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Abstract. This paper proposes a geometric solution to the problem of
prime decomposability of concurrent processes first explored by R. Milner
and F. Moller in [MM93]. Concurrent programs are given a geometric
semantics using cubical areas, for which a unique factorization theorem is
proved. An effective factorization method which is correct and complete
with respect to the geometric semantics is derived from the factorization
theorem. This algorithm is implemented in the static analyzer ALCOOL.
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1 Introduction: Parallel Programming Problem

This paper aims at introducing some new static analysis technology for concur-
rent programs. The work presented here gives a new insight into the problem of
decomposition of processes, which was first explored by R. Milner and F. Moller
in [MM93]. The main new results are an algorithm maximally decomposing con-
current programs into independent processes (Section 4) and the proof that this
prime decomposition is unique in the considered class of programs (Theorem 2).
They are derived from a study of algebraic properties of cubical areas.

Given an associative and commutative operator || for parallel composition of
two processes (with the empty process as unit), decomposing a concurrent pro-
gram P into a multiset { P, ..., P, } such that P = Py||...|| P, and the P;s are inde-
pendent has several interests. For instance the decomposition may be relevant for
the allocation of processors to subprograms. Another important concern is the
static analysis of concurrent programs, whose complexity grows exponentially
with the number of concurrent processes: finding independent subprograms that
can be analyzed separately could dramatically decrease the global complexity

2 This work has been partially supported by Agence Nationale pour la Recherche via
the project PANDA (Parallel and Distributed Analysis) ANR-09-BLAN-0169-02



of the static analysis. Hence this paper aims at finding the finest decomposition
(and proving its uniqueness) for a wide class of concurrent programs.

Let us first take a look at a nontrivial example of independent processes,
in the so-called PV language introduced by E.W. Dijkstra [Dij68] as a simple
framework for the study of concurrency with shared resources. The only instruc-
tions are P(name) and V (name)?, where name is an identifier which refers to
a resource. The idea is to have some common pool of resources which can be
taken (with P) and released (with V') by concurrent processes. The resources
are formalized by semaphores which, depending on their arity, can be held si-
multaneously by a certain number of processes (arity n allows at most n — 1
simultaneous processes).

Now suppose c is the name of a ternary semaphore, which means it can be
held by at most two processes, and a, b are the names of binary semaphores, also
called mutex for mutual exclusion.

Ezample 1.

Y :=m = Pa.PcVeVa
|| 72 = Pb.Pc.Ve Vb
| 73 = Pa.Pc.VeVa
| 74 = Pb.Pc.VeVb

A naive syntactic analysis would stamp this program as indecomposable since
all processes share the resource ¢, but the following finer analysis can be made:
thanks to mutex a (respectively b), the processes 1 and 73 (respectively o and
74) cannot both hold an occurrence of the resource ¢ at the same time. Then
there are never more than two simultaneous requests over ¢, which means that
the instructions Pc and V¢ play actually no role in determining the semantics of
the program. And without ¢, X can be split in two independent systems (they use
disjoint resources). Basically, this example is based on the fact that semaphores
are not the real resources, but mere devices used to guard their access. And it
may be that some guards are redundant.

This work is based on a geometric semantics for concurrency. The semantics
for PV programs was implicitly given in [Dij68], then explicited by Carson et
al.[CR87]. Roughly speaking, the instructions of a process are pinned upon a 1-
dimensional “directed” shape, in other words track along which the instructions
of the program to execute are written. If IV sequential processes run together, one
can consider their IV instruction pointers as a multidimensional control point.

Although we have made the construction explicit for PV programs only,
the result applies to any synchronisation or communication mechanism whose
geometric interpretation is a so-called cubical area (the notion is formalized in
Section 3.5). See for instance [GHO5] for the geometric semantics of synchronisa-
tion barriers, monitors and synchronous or asynchronous communications (with
finite or infinite message queues): their geometrical shape is the complement
of an orthogonal polyhedron [BMP99,Tha09], which is a special case of cubical
area.

3 P and V stand for the dutch words “Pakken” (take) and “Vrijlaten” (release)



Outline of the paper.

The paper is organized as follows. Section 2 provides the mathematics of the
geometric semantics, detailed for PV programs. Section 3 establishes the link
between algebraic properties of the semantics and independence of subprograms,
and then states and proves prime decomposability theorems for algrebraic frame-
works encompassing the geometric semantics (Theorems 1 and 2). Section 4
describes the corresponding algorithm and implementation as well as a detailed
example and some benchmarks.

2 The Geometric Semantics

The geometric semantics of a PV program is a subset of the finite dimensional
real vector space whose dimension is the number N of processes running con-
currently: then each process is associated with a coordinate of RY. Yet given a
mutex a, the instructions P(a) and V(a) that occur in the k' process should
be understood as opening and closing parentheses or more geometrically as the
least upper bound and the greatest lower bound of an interval I} of R. The for-
bidden area generated by a mutex a is thus the finite union of hyperrectangles*
of the following form (with k < k')

Rt x - xR x I, x RV x -+ - x R x Iy x RY x --- x RT

product of N terms

For example, P(a).V(a) || P(a).V(a) is a pro-
gram written in PV language. Assuming that a V(a)
is a mutex (semaphore of arity 2), its geometric

model is (RT)2\[1,2[2. Intuitively, a point p in Pla)
[1,2[? would correspond to the situation where w
both processes hold the semaphore a, which is /;9
forbidden by the semantics of mutices. -

(®)AT

In the sequel of this section we formalize the PV language syntax as well as the
construction of the geometric semantics.

Denote the positive half-line [0, +oco[ by R*. For each o € N\{0,1} let S,
be an infinite countable set whose elements are the semaphores of arity « of the
PV language. A PV process is a finite sequence on the alphabet

A:={P(s),V(s) | s € USO‘}

a>2

and a PV program is a finite (and possibly empty) multiset of PV processes.
The parallel operator then corresponds to the multiset addition therefore it is as-

4 however we will more likely write “cube” instead.



sociative and commutative®. Given a semaphore s and a process 7, the sequences
(zx)ken and (yg)ren are recursively defined as follows: set y_; = 0 and

— zp=min{n € N| n > y,_; and w(n) is P(s)}
— yr =min{n € N | n >z and w(n) is V(s)}

with the convention that min@ = oo, m(n) denotes the n** term of the process
7 and its first term is 7(1). Then, the busy area of s in 7 is®

Bs(ﬂ-) = U [Ilmyk[

keN

Actually this description implies some extra assumptions upon the way instruc-
tions are interpreted. Namely a process cannot hold more than one occurrence of
a given resource. Thus a process already holding an occurrence of a semaphore
s ignores any instruction P(s), and similarly a process holding no occurrence of
s ignores any instruction V(s). Then denote by xT : R — R the characteristic
function of B defined by

~ _ Jlifz € By(m)
X5 (@) = { 0 otherwise
Because the sequence 7 is finite, there exists some k such that x; = oo and for
any such k and any k' > k, one also has xy, = oo. In particular, if the instruction
P(s) does not appear in 7, then Bg(m) is empty and x7 is the null map. The
geometric model of a PV program with N processes running concurrently is a
subpospace of [0, +00[" defined as follows:
- Call IT = (my,...,mN) the program to model.
- Given a semaphore s of arity a define the forbidden area of s in II as

F, = {?6[0,+OO[N|)Z;-TEQ}

N
where 7 = (71,...,7n), Xo = (X™,...,x™) and Y; - @ = leg(xl) The
i=

value Y, - @ indicates how many occurrences of the semaphore s are held when
the instruction pointer is at position = . Note that Fj is a finite union of hyper-
rectangles which may be empty even if s appears in the program I7. In the end,
the forbidden area of the program I is the following union over S the union
of all the sets S,,.

F = U F,

ses

5 The collection of multisets over a set A forms a monoid which is isomorphic to the
free commutative monoid over A. The first terminology is usually used by computer
scientists while mathematicians prefer the second one. Anyway it will be described
and caracterized in the Section 3.

5 Including the greatest lower bound and removing the least upper bound is the math-
ematical interpretation of the following convention: the changes induced by an in-
struction are effective exactly when the instruction pointer reaches it.



Because there are finitely many resource names s appearing in a PV program,
there are finitely many nonempty sets F. Hence the previous union is still a
finite union of hyperrectangles. The state space or geometric model of IT is
then [0, +oo[V\F, and is denoted by [/I]. Remark that the geometric model is
also a finite union of hyperrectangles.

In other words, the state space of I is the set of positions of the “multi-
dimensional instruction pointer” for which the number of occurrences of each
semaphore s is strictly below its arity «. If IT is made of N concurrent process,
this space is a N-dimensional euclidean space with (cubical) holes. As an exam-
ple, Figure 1 shows the construction of the geometric model of the PV program
P(a)PO)V(D)V (a) || P(b)P(a)V (a)V (b) (refered to as the swiss flag). Figure 2
gives a simplified version of Example 1 fitting in three dimensions.

Fig. 1. Construction of a geometric model: the swiss flag

V(b) ; V(b)
V(a) ' V(@)
a Fb F
Pla) 4 b i Pla)H ey e
P(b) e P(b) -
I I T Iz
= = GG OECENCENC)

Fig. 2. Example in three dimensions

Y*:=m = Pa.PcVeVa
|| 75 = PcVe
|| 73 = Pa.Pc.VeVa

Intuitively, the graphs pictured here correspond to the essential components of the state
space, see [GHO7] for developments on this topic. The little cube on the left picture is
the forbidden area of the semaphore ¢, which is contained in the forbidden area of the
mutex a (in the full —and 4D— example X' the forbidden area of ¢ is contained in the

union of the forbidden areas of a and b).



3 The Problem of Unique Decomposition

Now that the geometric semantics of programs is defined, let us refocus on the
main goal: finding the independent parts of a concurrent program. Hence the
question: what does independence mean in this geometrical setting?

3.1 Parallel Composition vs Cartesian Product

A general definition has to be given for independence: say a program IT is
independent from another program II’ when its behaviour is unaffected by par-
allel composition with IT’, whatever the way II’ is executed. That means, the
presence of IT', as well as its instruction pointer, has no effect on the semantics of
I1. A geometric translation of this assertion is: in the geometric model of IT||IT’,
the cylinder” over any state of I’ (i.e. the subspace of all points with given fix
coordinates for the II’ component) is equal to the model of IT.

Hence two programs IT and II’ of geometric models [II] and [II'] are inden-
pendent if and only if the geometric model [IT||1I'] of their parallel composition
is isomorphic to the cartesian product [II] x [II']. Thus the decompositions of
a program correspond to the factorizations if its geometric model (with respect
to the cartesian product). The next subsection reminds some algebraic settings
and results needed for a notion like factorization to make sense.

3.2 Free Commutative Monoids

The reader not familiar with this notion can refer for instance to [Lan02]. Let
M be a commutative monoid. Any element of M which has an inverse is called
a unit. A non-unit element x of M is said to be irreducible when for all y and
zin M, if x = yz then y or z is a unit. The set of irreducible elements of M is
denoted by I(M).

For any elements x and y of M, say x divides y when there is an element z’
of M such that zz’ = y. A non-unit element x of M is said to be prime when
for all y and z in M, if x divides yz then z divides y or = divides z. The set of
prime elements of M is denoted by P(M).

Given a set X, the collection of maps ¢ from X to N such that {z €
X | ¢(x) # 0} is finite, together with the pointwise addition, forms a com-
mutative monoid whose neutral element is the null map: we denote it by F(X).
Yet, given any subset X of a commutative monoid M, the following map

¥ FX)——M
é I z*@®
is a well-defined morphism of monoids. A well-known result asserts that the
following are equivalent [Lan02]:

" Categorists would write “fibre” instead of “cylinder”.
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1. the mapping @ﬁlM is an isomorphism of monoids

2. the set I(M) generates® M and I(M) = P(M)

3. any element of M can be written as a product of irreducible elements in a
unique way up to permutation of terms (unique decomposition property).

If M satisfies any of the preceding assertions, then it is said to be a free commu-
tative monoid. Two standard examples of free commutative monoids are given
by the set of nonzero natural numbers N\{0} together with multiplication (the
unit is 1 and the irreducible elements are the prime numbers) and the set of
natural numbers N together with addition (the unit is 0 and the only irreducible
element is 1).

3.3 Cartesian Product and Commutation

The geometric model of a concurrent program is a set of points in an euclidean
space of finite dimension. Each point is represented by the tuple of its coor-
dinates so a geometric model is a set of tuples (whose length corresponds to
the dimension of the space). The cartesian product on such structures is the
following:

XxY = { (T1y ey Ty Y1y ooy Y& | (1, zn) € X, (Y1, yx) €Y }

However, this operator is not commutative whereas the parallel composition of
programs should be so. Thus, in order to model parallel composition, we make
the operator x commutative by allowing the permutation of coordinates. In the
next subsection we prove a freeness theorem for a monoid generalizing this idea:
tuples of (real) coordinates are replaced by words over an arbitrary (potentially
infinite) alphabet. We will define a free commutative monoid of which every
geometric model of a PV program is an element. From the decomposition of
such models we will deduce the processes factorization.

3.4 Homogeneous Sets of Words

Let A be a set called the alphabet. The noncommutative monoid of words A*
consists on the finite sequences of elements of A together with concatenation.
Given words w and w’ of length n and n’, the word w * w’ of length n + n’ is
defined by

wewyy =@ 1<k<n
k wy_, if n+l<k<n+n

The length of a word w is also refered to as £(w). A subword of w is a word of
the form w o ¢ where ¢ is a strictly increasing map {1,...,n} — {1,...,4(w)}.

8 X C M generates M when all its elements can be written as a product of elements of
X. The product of the empty set being defined as the neutral element. Remark then
that “I(M) generates M” implies that the only unit of M is its neutral element.



Hence a subword of w is also entirely characterized by the image of the increasing
map ¢ i.e. by a subset of {1,...,¢(w)}. If A is the image of ¢ then we write wo A
instead of w o ¢.

The n'" symmetric group &,, (the group of permutations of the set {1, ...,n})
acts on the set of words of length n by composing on the right, that is for all
o € 6,, and all words w of length n we have

g W =wWoo = (wg(l)---wa(n))
The concatenation extends to sets of words. Given S, S’ C A*, define
SxS i ={wxw |we S;uw €S}

Remark that this concatenation of sets corresponds to the cartesian product.
The set P(A*) of subsets of A* is thus endowed with a structure of non-
commutative monoid whose neutral element is {e}: the singleton containing the
empty word. Note that the empty set @) is the absorbing element of P(A*), that
is for all S C A* we have
DxS=S*x0=0

A subset S of A* is said to be homogeneous when all the words it contains
share the same length n. By analogy with the geometric construction, n is called
the dimension of S and denoted by d(S). The symmetric group &,, acts on the
set of homogeneous sets of dimension n in a natural way by applying the same
permutation to all words:

oc-S:={c-w|weS}

The homogeneous subsets of A* form a sub-monoid P, (A*) of P(A*) and
can be equipped with an equivalence relation as follows: write S ~ S’ when
d(S) = d(S’) = n and there exists o € &,, such that S’ = ¢-S. Moreover, for two
permutations o € &, and ¢’ € G,,/, define the juxtaposition o ® ¢’ € &,/

as:
, . o(k) if 1<k<n
U®U(k)-—{(0/(k_n))+n if n+l1<k<n+n

A Godement-like exchange law is satisfied, which ensures that ~ is actually a
congruence:

(0-8)x(c/-S)=(c®d) - (Sx95)

Hence the quotient Pp(A*)/~ from which the absorbing element has been re-
moved is still a monoid called the homogeneous monoid over A and denoted
by H(A). Moreover the homogeneous monoid is commutative and its only unit
is the singleton {e}. Remark that if the alphabet A is a singleton (resp. the
empty set) then the homogeneous monoid H(A) is isomorphic to (N, +,0) (resp.
the null monoid). From now on the elements of P, (A*) are denoted by capital
letters S, S’, Sk (and so on) while capital letters H, H', H}, are used to denote
the elements of H(A). As they are ~-equivalence classes, the elements of H(A)
are subsets of Py (A*). In particular for any H € H(A) and any S,S5" € H we



have d(S) = d(S’) so we can soundly define the dimension of H as d(H) := d(S5).

‘ Theorem 1. For any set A the homogeneous monoid over A is free. ‘

Proof. We check the characterizing condition 2 of the Section 3.2. From the
equality d(H x H') = d(H) + d(H') and a straightforward induction on the
dimension of elements of H(A) we deduce they can all be written as products of
irreducible elements: I(H(A)) generates H(A).

Now suppose H is an irreducible element of H(A) which divides Hy *« Hy and
pick S, S7 and S, respectively from the equivalence classes H, H; and Hs. Define
n = d(5), n1 = d(S1) and ny = d(S2), and remark that n < ny + ng. There
exists 0 € &,, and some S3 such that o - (S7 *.S2) = S * S3 in Pp(A*). Suppose
in addition that H does not divide Hy nor Ha, then we have A; C {1,...,n1}
and Ay C {1,...,n2} s.t. Ay # 0, Ay # 0 and o(A; U A}) = {1,...,n} where
AL :={a+mn; | a € Az}. Then we have a nontrivial factoring S = S} % S, where

S = {woA1|weSl} and S5 := {woA2|w€Sg}

This contradicts irreducibility of H. Hence H divides Hi or Hs and thus H is
prime. So any irreducible element of H(A) is prime: I(H(A)) C P(H(A)).

Finally, suppose H is a prime element of H(A) such that H = H; * Hy. In
particular H divides H; x Hy, and since H is prime it divides H; or Hs. Both
cases being symmetrical, suppose H divides H;. In particular d(H) < d(H;). On
the other hand d(H) = d(H;) + d(Hz), and thus d(Hz) < 0. Dimensions being
natural numbers, we deduce that d(Hz) = 0 and then that Hy = {e}. Hence H
is irreducible, and I(H(A)) = P(H(A)).

A useful feature of the construction is that any binary relation ¢ over Py (A*)
which is compatible with the product and satifies

VS, S € Pr(A*) (d(S) =d(S") and So 8" = Vo € Sy (0-5)o(c-5")

can be extended to a relation on H(A) which is still compatible with the prod-
uct. Actually it suffices to set H o H' when d(H) = d(H’) and there exists a
representative S of H and a representative S’ of H' such that for all o € &4p)
we have (o - 5) o (0-5"). In addition, if the relation ¢ satisfies

VS, S € Pu(A*) SoS = d(S)=d(S)

then the quotient map is compatible with ¢ and its extension. The relation of
inclusion C over Py (A*) obviously satisfies these properties and therefore extends

to H(A).

3.5 Cubical Areas

The monoid P, (R*) is ordered by inclusion, according to the preceding section
the relation C is then extended to H(R) by setting H < H' when d(H) = d(H')



and there exist S € H and S’ € H’ such that for all 0 € &4y we have
c-SCo-5.

A cube of dimension n is a word of length n on the alphabet Z of nonempty
intervals of R so it can also be seen as a subset of R". In particular, given
S € Pp(Z*) we can define the set theoretic union

Uc

ces

as a subset of R™ and thus an element of P, (R*) provided we identify any word
of length n over R with a point of R".

The elements of H(Z) are called the cubical coverings and we will use the
capital letters F', F’ or F}, (k € N) to denote them. Furthermore the homogeneous
monoid H(Z) is endowed with a preorder arising from the inclusion on Z. Indeed,
given two homogeneous sets of cubes of the same dimension S and S’ we write
S < 5" when for all cubes C € S there exists a cube C’ € S’ such that C C C'.
The relation < provides the monoid Py (Z*) with a preorder that can be extended
to H(Z) by setting F' < F’ when d(F) = d(F"’) and there exist S € F and S’ € F’
such that for all 0 € S4p) we have 0 - S < o - S’. We now establish a Galois
connection between (H(R), <) and (H(Z), <). Given a cubical covering F' one
can check that the following is actually an element of H(R).

’y(F)::{UC’SEF}

ces

The mapping v is a morphism of monoids and if F' 5 F’ then v(F) < y(F").
Conversely, given some S € Pj,(R*) the collection of n-dimensional cubes C
such that C' C S, ordered by inclusion, is a semilattice whose maximal elements
are called the maximal cubes of S. The set Mg of maximal cubes of S is
homogeneous and for all 0 € &,,, - Mg = M,.s. Then given H € H(R) one
can check that the following is actually an element of H(Z).

a(H) = {Ms ‘ Se H}

Furthermore « is a morphism of monoids and if H < H' then «(H) < «(H').
Then we have a Galois connection:

‘ Proposition 1. voa = idymg) and idy) < ao7y. ‘

Given H € H(R) and F € H(Z) we say that F' is a cubical covering of H when
~v(F) = H. The cubical areas are the elements H of H(R) which admit a finite
cubical covering. The collection of cubical areas (resp. finite cubical coverings)
forms the submonoid Are of H(R) (resp. Cov of H(Z)). The restrictions of the
morphisms v and « to Cov and Are induce another Galois connection.

‘ Proposition 2. yoa =idgr and idgy < a0 7. ‘

Moreover, the morphisms v and « of Proposition 2 induce a pair of isomorphisms
of commutative monoids between Are and the collection of fixpoints of aoy. A



submonoid of a free commutative monoid may not be free. Yet, under a simple
additional hypothesis this pathological behaviour is no more possible. We say
that a submonoid P of a monoid M is pure when for all x,y € M, xxy € P =
r€PandyeP.

‘ Lemma 1. Every pure submonoid of a free commutative monoid is free. ‘

Proof. Let P be a pure submonoid of a free commutative monoid M. Let p be an
element of P written as a product xp - - - x,, of irreducible elements of M. Each
x; is obviously an irreducible element of P so any element of P can be written
as a product of irreducible elements of P. Furthermore any irreducible element
of P is also an irreducible element of M because P is pure in M. It follows that
any elements of P can be written as a product of irreducible elements of P in a
unique way i.e. P is free. Then we have:

‘ Theorem 2. The commutative monoid of cubical areas is free. ‘

Proof. Let X and X’ be two elements of H(R) and suppose X x X’ belongs to
Are. Since both a and 7 are morphisms of monoids we have a o y(X * X') =
aovy(X)*ao~y(X’) which is finite. It follows that both a0 y(X) and awoy(X")
are finite. Hence X and X’ actually belongs to Are, which is thus free as a pure
submonoid of H(R).

Moreover one can check that for any n € N and any finite family C1,...,Cy of
bounded? n-dimensional cubes, R™\(C} U --- U C}) is irreducible. Therefore the
commutative monoid of cubical areas has infinitely many irreducible elements.

The Theorem 2 is the theoretical cornerstone of our method: the geometric
model of a PV program is an element of H(Z) so we obtain from its decomposition
the expected processes factorization.

4 Effective Factoring of Cubical Areas

Beyond their theoretical usefulness, the maximal cubes provide the data struc-
ture which allows to handle algorithmically cubical areas, as in the static analyzer
ALCOOL which is devoted to the study of parallel programs.

4.1 Implementation

We need an algorithm which performs decompositions in H(A), its implemen-
tation is directly based on the proof of Theorem 1: H € H(A) is reducible if
and only if there exists some representative S of H which admits a nontrivial
decomposition in Py (A*). In order to describe the algorithm we define

SoA::{woA\wGS}

9 An n-dimensional cube C is bounded when C' C [—r,7]" for some r > 0.



for any S € Pp(A*) and A C {1,...,d(S)}. Moreover for w’ € A* with £(w') = | 4|
and A€ the complement of A (in {1,...,d(S)}), we define the set of words

U(w, A, S) ={woA°|weS and woA=uw'}

Then the class [S o A] € H(A) divides H if and only if for all w’ € S o A one
has ¥(w', A, S) = [S o A°|. In particular the choice of S € H does not alter the
result of the test and we have

[SoA][SoA|=H

Then we look for some divisor of H by testing all the nonempty subsets A of
{1,...,d(S)} (each test requires that we look over all the elements of S o A)
according to the following total ordering

A< A when [A|<|A'| or (JA]=|4] and A Cix A)

where Cje is the lexicographic ordering (A Ciex A’ is recursively defined by
min(A4) < min(A4’) or (min(A4) = min(A4’) and A\{min(A)} Cjex A"\{min(A")}).
Doing so, we know that if A is the first value such that [S o A] divides H, then
[SoA] is irreducible. Moreover we have d([SoA]) = |A| and for all Hy, Hy € H(A),
d(Hy * Hy) = d(Hg) + d(H,) hence we can suppose

The software ALCOOL is entirely written in 0Caml. The complexity of the decom-
position algorithm implemented in it is exponential in the dimension n of the
cubical area since it checks all the subsets of {0, ...,n —1}. However, it is worth
remarking that our algorithm is efficient when the cubical area to decompose is
actually the product of several irreducible cubical areas of small dimension (see
Subsection 4.2 for benchmarks). This remark should be compared with the fact
that the standard decomposition algorithm of integer into primes is very efficient
on products of small prime numbers.

We treat the case of the program X given in Example 1. Denote by H its
geometric model, we are actually provided with some representative S € H.
With the preceding notation we then check that [So A] divides H for A := {1, 3}.
Applying the permutation (2,3) we have

then (2,3) - S can be decomposed in Pp,(R*) as
2
([0,10¥[0,~T || [4,-[*[0,~[ || [0,~[*[0,1L | [0,-[x[4,-[)

and it follows that in the program X the sets of processes {m1, 73} and {ma, 74}
run independently from each other.



4.2 Benchmarks

We describe some programs upon which the algorithm has been tested. The
program X, ., is made of k groups of processes: for alli € {1, ..., k} it contains
n; copies of the process

P(a;).P(b).V(b).V(a;)

where a; is a mutex and b is a semaphore of arity k+ 1. All processes then share
the resource b, but as for X’ in Example 1 the k groups are actually independent.
On the other hand the program X} . is the same as X, ., but with b
of arity only k, which forbids any decomposition. The n-philosophers programs
implement the standard n dining philosophers algorithm. The benchmark table
of Figure 3 has been obtained using the Unix command time which is not accu-
rate. Hence these results have to be understood as an overapproximation of the
mean execution time.

Fig. 3. Benchmarks

Example |Time (in sec.)|Decomp.
6 philosophers 0.2 No
7 philosophers 0.7 No
8 philosophers 3.5 No
9 philosophers 21 No
10 philosophers 152 No
[Example|Time (in sec.)] Decomp. [[Example|Time (in sec.)[Decomp.|
[ o2 | 0.1 [ {1,3}{2,4} I 5. ] 0.1 [ No |
X222 0.1 {1,4}{2,5}{3,6} X500 0.3 No
X33 0.13 {1,3,5}{2,4,6} X33 0.52 No
Y2222 0.13 {1,5}{2,6}{3,7}{4,8} || X222 7.1 No
X 1 {1,3,5,7}{2,4,6,8} X4 33 No
X3,3,3 1.5 {1,4,7}{2,5,8}{3,6,9} || X333 293 No
Y5 6.1 {1,3,5,7}{2,4,6,8} Xis 327 No
Y55 50 [{1,3,5,7,9}{2,4,6,8,10}]] X% 2875 No

5 Conclusion

Related work.

The problem of decomposition of concurrent programs in CCS-style has been
studied in [GM92] and [MM93]. By the possibility of using semaphores of arbi-
trary arity, our work seems to go beyond this previous approach. Also note that
the silent and synchronous communication mechanism of CCS can be given a



straightforward geometric interpretation which falls in the scope of the present
discussion. However, the link between bisimilarity in CCS and isomorphic geo-
metric interpretations is still to be explored to make clear the relations between
these works.

In [LvOO05] B. Luttik and V. van Oostrom have characterized the commuta-
tive monoids with unique decomposition property as those which can be provided
with a so-called decomposition order. In the case where the property holds, the
divisibility order always fits. Yet, there might exist a more convenient one. Un-
fortunately, in the current setting the authors are not aware of any such order
yielding direct proofs. Nevertheless it is worth noticing that this approach is ac-
tually applied for decomposition of processes in a normed ACP theory for which
a convenient decomposition order exists.

One can also think of using this method to optimize the implementation
of parallel programs. In the same stream of ideas, [CGR97] defines a preorder
over a simple process algebra with durational actions in order to compare the
implementations of a same algorithm according to their efficiency.

Conclusion.

This paper uses a geometric semantics for concurrent programs, and presents
a proof of a unique decomposition property together with an algorithm working
at this semantic level (Theorem 2). The main strength of this work is that it
applies to any concurrent program yielding a cubical area. Example of features
allowed in this setting are: semaphores, synchronisation barriers, synchronous as
well as asynchronous communications (with finite or infinite message queues),
conditional branchings. In fact we can even consider loops provided we replace
the set Z of intervals of the real line R by the set A of arcs of the circle.

Future work.

Any cubical area naturally enjoys a pospace!? structure. Pospaces are among
the simplest objects studied in Directed Algebraic Topology. In particular, a cu-
bical area is associated with its category of components [FGHR04,GH05,Hau06]
and [GHO7], which is proven to be finite, loop-free!’ and in most cases con-
nected. Then, as the cubical areas do, these categories together with cartesian
product form a free commutative monoid. It is worth noticing this is actually
the generalization of a result concerning finite posets which has been established
in the early fifties [Has51]. Therefore a program II can be decomposed by lifting
the decomposition of the category of components of its geometric model [I7]. In
general, the relation between the decomposition of a cubical area and the one of
its category of components is a theoretical issue the authors wish to investigate.

Another important concern is a clarification of the control constructs com-
patible with cubical areas: replacing in some dimensions the intervals of the real
line by the arcs of the circle as mentioned above corresponds to a global loop,
but some richer structures may be useful.

19 shorthand for “partially ordered spaces” [Nac65].
11 Toop-free categories were introduced in [Hae91,Hae92] as “small categories without
loop” or “scwols” in a context far away from ours.



A final point of interest is the investigation of the exact relation between
our decomposition results and the ones of [GM92,MM93,LvO05]. Indeed they
use C'CS-like syntaxes to describe some classes of edge-labelled graphs modulo
bisimilarity, whereas the category of components of our models correspond to
some other graphs modulo directed homotopy. Hence the question: what is in
this setting the relation between bisimilarity and directed homotopy?
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