify that a transaction v is included in a block < (for which
we only have the header), one only needs to provide the list of
hashes contained in the sibling nodes along the path from the
root of the Merkle tree to the leaf node holding the hash of v.

This list, called a Merkle proof, allows one to recompute the
root hash of the tree and verify that it matches the value
stored in the block header.

Merkle Proofs: Example

The Merkle proof for transaction v, in the tree below is the list
[Hq-5;Hp-1;H3].
Indeed, we have:

Ho-1-2-3-4-s = hash(Hz-5+hash(Hg-1 +hash(hash(vy)+Hs)))

33

\begin{Practice}

Merkle trees

Exercise

Using the Blockstream API:
https://github.com/Blockstream/esplora/blob/master/API.md

and a tool like curl or a library such as Python’s requests:

1. Write a program that retrieves the Merkle root of a block
and the Merkle proof for the inclusion of a transaction.

2. Verify that the Merkle proof is correct.

35

https://github.com/Blockstream/esplora/blob/master/API.md

Hint 1: Hashing and byte orders

In practice, the hash values are sequence of bytes, and the
addition operation is just the concatenation.

We use hashlib.sha256 to compute hash and Merkle proofs
use double sha256

Bitcoin uses Big-Endian to display information
"alb2c3d4" — reads left to right
but Little-Endian is used for internal calculations (hashing)

d4 c3 b2 al — reversed order in memory

36

Hint 2: Merkle indexes and division by 2

Since concatenation is not commutative, it is necessary to
know whether to concatenate on the left or on the right.

Niveau 0 (feuilles) : Tx0 Tx1 Tx2 Tx3 Tx4 Tx5 Txé6 Tx7

Index transaction : 0 1 2 3 4 5 6 7
PR | [| I | |
v N N v
Niveau 1 (neuds) : HO1 H23 H45 H67
Index neud : 0 al, 2 3
| |
v v
Niveau 2 : HO123 H4567
Index neud : 0 1
e |
v
Niveau 3 (racine) : ROOT

Index neud : 0

\end{Practice}

Lightning Network

Scaling Bitcoin
Currently, the main challenge for a blockchain like Bitcoin is
scalability.

This is usually measured by the number of transactions per
second (TPS) that a blockchain can handle.

40

Scaling Bitcoin

Currently, the main challenge for a blockchain like Bitcoin is
scalability.

This is usually measured by the number of transactions per
second (TPS) that a blockchain can handle.

Bitcoin produces 1 block every 10 minutes, and each block can
contain up to 1 megabyte (= 1,048,576 bytes) of data. On
average, a transaction is 380 bytes in size.

Tg(Block time) = 600 seconds
B(Block size) = 1,048,576 bytes
A(Average transaction size) = 380 bytes

40

Scaling Bitcoin

Currently, the main challenge for a blockchain like Bitcoin is
scalability.

This is usually measured by the number of transactions per
second (TPS) that a blockchain can handle.

Bitcoin produces 1 block every 10 minutes, and each block can
contain up to 1 megabyte (= 1,048,576 bytes) of data. On
average, a transaction is 380 bytes in size.

Tg(Block time) = 600 seconds
B(Block size) = 1,048,576 bytes
A(Average transaction size) = 380 bytes

Number of transactions per block (TPB) and the TPS value are:

TPB = B/A = 1,048,576/380 ~ 2,759
TPS = TPB/Tg ~ 2,759/600 ~ 4.6

40

How to Increase TPS?
Bitcoin currently allows an average of 4.6 transactions per
second (TPS). In comparison, the Visa network can handle
peaks of 50,000 TPS and hundreds of millions of transactions
per day.

To achieve such throughput on Bitcoin, a block of 11 GB would
need to be mined every 10 minutes, which amounts to roughly
600 petabytes per year!

Moreover, in 2021, Bitcoin has about 10,000 nodes, and the
average time to propagate a block to all these nodes is
estimated at 14 seconds.

A

How to Increase TPS?

Bitcoin currently allows an average of 4.6 transactions per
second (TPS). In comparison, the Visa network can handle
peaks of 50,000 TPS and hundreds of millions of transactions
per day.

To achieve such throughput on Bitcoin, a block of 11 GB would
need to be mined every 10 minutes, which amounts to roughly
600 petabytes per year!

Moreover, in 2021, Bitcoin has about 10,000 nodes, and the
average time to propagate a block to all these nodes is
estimated at 14 seconds.

Increasing the block size is not a good solution:

» Only a few nodes could handle storing such large
amounts of data

» Fewer miners = less security
» Blockchain validation would become impossible

A

The Blockchain Trilemma

The Scalability Trilemma

Scalability

Pick one side
of the triangle

< >
Security Decentralization

It is challenging for a blockchain to achieve all three

properties simultaneously: scalability, decentralization, and

security.

42

Lightning Network

One solution to increase Bitcoin’s scalability is to build a
secondary layer on top of Bitcoin, where users can make
micro-payments that are (almost) instantaneous and low-fee
through off-chain communications.

The Bitcoin blockchain is used to secure these payments.

The main secondary layer for Bitcoin is the Lightning Network.

It is a network of micropayment channels.

43

Micropayment Channels

A micropayment channel allows two “agents” to make
payments very quickly, without using the blockchain, except
at the opening and closing of the channel.

A

Micropayment Channels

A micropayment channel allows two “agents” to make
payments very quickly, without using the blockchain, except
at the opening and closing of the channel.

Suppose Alice and Bob want to regularly exchange money (in
both directions).

A

Micropayment Channels

A micropayment channel allows two “agents” to make
payments very quickly, without using the blockchain, except
at the opening and closing of the channel.

Suppose Alice and Bob want to regularly exchange money (in
both directions).

To do this, Alice and Bob start by opening a shared (multisig)
account on Bitcoin, each depositing a certain amount—for
example, Alice deposits 1 BTC and Bob deposits 0.5 BTC.

How can the opening of such an account
be done securely?

A

Opening a Channel

Opening this shared account (AB) requires two transactions:
1. A - B: 1 BTC from Alice to AB (signed by Alice)
2. B2 A: 0.5 BTC from Bob to AB (signed by Bob)

45

Opening a Channel

Opening this shared account (AB) requires two transactions:
1. A - B: 1 BTC from Alice to AB (signed by Alice)
2. B2 A: 0.5 BTC from Bob to AB (signed by Bob)

But this is not enough, because if Bob does not cooperate,

Alice would lose her 1 BTC in the shared account (and vice
versa), since she could no longer retrieve her funds.

45

Opening a Channel

Opening this shared account (AB) requires two transactions:
1. A - B: 1 BTC from Alice to AB (signed by Alice)
2. B2 A: 0.5 BTC from Bob to AB (signed by Bob)

But this is not enough, because if Bob does not cooperate,
Alice would lose her 1 BTC in the shared account (and vice
versa), since she could no longer retrieve her funds.

To prevent this, before broadcasting their transactions, Alice
and Bob each construct and sign the following two-output
transaction, which represents the state of the payment
channel.

LA

0.5
=B

AB

Alice and Bob keep this transaction (the commitment)

and only broadcast the first two transactions on Bitcoin.

This allows the payment channel to be opened safely and
securely. "

Micropayments

Suppose Alice wants to send 0.1 BTC to Bob using their shared
account. After the payment, Alice will have 0.9 BTC and Bob
will have 0.6 BTC in the account.

Instead of broadcasting this transaction on Bitcoin, Alice and
Bob can simply discard the previous commitment transaction
representing the channel state and replace it with a new

transaction:
0.9

= A

0.6
=B

AB
Like the previous one, this transaction does not need to be
sent to Bitcoin, it is only kept securely by Alice and Bob.

The mere fact that Alice and Bob hold this transaction allows
them to acknowledge the transfer.

46

Timelock and Revocation Key

One important problem remains:
]

How can we ensure that the commitment AB (?5 A
%

longer usable?

is no

47

Timelock and Revocation Key

One important problem remains:
]

How can we ensure that the commitment AB :5 'g is no
%

longer usable?

To solve this, we define scripts that allow transactions on
these payment channels to be locked temporarily and
protected with revocation keys.

47

Timelock and Revocation Key

One important problem remains:
]

How can we ensure that the commitment AB :5 '2 is no
%

longer usable?

To solve this, we define scripts that allow transactions on
these payment channels to be locked temporarily and
protected with revocation keys.

A timelock script prevents a transaction (or its output) from
being spent for a specified number of blocks.

A script with a revocation key prevents a transaction (or its
output) from being spent if the signer of the transaction does
not possess the revocation key.

47

Secure Commitment Transactions
The commitments constructed by Alice and Bob are defined as

contracts with Timelock and a revocation key. Alice’s commitment
has the following form:

A timelock N

AB . B revocation key = (HSa, HSg)

0.5
=B

where HS, (resp. HSg) is the hash of a secret held only by A (resp. B).

If this transaction is broadcast on Bitcoin, then

48

Secure Commitment Transactions

The commitments constructed by Alice and Bob are defined as
contracts with Timelock and a revocation key. Alice’s commitment
has the following form:

A timelock N

AB . B revocation key = (HSa, HSg)

0.5
=B

where HS, (resp. HSg) is the hash of a secret held only by A (resp. B).

If this transaction is broadcast on Bitcoin, then

> The effect of the output AB L Ais delayed by N blocks. Thus, A
can only retrieve her funds after N blocks.

> The effect of the output AB L Bis possible only if the signer
can provide two secrets Sy and Sg such that hash(Sa) = HSa
and hash(Sg) = HSg. In this way, B can be credited with 1 BTC
only if he knows A’s secret.

» B can immediately receive 0.5 BTC.

48

Protocol on a Channel

Before creating a new commitment, Alice and Bob each
generate a new secret S’y and S'g.

49

Protocol on a Channel

Before creating a new commitment, Alice and Bob each
generate a new secret S’y and S'g.

They also exchange the hash values HS'y and HS'g of these
secrets, along with the secrets Sy and Sg from the previous
commitment.

49

Protocol on a Channel

Before creating a new commitment, Alice and Bob each
generate a new secret S’y and S'g.

They also exchange the hash values HS'y and HS'g of these
secrets, along with the secrets Sy and Sg from the previous
commitment.

In this way, if A tries to cheat:

» B can immediately claim the funds from the previous
state;

» B has enough time to take the remaining balance of the
shared account, since he knows A’s secret and the
previous state is delayed by the timelock, preventing A
from “stealing” funds.

49

Closing a Channel

To close a channel cooperatively, Alice and Bob must
construct a final transaction, the closing transaction, in the
following form:
X
B, A
=B

where x, and xg represent the balances of Alice and Bob in
the shared account, respectively.

Alice and Bob must also agree on the transaction fees they
are willing to pay to retrieve their funds within a reasonable
time (the higher the fees, the more likely the transaction will
be confirmed).

This allows for a fast and low-cost closure (compared to a
forced closure using the last commitment transaction).

50

LN: A Network of Channels

It is impossible for a user to open a channel with every other
user (too costly); the number of channels would be far too
large.

How can Alice and Bob then exchange money
if they do not share a direct channel?

51

LN: A Network of Channels

It is impossible for a user to open a channel with every other
user (too costly); the number of channels would be far too
large.

How can Alice and Bob then exchange money
if they do not share a direct channel?

The Lightning Network is a graph of payment channels, with
each channel connecting two users.

The nodes in this graph represent users, and the edges are
the channels.

A user can open channels with multiple users; therefore, a
node can have multiple neighbors.

51

LN: Example

To understand how this graph works, suppose that Alice and
Charlie share a channel, and Bob and Charlie also share a
channel.

A(Xa) < (xc)C(vc) <2 (v8)B

where x is the name of the channel between Alice and Charlie,
and xa (resp. xc) represents the funds that Alice (resp. Charlie)
has on this channel.

52

LN: Payment

Suppose Alice wants to send an amount d to Bob. To do this, she
must first send d to Charlie, who then sends d to Bob. If this works,
the resulting situation is:

Axa — d) <" (xc + d)C(yc — d) < (v + d)B

53

LN: Payment

Suppose Alice wants to send an amount d to Bob. To do this, she
must first send d to Charlie, who then sends d to Bob. If this works,
the resulting situation is:

A(xa — d) <™ (xc + d)C(yc — d) «2= (v + d)B

Notice that this operation is neutral for Charlie since his total funds
remain unchanged.

53

LN: Payment

Suppose Alice wants to send an amount d to Bob. To do this, she
must first send d to Charlie, who then sends d to Bob. If this works,
the resulting situation is:

A(xp — d) <% (xc + d)C(yc — d) <2 (yg + d)B

Notice that this operation is neutral for Charlie since his total funds
remain unchanged.
However, this transfer can fail if yc < d. In that case, Alice must:

> look for a different path in the graph, hoping that all nodes
along the path have enough funds to route the payment

» or split the payment into multiple smaller transfers along
different paths.

53

LN: Payment

Suppose Alice wants to send an amount d to Bob. To do this, she
must first send d to Charlie, who then sends d to Bob. If this works,
the resulting situation is:

A(xp — d) <% (xc + d)C(yc — d) <2 (yg + d)B

Notice that this operation is neutral for Charlie since his total funds
remain unchanged.
However, this transfer can fail if yc < d. In that case, Alice must:

> look for a different path in the graph, hoping that all nodes
along the path have enough funds to route the payment

» or split the payment into multiple smaller transfers along
different paths.

Problem: only the initial capacities of channels are known (from
reading the blockchain), but not their current capacities.

53

LN: Transfer Fees

The Lightning Network also includes transfer fees. These fees
compensate the intermediate nodes that route the funds.

For the same channel, fees can differ depending on the
direction of the transfer.

In the previous example, Charlie can charge a fee ¢ to forward
the funds to Bob through his channel y. In this case, Alice
must send d + ¢ to Charlie to cover the fee.

54

LN: Transfer Fees

The Lightning Network also includes transfer fees. These fees
compensate the intermediate nodes that route the funds.

For the same channel, fees can differ depending on the
direction of the transfer.

In the previous example, Charlie can charge a fee ¢ to forward
the funds to Bob through his channel y. In this case, Alice
must send d + ¢ to Charlie to cover the fee.

After the transfer, the state becomes:

Alxa — (d + €)) <X (xc + d + €)C(yc — d) <= (vg + d)B

54

LN: Route Selection

Transfer fees depend on the path taken (since fees differ
across nodes).

Unlike a traditional data network where each node (or router)
decides which neighbor to forward a packet to, in the
Lightning Network the sending nodes (like Alice) choose the
entire path for their payment, for example based on:

» the fees they are willing to pay for the payment

» the capacities of the channels along the path to maximize
the chance of success

> etc.

The LN application must maintain an up-to-date network map
so that each user can select their paths.

55

HTLC

In Alice-to-Bob payments, what happens if
Charlie does not forward the payment to Bob?

To secure transfers, special payment scripts called HTLCs
(Hashed Time-Locked Contracts) are used.

56

HTLC

In Alice-to-Bob payments, what happens if
Charlie does not forward the payment to Bob?

To secure transfers, special payment scripts called HTLCs
(Hashed Time-Locked Contracts) are used.
The rules of these payments are:
» Conditional: a payment is settled only if the recipient can
provide a certain secret
» Time-bound: a payment expires after a certain time if the
secret is not revealed

56

Payment Protocol with HTLC

1. To securely send d BTC to Bob via Charlie, Alice first asks
Bob to provide Hs = hash(s), the hash of a secret s known
only to Bob.

57

Payment Protocol with HTLC

1. To securely send d BTC to Bob via Charlie, Alice first asks
Bob to provide Hs = hash(s), the hash of a secret s known
only to Bob.

2. Alice then sends a contract HTLC(d, Hs, N) to Charlie. This
contract allows Charlie to claim d BTC only if he can reveal the
secret s. If Charlie does not reveal s before block N, the funds
remain locked.

57

Payment Protocol with HTLC

1. To securely send d BTC to Bob via Charlie, Alice first asks
Bob to provide Hs = hash(s), the hash of a secret s known
only to Bob.

2. Alice then sends a contract HTLC(d, Hs, N) to Charlie. This
contract allows Charlie to claim d BTC only if he can reveal the
secret s. If Charlie does not reveal s before block N, the funds
remain locked.

3. Charlie sends HTLC(d, Hs, N — i) to Bob (with 1 < i).

57

Payment Protocol with HTLC

1. To securely send d BTC to Bob via Charlie, Alice first asks
Bob to provide Hs = hash(s), the hash of a secret s known
only to Bob.

2. Alice then sends a contract HTLC(d, Hs, N) to Charlie. This
contract allows Charlie to claim d BTC only if he can reveal the
secret s. If Charlie does not reveal s before block N, the funds
remain locked.

3. Charlie sends HTLC(d, Hs, N — i) to Bob (with 1 <i).

4. Bob unlocks the contract by proving he knows s; Upon

seeing the secret, Charlie can then unlock his contract,
finalizing the payment.

57

Payment Protocol with HTLC

1. To securely send d BTC to Bob via Charlie, Alice first asks
Bob to provide Hs = hash(s), the hash of a secret s known
only to Bob.

2. Alice then sends a contract HTLC(d, Hs, N) to Charlie. This
contract allows Charlie to claim d BTC only if he can reveal the
secret s. If Charlie does not reveal s before block N, the funds
remain locked.

3. Charlie sends HTLC(d, Hs, N — i) to Bob (with 1 < i).

4. If Bob does not unlock the contract, the block N — i will
eventually be mined and the contract expires. Since Charlie
does not learn the secret s, his HTLC also expires. The
payment is canceled.

57

Payment Protocol with HTLC

1. To securely send d BTC to Bob via Charlie, Alice first asks
Bob to provide Hs = hash(s), the hash of a secret s known
only to Bob.

2. Alice then sends a contract HTLC(d, Hs, N) to Charlie. This
contract allows Charlie to claim d BTC only if he can reveal the
secret s. If Charlie does not reveal s before block N, the funds
remain locked.

3. Charlie sends HTLC(d, Hs, N — i) to Bob (with 1 <i).

4. If Bob does not unlock the contract, the block N — i will
eventually be mined and the contract expires. Since Charlie
does not learn the secret s, his HTLC also expires. The
payment is canceled.

Why does the second HTLC have an expiration time of N — i?

57

HTLC and Commitment Transactions (1/2)

HTLCs are represented by commitment transactions.
Suppose the channel between Alice and Charlie is:

A(1) «+— (2)C

and Alice wants to send HTLC(0.1, Hs, N) to Charlie.
An HTLC is represented by the following commitment

transactions:

Alice Charlie
22 A(TL + Revoc) 22 A
AC 2 ¢ AC 2 ((TL + Revoc)
% HTLCour % HTLC

The HTLC outputs (OUT and IN) are secured by Hs (for Charlie)

and the timelock N (for Alice).

58

HTLC and Commitment Transactions (2/2)

If the secret is revealed before the timelock N expires, Alice
and Charlie generate the commitment transactions
corresponding to the state after the HTLC is accepted.

Alice | Charlie

22 A(TL + Revoc) AC °2 A
26 2 C(TL + Revoc)

AC

59

Advantages and Disadvantages

What are the advantages and disadvantages of the Lightning
Network?

60

