
A Foundational Framework for Certified Impossibility Results
with Mobile Robots on Graphs

Thibaut Balabonski

LRI, Université Paris-Sud, France

Robin Pelle

LRI, Université Paris-Sud, France

Lionel Rieg

Yale University, USA

Sébastien Tixeuil

UPMC Sorbonne Universtités, France

ABSTRACT
Swarms of mobile robots recently attracted the focus of the Dis-

tributed Computing community. One of the fundamental problems

in this context is that of exploration: the robots must coordinate

to visit all locations that are reachable from their initial positions.

Despite its apparent simplicity, this problem proved quite hard to

characterise fully, due to many model variants, leading to informal

error-prone reasoning.

Over the past few years, a significant effort permitted to set up

a formal framework, relying on the Coq proof assistant, which was

used to provide certified results when robots evolve in a continuous

bi-dimensional Euclidean space. However, the most challenging

issues with exploration arise in the discrete setting (a.k.a. graph),

where locations are modeled as vertices and where edges between

vertices denote the ability for a robot to move from one location to

the next.

We present a formal model to tackle problems and reason about

robot algorithms arising in the discrete setting. Our approach ex-

tends and generalises previous research efforts focusing on the

continuous model. As case studies, we consider fundamental im-

possibility results for exploration with stop in the discrete model.

To our knowledge, those are the first certified results in this context.

This framework paves the way for a general certification workflow

dedicated to mobile robots on graphs.

CCS CONCEPTS
•Computer systems organization Embedded systems; Re-
dundancy ; Robotics; • Networks Network reliability;

KEYWORDS
Mobile Robots, Proof Assistant, Exploration, Impossibility results

ACM Reference format:
Thibaut Balabonski, Robin Pelle, Lionel Rieg, and Sébastien Tixeuil. 2018. A

Foundational Framework for Certified Impossibility Results with Mobile

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICDCN ’18, January 4–7, 2018, Varanasi, India
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associ-

ation for Computing Machinery.

ACM ISBN 978-1-4503-6372-3/18/01. . . $15.00

https://doi.org/10.1145/3154273.3154321

Robots on Graphs. In Proceedings of 19th International Conference on Distrib-
uted Computing and Networking, Varanasi, India, January 4–7, 2018 (ICDCN
’18), 10 pages.
https://doi.org/10.1145/3154273.3154321

1 INTRODUCTION
Networks of mobile robots captured the attention of the distributed

computing community, as they promise new application (rescue,

exploration, surveillance) in potentially dangerous environments.

Originally introduced in 1999 by Suzuki and Yamashita [32], the

model has been refined since by many authors while growing in

popularity (see [24] for a comprehensive textbook). From a the-

oretical point of view, the interest lies in characterising, for each

of these various refinements, the exact conditions under which a

particular task can be solved or not.

1.1 The Look-Compute-Move model
In the model we consider, all robots operate using the same em-

bedded program through repeated Look-Compute-Move cycles. In

each cycle a robot first “looks” at its environment and obtains a

snapshot containing some information about the locations of all

robots, expressed in the robot’s own self-centered coordinate sys-

tem, whose scale and orientation might not be consistent with the

other robot’s coordinate systems (or even with the same robot’s

coordinate system from a previous cycle). Then the robot “com-

putes” a destination, still in its own coordinate system, based only

on the snapshot it just obtained (which means the robot is oblivious,

in the sense that its behaviour is independent of the past history

of execution). Finally the robot “moves” towards the computed

destination.

Different levels of synchronisation have been considered. The

weakest [24] is the asynchronous model (ASYNC), where each ro-

bot performs its own Look, Compute and Move actions at its own

pace, which needs not be consistent with that of other robots. The

strongest [32] is the fully synchronous model (FSYNC), where all

robots perform simultaneously and atomically all of these three

steps. In this paper, we consider both the FSYNC model and a in-

termediate level [32] called semi-synchronous (SSYNC), where the

computation is organised in rounds and only a subset of the robots

are active at any given round. The active robots in a round perform

exactly one atomic Look-Compute-Move cycle in that round. The

subset of active robots is chosen arbitrarily by a scheduler (seen

as an adversary and called demon). We have absolutely no control

over the choices made by the scheduler and only assume that the

scheduler is fair, in the sense that at any round, each robot is guar-

anteed to be activated within a finite number of rounds. The FSYNC

https://doi.org/10.1145/3154273.3154321
https://doi.org/10.1145/3154273.3154321

ICDCN ’18, January 4–7, 2018, Varanasi, India Thibaut Balabonski, Robin Pelle, Lionel Rieg, and Sébastien Tixeuil

model can be seen as a particular case of SSYNC, which is realised

when an SSYNC scheduler chooses to activate all the robots at each

round.

A task is considered to be solved if one provides an algorithm

guaranteeing that for any admissible initial configuration of the
robots and for any admissible schedule the task will eventually be

accomplished (which means that a task solved in the SSYNC model

is also solved in the FSYNC model, and that an algorithm that does

not solve a task in the FSYNC model does not solve it in the SSYNC

model either). On the contrary, showing that some conditions are

necessary for a task to be solvable requires reasoning on all the

possible algorithms and proving that no algorithm can solve the

task when said conditions are not met.

The general model is agnostic to the shape of the space where

the robots evolve, which can be the real line, a two dimensional

euclidean space, a discrete space, or even another space with a more

intricate topology.

In this paper we use a general methodology that is adapted to

the general case, and study its instantiation on discrete graphs.

1.2 Robots on graphs
We consider a finite set of k robots evolving in a discrete space made

of a finite set of n positions, where both k and n are unspecified,

arbitrarily large numbers. Our results are valid for all values of k
and n, and will only depend on some basic relations between them,

such as k < n or k divides n. A given position may harbour several

robots, in which case it is said that a tower of robots is located

there. The k robots are all identical and anonymous (a robot cannot

distinguish between two fellow robots), and they do not share any

reference point or orientation.

A configuration is a map from robot identifiers to positions. All

robots run the same robogram: an algorithm that designates a new

position for a robot when it is activated. The destination position

can only be chosen within a neighbourhood of the current position,

which is defined by modelling the space as an undirected, simple

graph whose vertices are the possible positions of the robots. The

edges of this graph describe the neighbourhood of a position and

the possible moves of the robots.

During the Look phase, a robot obtains an inaccurate snapshot of

the whole configuration: since it is possibly disoriented, the robot

sees an arbitrary graph isomorphic to the underlying graph, instead

of the actual underlying graph. Moreover, since all the other robots

are anonymous, the robot only perceives its own position and the

number of robots inhabiting each vertex.

In this context, typical problems are terminating exploration [11,

18–20, 22, 23, 28], exclusive perpetual exploration [3, 6–8, 17], ex-
clusive searching [5, 16, 17], and gathering [12, 17, 25–27]. While

our formalisation approach is universal and can be used to tackle

any of those problems, the case studies we consider in this paper

are related to the terminating exploration (or simply exploration)
problem, which requires that robots collectively explore the whole

graph and stop upon completion. For this problem to be interesting,

we will assume throughout the paper that the number k of robots

is strictly less than the numbers n of positions to be explored.

With respect to the (terminating) exploration problem, the main

metric considered in existing literature is the necessary and suffi-

cient number of robots for exploring particular classes of graphs.

The only result available for exploration in general graphs [11]

considers that edges are labeled in such a way that the network

configuration is asymmetric. In this extended model, three robots

are not sufficient to explore all asymmetric configurations, and

four robots are sufficient to explore all asymmetric configurations.

Note that exploring the set of asymmetric configurations is strictly

weaker than exploring the complete underlying graph, especially

when the graph is highly symmetric. The rest of the literature is

thus dedicated to a weaker model, where edges are not labeled. One

extreme case in this weak model is the set of tree-shaped networks,

as in general, Ω(n) robots are necessary and sufficient to explore a

tree network of n nodes deterministically [22]. The other extreme

case is the set of grid-shaped networks [18], where three robots

are necessary and sufficient to explore deterministically any grid

of at least three nodes (except for the grids of size 2 × 2 and 3 × 3,

where four – respectively five – robots are necessary and sufficient).

However, this result is mainly due to the fact that grids are not

regular graphs: they contain nodes of degrees 2, 3, and 4. So, this

topological property implies less symmetries.

By contrast, rings and tori are regular graphs, and consequently

more intricate. In ring-shaped networks [23], the fact that the num-

ber k of robots and the ring size n must be coprime yields to the

lower bound Ω(logn) on the number of robots required to explore a

n-size ring. Indeed, the smallest non-divisor of n evolves as logn in

the worst case. However, notice that Lamani et al. also provide [28]
an algorithm that allows 5 robots to explore deterministically any

ring whose size is coprime with 5. The large number of robots and

the constraint on the ratio between the number of robots and the

ring size induced by the deterministic setting in ring-shaped net-

works hinted at a possible more efficient solution when robots can

make use of probabilities [20]. As a matter of fact, four robots are

necessary and sufficient to explore probabilistically any ring of size

at least four. While the gain in going probabilistic is only one robot

when n is not divisible by 5, a logarithmic factor is obtained in the

general case. A probabilistic extension to the case of torus-shaped

networks was presented by Devismes et al. [19], and four robots

are also necessary and sufficient in this case.

1.3 The Certification Path
The design and the verification of protocols for swarms of robots

is notoriously difficult, and Formal Methods have been recently

put into use to get rid of errors introduced by humans in that

context [1, 2, 4, 7, 9, 14, 18, 29–31].

Model-Checking proved useful to find bugs in existing literat-

ure [4, 21] and check formally the correctness of published al-

gorithms [4, 18, 30]. However, the current models do not permit

to establish impossibility results, only to assess the correctness of

candidate solutions. Automatic program synthesis for the problem of

perpetual exclusive exploration in a discrete ring is due to Bonnet et
al. [7], and can be used to obtain automatically algorithms that are

“correct-by-design”. The approach was refined by Millet et al. [29]
for the problem of gathering in a discrete ring network. In principle,

A Framework for Certified Impossibility Results with Mobile Robots on Graphs ICDCN ’18, January 4–7, 2018, Varanasi, India

program synthesis satisfying completeness permits to establish im-

possibility results (no algorithm satisfying the specification can be

found). However, to date only very small problem instances (small

rings shaped networks, and a fixed - 3 - number of robots) were con-

sidered. A recent result by Sangnier et al. [31] gives little hope about
the scalability of model-checking/program synthesis approaches

beyond a few nodes, even for a fixed number of robots: even in the

most simple case FSYNC, parameterized verification of reachability

properties (that are required for verifying exploration with stop)

is undecidable. Recently, Aminof et al. [30] presented a general

framework for verifying properties about mobile robots evolving

on graphs, where the graphs are a parameter of the problem. As

they consider non-oblivious robots, most interesting properties

are also undecidable. Overall, despite its appealing simplicity, no

existing model can provide either scalability or generality for the

problem we consider.

An approach based on Formal Proof has been introduced with

the framework Pactole.
1
On the contrary to model-checking, formal

proofs do not suffer from a scalability issue: anything that can

be proven on paper can be made formal (provided the proof is

correct of course!). The downside is that this technique is much less

automated and requires more work from the user: the main job of

the proof assistant is to check the correctness of the proof the user

builds. To ease the creation of these formal proofs, interactive proof

assistants also provide tools and guidance during the construction

of the proof itself.

The Pactole formal model is developed in the formal language of

the Coq interactive proof assistant,
2
a very expressive λ-calculus:

the Calculus of Inductive Constructions (CIC) [13]. In this (functional)
language, datatypes, objects, algorithms, theorems and proofs can

be expressed in a unified way, as terms. λ-abstraction is denoted

fun x:T ⇒t, and application is denoted t u. The Curry-Howard

isomorphism associates proofs and programs, types and logical

propositions. Writing a proof of a theorem in this setting amounts

to building (interactively in most cases but with the help of tactics)

a term the type of which corresponds to the theorem statement. As

a term is indeed a proof of its type, ensuring the soundness of a

proof thus simply consists in type-checking a λ-term.

Unlike previous approaches which are devised for a discrete

space where robots move according to a pre-existing graph, Pactole

has been applied to the case where robots move freely in a bidimen-

sional Euclidian space. Pactole is to our knowledge the only formal

framework for robots swarms on continuous spaces. It provides

positive certified results for SSYNC gathering with multiplicity

detection [15], and for FSYNC gathering without multiplicity de-

tection [2]. Using higher-order logic, Pactole was also successfully

used to certify impossibility results, notably for the problem of

(Byzantine) Convergence [1] where robots are required to reach

positions that are arbitrarily close to each other, or for the problem

of Gathering starting from a bivalent configuration [14], that is, a

configuration with exactly two distinct towers, each consisting of

half the robots. With respect to scalability and generality of the

expressed properties, Pactole is an ideal candidate for our purpose,

1
http://pactole.lri.fr

2
https://coq.inria.fr

but its initial design toward continuous spaces makes it difficult to

assess its relevance for discrete spaces.

1.4 Our Contribution
We present a formal model to tackle problems, and reason about

robot algorithms arising in the discrete setting, and its development

in the Coq proof assistant. Our approach extends and generalises

previous research efforts focusing on the continuous model. In addi-

tion to the core model extension, we provide convenient interfaces

to ease the specification of graphs and their properties.

We illustrate the adequacy of our framework by considering

fundamental impossibility results for exploration with stop in the

discrete model, where we obtain, to our knowledge, the first certi-

fied results in this context. The Coq langage allowing the use of

quantifiers, the results we obtain apply for any number of robots

and any size of graph, thus putting aside the issue of scalability.

Our approach paves the way for a general certification workflow

dedicated to mobile robots on graphs.

The formal development related to this paper is available online

at http://pactole.lri.fr/pub/cier/html/toc, and the whole Pactole pro-

ject at http://pactole.lri.fr/. A symbol ✑ in the margin ✑is a link to a

specific file of the development.

2 IMPOSSIBILITY RESULTS
Two kinds of results help us in characterising the conditions under

which a task is feasible: positive results identify sufficient conditions
for the task to be feasible by providing algorithms that provably

solve the task when some conditions are met. On the contrary,

negative results identify necessary conditions, by proving that no

algorithm can solve the task when some conditions are not met.

We get a good understanding of the considered task when we can

provide both positive and negative results, under conditions that

are as close as possible to each other.

We shall consider in this paper a specific shape of graphs: a ring
of size n, and the task of Exploration with Stop of this ring with k
robots.

We provide hereafter a formalisation of robots and graphs that

can express both the fully synchronous model FSYNC and the semi-

synchronous model SSYNC, and prove that some conditions on k
and n make the task impossible in both models (since FSYNC can

be seen as a particular case of an SSYNC scheduler, it suffices to

prove the impossibility of the task for this particular scheduler). In

particular, we provide a formalisation of the proof that exploration

with stop requires n to be not divisible by k .

2.1 Main arguments for impossibility in graphs
An algorithm solves the exploration with stop of a ring if, for every

admissible initial configuration and every demon, the two following

properties hold:

(1) each node of the graph is eventually visited by at least one

robot, and

(2) all robots eventually stop forever.

Thus, proving that a given algorithm does not solve the exploration

with stop amounts to providing an admissible initial configuration

and a demon falsifying at least one of our two properties. Since

we cannot enumerate all algorithms for an arbitrary number k of

http://pactole.lri.fr
https://coq.inria.fr
http://pactole.lri.fr/pub/cier/html/toc
http://pactole.lri.fr/
http://pactole.lri.fr/pub/cier/html/toc.html

ICDCN ’18, January 4–7, 2018, Varanasi, India Thibaut Balabonski, Robin Pelle, Lionel Rieg, and Sébastien Tixeuil

robots on a graph of arbitrary size n, proving that no algorithm

can solve exploration requires classifying all the algorithms into a

finite set of classes, and providing generic counter-examples that

apply to whole classes.

In other words, we have to exhibit admissible initial configur-

ations and demons such that, for any class of algorithms, we can

prove that:

• either the algorithm stops, but we can prove that not all

nodes have been visited,

• or some robots move, but we can prove that the resulting

configuration is similar enough to the initial configuration

to ensure that robots will never stop moving.

We accept as initial configurations any configuration where no

two robots are on the same node of the graph
3
. For our counter-

examples to apply to both the FSYNC and SSYNC cases, we will

also preferentially chose demons that fulfil the conditions of fully

synchronous executions. Since such a demon can also be seen as a

semi-synchronous demon (which happens to activate always the

full subset of the robots), the same proof will cover both execution

models.

2.2 Examples
We develop our approach to certify the impossibility of exploration

with stop in two cases: less than two robots, and at least two robots

when their number divides the size of the ring.

2.2.1 Too few robots. We start with the following very simple

but essential remark: due to the restriction that the number of robots

k is strictly less than the size of the graph n, no initial configuration
explores all nodes in the graph.

Thus, an algorithm that stops at an initial configuration can-

not solve the exploration. This implies that, on any configuration

that would be admissible as an initial configuration, an algorithm

solving the exploration has to make at least one move, which in

our case applies to any configuration where no two robots are on

the same node. Hence an algorithm solving the exploration with
stop must reach a configuration that is not admissible as an initial

configuration, i.e., a configuration where at least two robots are on

the same node.

A simple consequence of this remark is that there is no algorithm

solving the exploration with stop with only one robot.

2.2.2 Number of robots dividing the size of the ring. If we have at
least two robots, and if the number of robots divides the size of the

ring, then we can build an initial configuration that is symmetric

enough to ensure that all robots have exactly the same behaviour,

and that the global configuration remains in a state similar to the

initial state: we choose the initial configuration where all robots are

regularly spaced on the ring. In this configuration, all robots have

the exact same view of their environment and choose the same

move if they are activated. Since exploration with stop is solved

only by a protocol that succeeds for all possible schedulers and

disorientations of the robots, it suffices to exhibit one demon that

makes all protocols fail with this initial configuration. We choose

3
This is not the most general notion of admissible initial configuration that could be

used here, but it allows a clean presentation of the formalisation. In particular, it gives

a simple way to characterize a family of configurations that cannot be final.

the demon that activates all robots at each round and gives them

all the same orientation.

R1

U U

U

R2

U

Figure 1: Two robots and four unvisited nodes

R1 U

R2U

Figure 2: Two robots going to their left

Then any algorithm will have one of the following behaviours:

• either it orders to each robot not to move, which implies that

the algorithm stops (but not all nodes have been visited, see

Figure 1 for an example with two robots in a six-nodes ring),

• or it orders to each robot to move in the same direction,

which implies that the next configuration will be undistin-

guishable from the initial one, and that all robots will go on

moving forever, see Figure 2 for an example with two robots

moving in a six-nodes ring (the robots will move forever

since they are not able to distinguish visited from unvisited

nodes).

From this we deduce that no algorithm can solve the exploration

with stop of a ring when the number of robots divides the size of

the ring.

3 CERTIFYING IMPOSSIBILITY RESULTS
3.1 A general pattern for graphs in Pactole
An important axis in the development of Pactole is genericity. To

be as expressive as possible with reference to the many variations

A Framework for Certified Impossibility Results with Mobile Robots on Graphs ICDCN ’18, January 4–7, 2018, Varanasi, India

in the model of Suzuki & Yamashita [32], an important part of

the framework is kept abstract. In particular, the space where ro-

bots move is encapsulated into a module Location✑ that provides a

core type Location.t denoting the positions in the actual space,

together with useful functions (a decidable equality, an origin, a

distance, etc.). This module may be instantiated with R if one con-

siders the real line, or R × R with the relevant arithmetics for the

real plane, etc.

So as to allow for a comfortable use of graphs in Pactole, we

provide a general template for graphs, that the user can instantiate

with the kind of graphs needed. The graph theory we provide is

rather lightweight and restricted compared to, for instance, the

library Loco for local computation on graphs [10]. It is however

fully integrated in Pactole and connects naturally with the main

signature for the spaces where robots evolve, which provides simple

means of specifying discrete spaces and reasoning about them in

Pactole. In Section 3.2, we will provide in particular an instance for

rings of a certain size.

Technically, Coq provides a module system with signatures

(called Module Type) that can be implemented by modules. A sig-

nature Σ may declare some objects that are intended to be defined

in modules implementing Σ. For instance, a parameter x of type

A can be introduced with the declaration Parameter x : A. A

signature or module can also define an object x to have the value

a with Definition x := a. A module M implementing a signa-

ture Σ can define any parameter x : A of Σ by providing a value

of the corresponding type A. In the same fashion, a signature can

“declare” a property that has to be satisfied by its parameters (that

is, an Axiom), and one can “define” such a property in a module by

providing a proof for it (that is, by turning the axiom into a Lemma).
In Pactole, we provide a general signature for graphs (Graph)✑ as

well as a more precise signature for finite graphs✑ (FiniteGraph).

Signature Graph is thus a Module Type whose parameters are

two data types V and E for vertices and edges, together with some

basic definitions and properties. To ease the implementation, each

edge is directed and connects a source vertex to a target vertex,

given by respective functions src and tgt. Since the graphs we are

interested in Pactole are undirected, we will systematically model

the fact that two vertices are neighbouring locations by connecting

them with two directed opposite edges. The main parameters of a

graph are then:

Parameter V : Set.

Parameter E : Set.

Parameter src tgt : E→ V.

Remark that Set here denotes the data types of Coq, which do not

coincide with the mathematical sets.

To check if two vertices are neighbours, we finally need a func-

tion that, given two vertices, returns an option over the potential

edge, that is either Some e if there is such an edge e , or None if

there is not.

Parameter find_edge : V → V → option E.

As all the other parameters the function are only declared at

this point and not defined, we add some axioms to ensure that

this function enjoys all the needed properties. In particular: if two

vertices are respectively the source and the target of an edge, then

the function will return the option type Some e , with e being the

edge And if, given two vertices, the function returns the option

type None, then no edge has (both) the first vertex as source, and

the second vertex as target.

As the demon may change the frame of reference of a robot,

what a robot perceives is a graph that is isomorphic to, but not

necessary equal to, the actual underlying graph. In other words,

the robot perceives the shape of the graph, but cannot distinguish

between two similar vertices. We thus include in Pactole a notion

of graph isomorphism ✑, defined by a pair consisting of a bijection

sim_V on the vertices, and a bijection sim_E on the edges. Both

functions are compatible: if e is an edge between two vertices v1
andv2, then its image sim_E(e) is an edge between the two images

sim_V(v1) and sim_V(v2).

Record Isomorphism :=

{
sim_V : Bijection V;
sim_E : Bijection E;
sim_morphism : ∀ e,

Veq (sim_V (src e)) (src (sim_E e))

∧ Veq (sim_V (tgt e)) (tgt (sim_E e))

}.

where Bijection T is the type of bijective functions on T.

The set of parameters and axioms we just described defines the

most general theory of graphs used in Pactole. This theory can

now be refined to more specific cases of graphs, by adding new

parameters or axioms, or by providing concrete definitions for some

of the parameters, and proofs for the corresponding axioms.

We may for instance obtain a signature FiniteGraph for finite

graphs with n vertices by adding a new parameter n and by defining

the type V of vertices to represent a finite set with n elements.

Technically we use the type Fin.t n from the Coq library, which

denotes the elements of a finite set with n elements. We leave the

parameter E abstract, and obtain the following declarations:

Module Type FiniteGraph <: Graph :=

Parameter n : nat.

Definition V := Fin.t n.

Parameter E : Set.

...

where the subtyping notation <: declares that FiniteGraph is a

refinement of the signature Graph.

3.2 A particular graph: the ring of size n
We instantiate the signature FiniteGraph described above on a

specific shape of finite graphs: rings ✑. To avoid some trivial case

distinction in our proofs, we assume n > 1; the exploration problem

is indeed not very interesting when there is zero or one position.

A ring contains, for each vertex, a directed forward edge towards

its successor and a directed backward edge towards its predecessor.

Hence we will represent a directed edge by a source vertex and a

direction. Since the directed edges represent the possible actions

of the robots and a robot may choose to remain at its current

position, for the sake of simplicity we also add a direction AutoLoop

denoting an empty move.

http://pactole.lri.fr/pub/cier/html/Configurations.html#Location
http://pactole.lri.fr/pub/cier/html/CommonGraphFormalism.html#Graph
http://pactole.lri.fr/pub/cier/html/FiniteGraphFormalism.html#FiniteGraph
http://pactole.lri.fr/pub/cier/html/Isomorphism.html#Isomophism
http://pactole.lri.fr/pub/cier/html/GraphFromZnZ.html#Ring

ICDCN ’18, January 4–7, 2018, Varanasi, India Thibaut Balabonski, Robin Pelle, Lionel Rieg, and Sébastien Tixeuil

Inductive direction :=

| Forward | Backward | AutoLoop.

We thus characterise our graph with

Module Ring <: FiniteGraph :=

Parameter n : nat.

Axiom n_sup1 : 1 < n.

Definition V := Fin.t n.

Definition E := (Fin.t n * direction).

...

The implementation of the relevant functions is based on Z/nZ
as a model for the set of vertices. A position on the ring is seen

as an integer from Z taken modulo n. Predecessor, Successor, and
remaining functions are obtained by straightforward arithmetics.

Throughout this paper, we use the notations iV for the vertex

corresponding to the integer i, and vZ for the integer encoding the

vertex v.

With these definitions we obtain a graph that is a slight variation

tuned for Pactole of the usual notion of ring, on which we will be

able to conduct Coq proofs.

3.3 Look-Compute-Move Model
The formalisation of the Look-Compute-Move model in Pactole has

been described in [1, 2, 15]. We briefly recall what we need here.

Robots✑ are just encoded as identifiers.

The embedded program the robots use✑ to define their moves

consists of a function pgm that simply returns a destination when

given a perception of the environment (the type of a perception,

named Spect.t the code and spectrum in the body of the paper,

will be made explicit in the next section). Said function is required

to return a destination that is reachable through an edge from the

current vertex of the robot, which is expressed by the property

pgm_range, packed with the declaration of the function pgm to

form what we call a robogram.

Record robogram :=

{
pgm : Spect.t→ Location.t;
pgm_range : ∀ (spect: Spect.t),

∃ e, find_edge (get_current spect) (pgm spect)

= Some e

}.

Remark that, since any vertex contains an AutoLoop edge to itself,

the constraint pgm_range does not prevent a robot from staying

in place.

Depending on the robots’ capabilities, the perception may not

be as accurate as the complete configuration: anonymous robots

cannot see names, they may lack detection of multiplicity, frames

of reference may not be shared, vision can be limited, etc. The

forbidden information is pruned from the configuration, using the

function from_configwhich returns a spectrum, which is the only

input of the robogram’s pgm. Spectra form an arbitrary type that is

part of the description of the model and contributes to its genericity.

In a SSYNC model, subsets of robots are activated to perform

(synchronously) their atomic Look-Compute-Move cycle. A demon

is thus an infinite sequence (stream) of demonic actions.✑ A demonic

action is defined by two functions. The one in which we are most

interested here is the function step, which both selects the subset

of robots to be activated at this round (that is, all robots if in a

FSYNC setting) and provides the activated robots with a graph

isomorphism defining their new frame of reference. The selection

of activated robots is encoded in an option type (whose values

are either None of Some v where v is the actual content we are

interested in). To ease the definition of interesting demonic actions,

the graph isomorphism provided to a robot depends on the status
of this robot, hence the function type robot_status → Iso.t

in the following code fragment. The notion of status of a robot

(robot_status) will be discussed later, when its definition needs

to be unfolded.

Record demonic_action :=

{
relocate_byz : robot→ robot_status;
step : robot→ option (robot_status→ Iso.t);

}.

Finally, executions are obtained from a robogram and a demon

by executing successively the robogram against the demonic ac-

tion described by the demon for each round. To this end, a round ✑

function computes the configuration obtained after one round of

executing a robogram against a demonic action da starting from a

configuration. This is done in the following consecutive steps for

each robot identifier r:

(1) If the robot r is not activated, return the same position.

(2) If r is a Byzantine robot, it is relocated by the demonic

action da.

(3) Use the local frame of reference provided by da to compute

the local configuration.

(4) Transform this local configuration into a spectrum using

from_config.

(5) Apply the robogram on this spectrum.

(6) Convert the new position from the local frame to the global

one.

To define a full execution, the function execute rbg d config

iterates round starting from the configuration config, using the

robogram rbg and the demon d.

In order to easily express properties about executions and sched-

ules (demons), both seen as streams, we define the usual tem-

poral operators ♢ (the property will become valid within a fi-

nite number of rounds), ◦ (the property will be valid in the next

round), and □ (the property is valid forever, starting from this

round) to help expressing temporal properties about executions. In

our formalisation, these three operators are written respectively

Stream.eventually, Stream.next, and Stream.forever Yet,

the logic of Coq is much more expressive, and one can define new

temporal operators or new properties directly on an execution.

Such a formalisation allows for a convenient handling of demons,

including their theoretical study. The framework provides in par-

ticular definitions for different flavours of fairness, with relevant

theorems.

http://pactole.lri.fr/pub/cier/html/Robots.html#Robots
http://pactole.lri.fr/pub/cier/html/DiscreteGraphFormalismSSync.html#Robogram
http://pactole.lri.fr/pub/cier/html/DiscreteGraphFormalismSSync.html#DemonicAction
http://pactole.lri.fr/pub/cier/html/DiscreteGraphFormalismSSync.html#Round

A Framework for Certified Impossibility Results with Mobile Robots on Graphs ICDCN ’18, January 4–7, 2018, Varanasi, India

4 A FORMALISATION OF THE IMPOSSIBILITY
OF EXPLORATIONWITH STOP

4.1 Context
On a finite discrete ring, we consider oblivious and anonymous

robots, endorsed with multiplicity detection, and moving in an

SSYNC fashion. We assume there are no byzantine robots: since

exploration with stop is impossible even without byzantine robots,

it surely is with them too. The ring’s vertices have no name, and

there is no special vertex known to robots as a reference point.

With anonymous robots, the spectrum must be clear of all in-

formation about names. With robots equipped with detection of

multiplicity, a pointed multiset of inhabited positions✑ is a suitable

spectrum (that is, a multiset with a distinguished element denoting

the position of the considered robot).

Robots are oblivious, hence at each activation they must be

associated to a new frame of reference. In the case of a graph-

based space, an (graph-)isomorphism is applied to the graph before

extracting a spectrum so as to get rid of any information relying

on vertices identifiers. Any SSYNC demonic action in this context

will simply return for each robot:

• either None if it is not activated, or

• Some f if the robot is activated, where f is a function that,

depending on the position of the robot, provides the iso-

morphism to apply before computing a spectrum for it.

4.2 Exploration with Stop
✑ The problem of terminating exploration requires the robots to

visit collectively all the vertices in the graph, and to stop eventually

once the exploration is complete. To formalise this specification, we

provide a predicate Will_be_visited such that, if v is a vertex

and exc is an execution, Will_be_visited v e is true if and

only if at least one robot visits the vertex v in at least one round of

exc:

Definition Will_be_visited v exc :=

Stream.eventually (Visited_now v) exc.

where the predicate Visited_now v is true of any execution exc

whose head configuration has a robot on the vertex v.

We characterise a terminating execution by the existence of a

round from which the execution is stopped, that is from which

it stalls forever. This is easily achieved by combining the usual

temporal operators:

Definition Stall (exc : execution) :=

Config.eq (hd exc) (hd (tl exc)).

Definition Stopped (exc : execution) :=

Stream.forever Stall exc.

Definition Will_stop (exc : execution) :=

Stream.eventually Stopped exc.

where hd and tl denote as usual the first element and the remaining

elements of a stream.

Then we can characterise a solution to the exploration with stop

to be a robogram such that, for any admissible initial configuration

and for any admissible demon, the execution of the robogram satis-

fies the previous properties. We consider an initial configuration c

to be admissible, or valid, whenever it has no tower, that is whenever
no two robots are on the same vertex. The corresponding predicate

is named✑ Valid_starting_conf in the Coq development. We

consider a demon to be admissible when it is fair, which we define

in two steps as follows: the proposition LocallyFairForOne r d

specifies that the demon d will activate the robot r within a finite

number of rounds (be it now or later), and the proposition Fair d

requires LocallyFairForOne to hold forever for any robot. In the

following code, the function step applies to a demonic action da

and a robot r and returns the activation information for r.

Inductive LocallyFairForOne r d :=

| Now : step (hd d) r , None→

LocallyFairForOne r d

| Later : step (hd d) r = None→

LocallyFairForOne r (tl d)→

LocallyFairForOne r d.

Definition Fair d :=

Stream.forever

(fun d ⇒ ∀ r, LocallyFairForOne r d) d.

Finally, we can write the predicate that characterises the solu-

tions to the exploration with stop:

Definition Explores_and_stops (rbg : robogram) :=

∀ (c : configuration) (d : demon),

Valid_starting_conf c→

Fair d→

(∀ l, Will_be_visited l (execute rbg d c))

∧ Will_stop (execute rbg d c).

4.3 Use Case 1: k Divides n
✑The first case study consists in establishing that the aforemen-

tioned exploration is impossible to realise when the number k of

robots divides the size n of the ring. The main theorem to be proved

can be directly stated:

Theorem no_exploration_k_divides_n :

(n mod k) = 0→ ∀ rbg, ¬ (Explores_and_stops rbg).

4.3.1 Expressing the counter-example.
We assume thatk dividesn, andwe define an initial configuration

where robots are equidistant from each other, that is here each robot

is at n/k from the previous one, as well as a demon that always

activates all the robots.

For this we rely again on basic arithmetic on Z/nZ to assign a

vertex to each robot: the function loc_equi takes as parameter a

robot r, that is an element of type Fin.t k, to which an integer

rZ between 0 and k − 1can be associated. Then the integer rZ
characterising the robot can be multiplied by n/k to produce the

integer characterising the vertex on which the robot is. Finally, the

function loc_equi returns the obtained vertex.

The initial configuration conf_equi is then obtained by assign-

ing to each robot the vertex given by the previous function:

http://pactole.lri.fr/pub/cier/html/PointedMultisetSpectrum.html
http://pactole.lri.fr/pub/cier/html/DefinitionsSSync.html
http://pactole.lri.fr/pub/cier/html/DefinitionsSSync.html
http://pactole.lri.fr/pub/cier/html/ImpossibilityKDividesNSSync.html

ICDCN ’18, January 4–7, 2018, Varanasi, India Thibaut Balabonski, Robin Pelle, Lionel Rieg, and Sébastien Tixeuil

Definition conf_equi := fun r ⇒

match r with
| Good r ⇒ {| loc := loc_equi r;

state := tt |}
| Byz r ⇒ {| loc := origin;

state := tt |}
end.

This definition reveals two generic aspects of Pactole. Firstly, a robot

r can be either a good, properly functioning robot, or a byzantine,
potentially adversary robot. However, the impossibility result we

formalise in this paper holds even without any byzantine robot, and

so we may assume in the development that all robots are good. The

locations assigned to hypothetical byzantine robots (here origin,

the vertex corresponding to the integer 0) are thus irrelevant, and

the case of a byzantine robot will always be discarded straight away

without being a burden for the proof.

Secondly, the configuration might assign not only a location

loc, but also a state to each robot, the pair of these two elements

being called the status of a robot. Here again, we do not use this

possibility, since we only deal with oblivious robots. Any robot

can be given a neutral state tt, and this parameter of the model

becomes essentially transparent in the proof.

Some basic properties can be derived on the configuration conf_equi,

such as the fact that a vertex is inhabited if and only if the corres-

ponding integer is divisible by n/k , and that an inhabited vertex

contains only one robot. This implies in particular that conf_equi

is a valid initial configuration:

Lemma equi_valid : Valid_starting_conf conf_equi.

We now define a demon which, taken together with the config-

uration conf_equi, will define a counter-exemple to exploration

with stop for any algorithm. Our goal is to ensure that, if a robot

moves, then all of them move the same way, leading to a new con-

figuration that is indistinguishable from the initial configuration

conf_equi. Hence the demon should ensure that all the robots:

(1) are activated at each round, (2) perceive the same spectrum, and

(3) move in the same direction. To give the same perception to all

robots, we define for every vertex v an isomorphism trans v that

rotates the whole graph in such a way that the vertex v is mapped

to origin. The name trans comes from the fact that, on the space

Z/nZ underlying the graph, this “rotation” is implemented as a

translation: the same value vZ is subtracted from every vertex to

compute its image.

Finally, we define as follows a unique demonic action da_equi

that is intended to be repeated at each round of an execution:

Definition da_equi : demonic_action :=

{|
relocate_byz := fun r ⇒ origin;
step := fun r ⇒

Some (fun r_status ⇒ trans (loc r_status))

|}.

Definition demon_equi : demon :=

Stream.constant da_equi.

The demonic action da_equi gives a default destination to byz-

antine robots (again this is irrelevant in our case), and the interest-

ing part is the function step, that decides whether each robot is

activated or not and defines the isomorphism applied to the percep-

tion of this robot: applied to any robot r, the function activates r

by returning a value Some f that is independent of r. The chosen

f is a function that gives to any robot the new frame of reference

obtained with trans and placing r at the origin
4
.

Since the demon demon_equi activates all robots at each round,

it is straightforwardly proved to be fair.

Lemma equi_fair : Fair demon_equi.

Actually, demon_equi fits into the FSYNC model, which is even

stronger andwill allow us to conclude that the exploration with stop

is impossible when k divides n, even assuming full synchronisation.

4.3.2 The proof.
An interesting property of our initial configuration conf_equi

and of the frame of reference provided by the demonic action

da_equi to the robots is that every robot in conf_equi will have

the same perception of its environment (that is, it will compute its

destination based on the same spectrum).

Lemma same_Spectrum : ∀ r1 r2,

spect_equi conf_equi r1 = spect_equi conf_equi r2.

where spect_equi c r is the spectrum computed for the robot r

in the configuration c based on the frame of reference given to r

by the demonic action da_equi: it is the multiset of the inhabited

positions translated to place r on the vertex 0V .

From this preliminary property we deduce that, in the config-

uration conf_equi and under the demonic action da_equi, any

robogram rbg decide the same move for all the robots. Moreover,

in the ring the possible moves are restricted to: staying still, going

forward, or going backward.

Lemma ring_range : ∀ (rbg : robogram) (r : robot),

let m := rbg (spect_equi config_equi r) in

m = 1V ∨ m = 0V ∨ m = (-1)V.

These three possibilities define a classification of the algorithms,

and we check in each of these cases that rbg does not solve the

exploration with stop.

Let rbg be a robogram, andm the common move computed by

rbg for every robot.

Casem = 0. In that case we first check that the execution stalls

forever on the configuration conf_equi.

Lemma conf_equi_stalls :

round rbg da_equi conf_equi = conf_equi.

Then we deduce that there is at least one vertex that will never be

visited:

Lemma conf_equi_no_expl : ∃ v,

¬ Will_be_visited v (execute rbg demon_equi conf_equi).

The vertices that will never be visited are exactly those vertices

that are not inhabited in the initial configuration conf_equi. This

is for instance the case of the vertex 1V .

4
the actual step function is wrapped in a lift function that extends the function

presented here to deal with byzantine robots (that is, to ignore them).

A Framework for Certified Impossibility Results with Mobile Robots on Graphs ICDCN ’18, January 4–7, 2018, Varanasi, India

Case m = 1. In this case each of the robots will move to the

neighbour vertex on its right. As a result, the new configuration

after one round will be isomorphic to the initial configuration

conf_equi, through the translation function trans (-1)V we

already presented. To conclude the proof of this case, we prove

that the successive configurations of the execution will be similar

enough to each other for all the robots to keep on moving the same

way forever. Hence the execution will never stop in this case.

Central to this proof is a notion of equivalent configurations that

contains all the configurations that will be visited in the execution.

We define equiv_conf c1 c2 to hold when the configuration c2
can be obtained by applying, for some v, the isomorphism trans v

to c1.

The main property of this equivalence relation is that, under

the demonic action da_equi, a robot perceives the same spectrum

in any two equivalent configurations. In particular, this applies to

conf_equi and any configuration c equivalent to conf_equi:

Lemma equiv_spectrum : ∀ c,

equiv_conf c conf_equi→

∀ r, spect_equi c r = spect_equi conf_equi r.

Then we have to state and prove the fact that an execution start-

ing from conf_equi and scheduled by the demon demon_equi

will traverse only configurations that are equivalent to conf_equi:

Definition Always_equiv c e :=

Stream.forever (fun e1 ⇒ equiv_conf c (hd e1)) e.

Lemma Always_equiv_equi :

Always_equiv conf_equi

(execute rbg demon_equi conf_equi).

From this we deduce that all the robots keep moving, and that the

execution is never stopped. This proves that rbg does not solve

exploration with stop, and applies to the whole class of robograms

defined bym = 1.

The casem = −1 is similar. This concludes the proof of theorem

no_exploration_k_divides_n: no algorithm can solve the ex-

ploration with stop of ring of size n by k robots when k divides

n.

4.4 Use Case 2: Towers Are Required
✑ The second case study consists in establishing that the afore-

mentioned exploration is impossible to realise when there are less

that two robots. The theorem to be proved is:

Theorem no_exploration_k_inf_2 :

∀ rbg, Explores_and_stops rbg→ k > 1.

The most important lemma in this proof expresses that a robo-

gram solving exploration with stop cannot stop at a configuration

that would be admissible as initial configuration:

Lemma no_stop_on_starting_conf : ∀ rbg c d,

Explores_and_stops rbg→

Valid_starting_conf c→

Fair d→

¬ Stopped (execute rbg c d).

Indeed, if we assume that the robogram rbg stops on some valid

starting configuration cwhen scheduled by a fair demon d, then we

can take the configuration c and the demon d as a counter-example

to the fact that rbg solves exploration with stop.

5 CONCLUSION
We presented a dedicated formal framework for certifying results

about mobile oblivious robots evolving in discrete spaces (a.k.a.
graphs). Emphasis was put on generality and modularity, in order

to enable expressing various other problems that are relevant in

this context (e.g. exclusive perpetual exploration, gathering, graph
searching, etc.). As case studies for our framework, we considered

foundational impossibility results for the exploration with stop

problem, and certified those results correct with the Coq proof

assistant. We would like to mention two intriguing open problems:

(1) Certifying positive results, that is, certifying the correctness
of algorithms for robots operating in discrete space. This

problem was previously investigated using model check-

ing [4] and program synthesis [29], but only for fixed size

instances. Now, verifying arbitrary sized instances through

parameterised model-checking is undecidable for non-trivial

specifications [31]. By contrast, our approach seems capable

to tackle the case of arbitrary sized instances.

(2) Characterising continuous vs. discrete space. The modularity

that is offered by our framework permits to abstract many

notions in a uniform manner, and hint at the possibility to es-

tablish bridges between the two domains. Actual computers

(and hence, robots) only operate over a discrete variable

space, while the environment robots evolve in can be seen as

continuous. Bridging the reality of the environment and the

vision robots have about it in a meaningful certified manner

would permit the development of realistic reliable software

for those robots.

ACKNOWLEDGMENTS
This work was partially funded by the CNRS PEPS OCAAA 2017

project CYBORG and the Université Claude Bernard Lyon 1 BQR

2017 project PREFER.
The authors would like to thank Xavier Urbain for his decisive

role in this work, and the other members of the Pactole project.

REFERENCES
[1] Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sébastien Tixeuil, and Xavier

Urbain. 2013. Certified Impossibility Results for Byzantine-Tolerant Mobile

Robots. In Stabilization, Safety, and Security of Distributed Systems - 15th In-
ternational Symposium (SSS 2013) (Lecture Notes in Computer Science), Teruo
Higashino, Yoshiaki Katayama, Toshimitsu Masuzawa, Maria Potop-Butucaru,

andMasafumi Yamashita (Eds.), Vol. 8255. Springer-Verlag, Osaka, Japan, 178–186.

https://doi.org/10.1007/978-3-319-03089-0_13

[2] Thibaut Balabonski, Amélie Delga, Lionel Rieg, Sébastien Tixeuil, and Xavier

Urbain. 2016. Synchronous GatheringWithout Multiplicity Detection: A Certified

Algorithm. In Stabilization, Safety, and Security of Distributed Systems - 18th
International Symposium, (SSS 2016) (Lecture Notes in Computer Science), Borzoo
Bonakdarpour and Frank Petit (Eds.), Vol. 10083. Springer-Verlag, Lyon, France.

https://doi.org/10.1007/978-3-319-49259-9

[3] Roberto Baldoni, François Bonnet, Alessia Milani, and Michel Raynal. 2008. An-

onymous graph exploration without collision by mobile robots. Inf. Process. Lett.
109, 2 (2008), 98–103. https://doi.org/10.1016/j.ipl.2008.08.011

[4] Béatrice Bérard, Pascal Lafourcade, Laure Millet, Maria Potop-Butucaru, Yann

Thierry-Mieg, and Sébastien Tixeuil. 2016. Formal Verification of Mobile Robot

Protocols. Distributed Computing 29, 6 (2016), 459–487. https://doi.org/10.1007/

s00446-016-0271-1

[5] Lélia Blin, Janna Burman, and Nicolas Nisse. 2017. Exclusive Graph Searching.

Algorithmica 77, 3 (2017), 942–969. https://doi.org/10.1007/s00453-016-0124-0

http://pactole.lri.fr/pub/cier/html/TowersSSync.html
https://doi.org/10.1007/978-3-319-03089-0_13
https://doi.org/10.1007/978-3-319-49259-9
https://doi.org/10.1016/j.ipl.2008.08.011
https://doi.org/10.1007/s00446-016-0271-1
https://doi.org/10.1007/s00446-016-0271-1
https://doi.org/10.1007/s00453-016-0124-0

ICDCN ’18, January 4–7, 2018, Varanasi, India Thibaut Balabonski, Robin Pelle, Lionel Rieg, and Sébastien Tixeuil

[6] Lélia Blin, Alessia Milani, Maria Potop-Butucaru, and Sébastien Tixeuil. 2010.

Exclusive Perpetual Ring Exploration without Chirality. InDistributed Computing,
24th International Symposium, DISC 2010, Cambridge, MA, USA, September 13-
15, 2010. Proceedings (Lecture Notes in Computer Science), Nancy A. Lynch and

Alexander A. Shvartsman (Eds.), Vol. 6343. Springer, 312–327. https://doi.org/10.

1007/978-3-642-15763-9_29

[7] François Bonnet, Xavier Défago, Franck Petit, Maria Potop-Butucaru, and Sébas-

tien Tixeuil. 2014. Discovering and Assessing Fine-Grained Metrics in Robot

Networks Protocols. In 33rd IEEE International Symposium on Reliable Distributed
Systems Workshops, SRDS Workshops 2014, Nara, Japan, October 6-9, 2014. IEEE,
50–59. https://doi.org/10.1109/SRDSW.2014.34

[8] François Bonnet, Alessia Milani, Maria Potop-Butucaru, and Sébastien Tixeuil.

2011. Asynchronous Exclusive Perpetual Grid Exploration without Sense of

Direction. In Principles of Distributed Systems - 15th International Conference,
OPODIS 2011, Toulouse, France, December 13-16, 2011. Proceedings (Lecture Notes in
Computer Science), Antonio Fernández Anta, Giuseppe Lipari, and Matthieu Roy

(Eds.), Vol. 7109. Springer, 251–265. https://doi.org/10.1007/978-3-642-25873-2_18

[9] Béatrice Bérard, Pierre Courtieu, Laure Millet, Maria Potop-Butucaru, Lionel Rieg,

Nathalie Sznajder, Sébastien Tixeuil, and Xavier Urbain. 2015. Formal Methods

for Mobile Robots: Current Results and Open Problems. International Journal
of Informatics Society 7, 3 (2015), 101–114. http://www.infsoc.org/journal/vol07/

IJIS_07_3_101-114.pdf Invited Paper.

[10] Pierre Castéran, Vincent Filou, and Mohamed Mosbah. 2009. Certifying Distrib-

uted Algorithms by Embedding Local Computation Systems in the Coq Proof

Assistant. In Symbolic Computation in Software Science (SCSS’09), Adel Bouhoula
and Tetsuo Ida (Eds.).

[11] Jérémie Chalopin, Paola Flocchini, Bernard Mans, and Nicola Santoro. 2010.

Network Exploration by Silent and Oblivious Robots. In Graph Theoretic Concepts
in Computer Science - 36th International Workshop, WG 2010, Zarós, Crete, Greece,
June 28-30, 2010 Revised Papers (Lecture Notes in Computer Science), Dimitrios M.

Thilikos (Ed.), Vol. 6410. 208–219. https://doi.org/10.1007/978-3-642-16926-7_20

[12] François Bonnet, Maria Potop-Butucaru, and Sébastien Tixeuil. 2016. Asyn-

chrnous gathering in rings with four robots. In Ad-hoc, Mobile, and Wireless
Networks - 15th International Conference, ADHOC-NOW 2015, Lille, France, 2016,
Proceedings (Lecture Notes in Computer Science). Springer.

[13] Thierry Coquand and Christine Paulin-Mohring. 1990. Inductively Defined

Types. In International Conference on Computer Logic (Colog’88) (Lecture Notes in
Computer Science), Per Martin-Löf and Grigori Mints (Eds.), Vol. 417. Springer-

Verlag, 50–66.

[14] Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. 2015. Im-

possibility of Gathering, a Certification. Inform. Process. Lett. 115 (2015), 447–452.
https://doi.org/10.1016/j.ipl.2014.11.001

[15] Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. 2016. Certified

Universal Gathering Algorithm in R2 for Oblivious Mobile Robots. In Distributed
Computing - 30th International Symposium, (DISC 2016) (Lecture Notes in Computer
Science), Cyril Gavoille and David Ilcinkas (Eds.), Vol. 9888. Springer-Verlag, Paris,
France.

[16] Gianlorenzo D’Angelo, Alfredo Navarra, and Nicolas Nisse. 2017. A unified

approach for gathering and exclusive searching on rings under weak assump-

tions. Distributed Computing 30, 1 (2017), 17–48. https://doi.org/10.1007/

s00446-016-0274-y

[17] Gianlorenzo D’Angelo, Gabriele Di Stefano, Alfredo Navarra, Nicolas Nisse,

and Karol Suchan. 2015. Computing on Rings by Oblivious Robots: A Unified

Approach for Different Tasks. Algorithmica 72, 4 (2015), 1055–1096. https:

//doi.org/10.1007/s00453-014-9892-6

[18] Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond, and Sébastien

Tixeuil. 2012. Optimal Grid Exploration by Asynchronous Oblivious Robots.

In Stabilization, Safety, and Security of Distributed Systems - 14th International
Symposium (SSS 2012) (Lecture Notes in Computer Science), Andréa W. Richa and

Christian Scheideler (Eds.), Vol. 7596. Springer-Verlag, Toronto, Canada, 64–76.

[19] Stéphane Devismes, Anissa Lamani, Franck Petit, and Sébastien Tixeuil. 2015.

Optimal Torus Exploration by Oblivious Robots. In Networked Systems - Third
International Conference, NETYS 2015, Agadir, Morocco, May 13-15, 2015, Re-
vised Selected Papers (Lecture Notes in Computer Science), Ahmed Bouajjani and

Hugues Fauconnier (Eds.), Vol. 9466. Springer, 183–199. https://doi.org/10.1007/

978-3-319-26850-7_13

[20] Stéphane Devismes, Franck Petit, and Sébastien Tixeuil. 2013. Optimal prob-

abilistic ring exploration by semi-synchronous oblivious robots. Theoretical
Computer Science 498 (2013), 10–27. https://doi.org/10.1016/j.tcs.2013.05.031

[21] Ha Thi Thu Doan, François Bonnet, and Kazuhiro Ogata. 2016. Model Checking of

a Mobile Robots Perpetual Exploration Algorithm. In Structured Object-Oriented
Formal Language and Method - 6th International Workshop, SOFL+MSVL 2016,
Tokyo, Japan, November 15, 2016, Revised Selected Papers (Lecture Notes in Com-
puter Science), Shaoying Liu, Zhenhua Duan, Cong Tian, and Fumiko Nagoya

(Eds.), Vol. 10189. 201–219. https://doi.org/10.1007/978-3-319-57708-1_12

[22] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. 2010. Remem-

bering without memory: Tree exploration by asynchronous oblivious robots.

Theoretical Computer Science 411, 14-15 (2010), 1583–1598. https://doi.org/10.

1016/j.tcs.2010.01.007

[23] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. 2013. Com-

puting Without Communicating: Ring Exploration by Asynchronous Obli-

vious Robots. Algorithmica 65, 3 (2013), 562–583. https://doi.org/10.1007/

s00453-011-9611-5

[24] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. 2012. Distributed Com-
puting by Oblivious Mobile Robots. Morgan & Claypool Publishers.

[25] Tomoko Izumi, Taisuke Izumi, Sayaka Kamei, and Fukuhito Ooshita. 2010. Mobile

Robots Gathering Algorithm with Local Weak Multiplicity in Rings. In Struc-
tural Information and Communication Complexity, 17th International Colloquium,
SIROCCO 2010, Sirince, Turkey, June 7-11, 2010. Proceedings (Lecture Notes in
Computer Science), Boaz Patt-Shamir and Tinaz Ekim (Eds.), Vol. 6058. Springer,

101–113. https://doi.org/10.1007/978-3-642-13284-1_9

[26] Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, and Sébastien Tixeuil. 2011.

Asynchronous Mobile Robot Gathering from Symmetric Configurations without

Global Multiplicity Detection. In Structural Information and Communication
Complexity - 18th International Colloquium, SIROCCO 2011, Gdansk, Poland, June
26-29, 2011. Proceedings (Lecture Notes in Computer Science), Adrian Kosowski

and Masafumi Yamashita (Eds.), Vol. 6796. Springer, 150–161. https://doi.org/10.

1007/978-3-642-22212-2_14

[27] Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, and Sébastien Tixeuil. 2012.

Gathering an Even Number of Robots in an Odd Ring without Global Mul-

tiplicity Detection. In Mathematical Foundations of Computer Science 2012 -
37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31,
2012. Proceedings (Lecture Notes in Computer Science), Branislav Rovan, Vladi-

miro Sassone, and Peter Widmayer (Eds.), Vol. 7464. Springer, 542–553. https:

//doi.org/10.1007/978-3-642-32589-2_48

[28] Anissa Lamani, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. 2010.

Optimal Deterministic Ring Exploration with Oblivious Asynchronous Robots.

In Structural Information and Communication Complexity, 17th International Col-
loquium, SIROCCO 2010, Sirince, Turkey, June 7-11, 2010. Proceedings (Lecture
Notes in Computer Science), Boaz Patt-Shamir and Tinaz Ekim (Eds.), Vol. 6058.

Springer, 183–196. https://doi.org/10.1007/978-3-642-13284-1_15

[29] Laure Millet, Maria Potop-Butucaru, Nathalie Sznajder, and Sébastien Tixeuil.

2014. On the Synthesis of Mobile Robots Algorithms: The Case of Ring Gathering.

In Stabilization, Safety, and Security of Distributed Systems - 16th International
Symposium, (SSS 2014) (Lecture Notes in Computer Science), Pascal Felber and
Vijay K. Garg (Eds.), Vol. 8756. Springer-Verlag, Paderborn, Germany, 237–251.

https://doi.org/10.1007/978-3-319-11764-5_17

[30] Sasha Rubin, Florian Zuleger, Aniello Murano, and Benjamin Aminof. 2015.

Verification of Asynchronous Mobile-Robots in Partially-Known Environments.

In PRIMA 2015: Principles and Practice of Multi-Agent Systems - 18th International
Conference, Bertinoro, Italy, October 26-30, 2015, Proceedings (Lecture Notes in
Computer Science), Qingliang Chen, Paolo Torroni, Serena Villata, Jane Yung-

jen Hsu, and Andrea Omicini (Eds.), Vol. 9387. Springer-Verlag, 185–200. https:

//doi.org/10.1007/978-3-319-25524-8_12

[31] Arnaud Sangnier, Nathalie Sznajder, Maria Potop-Butucaru, and Sébastien Tixeuil.

2017. Parameterized Verification of Algorithms for Oblivious Robots on a Ring.

In Formal Methods in Computer Aided Design. Vienna, Austria. http://arxiv.org/
abs/1706.05193

[32] Ichiro Suzuki and Masafumi Yamashita. 1999. Distributed Anonymous Mobile

Robots: Formation of Geometric Patterns. SIAM Journal of Computing 28, 4 (1999),
1347–1363.

https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1109/SRDSW.2014.34
https://doi.org/10.1007/978-3-642-25873-2_18
http://www.infsoc.org/journal/vol07/IJIS_07_3_101-114.pdf
http://www.infsoc.org/journal/vol07/IJIS_07_3_101-114.pdf
https://doi.org/10.1007/978-3-642-16926-7_20
https://doi.org/10.1016/j.ipl.2014.11.001
https://doi.org/10.1007/s00446-016-0274-y
https://doi.org/10.1007/s00446-016-0274-y
https://doi.org/10.1007/s00453-014-9892-6
https://doi.org/10.1007/s00453-014-9892-6
https://doi.org/10.1007/978-3-319-26850-7_13
https://doi.org/10.1007/978-3-319-26850-7_13
https://doi.org/10.1016/j.tcs.2013.05.031
https://doi.org/10.1007/978-3-319-57708-1_12
https://doi.org/10.1016/j.tcs.2010.01.007
https://doi.org/10.1016/j.tcs.2010.01.007
https://doi.org/10.1007/s00453-011-9611-5
https://doi.org/10.1007/s00453-011-9611-5
https://doi.org/10.1007/978-3-642-13284-1_9
https://doi.org/10.1007/978-3-642-22212-2_14
https://doi.org/10.1007/978-3-642-22212-2_14
https://doi.org/10.1007/978-3-642-32589-2_48
https://doi.org/10.1007/978-3-642-32589-2_48
https://doi.org/10.1007/978-3-642-13284-1_15
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/978-3-319-25524-8_12
https://doi.org/10.1007/978-3-319-25524-8_12
http://arxiv.org/abs/1706.05193
http://arxiv.org/abs/1706.05193

	Abstract
	1 Introduction
	1.1 The Look-Compute-Move model
	1.2 Robots on graphs
	1.3 The Certification Path
	1.4 Our Contribution

	2 Impossibility Results
	2.1 Main arguments for impossibility in graphs
	2.2 Examples

	3 Certifying impossibility results
	3.1 A general pattern for graphs in Pactole
	3.2 A particular graph: the ring of size n
	3.3 Look-Compute-Move Model

	4 A formalisation of the impossibility of exploration with stop
	4.1 Context
	4.2 Exploration with Stop
	4.3 Use Case 1: k Divides n
	4.4 Use Case 2: Towers Are Required

	5 conclusion
	Acknowledgments
	References

