Outils logiques et algorithmiques - TD 6 - Composantes connexes

Exercice 1 (Vrai ou faux?)

- 1. Soit G un graphe non-orienté, la relation path(x, y) qui est vraie s'il existe un chemin de x à y dans G est une relation d'équivalence.
- 2. Soit G un graphe orienté, la relation path(x, y) qui est vraie s'il existe un chemin de x à y dans G est une relation d'équivalence.

Exercice 2 (Relations d'équivalence)

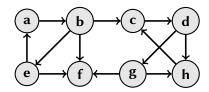
- 1. Soit $f:A\to B$ une fonction. On définit une relation binaire R sur l'ensemble A par : xRy si et seulement si f(x)=f(y). Montrer que R est une relation d'équivalence. Comment caractériser ses classes d'équivalence?
- 2. Montrer que la relation ⊆ n'est pas une relation d'équivalence.

Exercice 3 (Composantes connexes) La composante connexe d'un sommet a dans un graphe non orienté G est définie comme l'ensemble des points b tels qu'il existe un chemin (éventuellement vide) de a à b. Elle est notée $C_G(a)$.

- 1. Montrer que l'ensemble des composantes connexes forme une partition de l'ensemble des sommets :
 - chaque composante est non vide
 - tout sommet appartient à une composante
 - deux composantes sont soit disjointes, soit égales
- 2. Quel est le nombre maximal de composantes connexes dans un graphe en fonction du nombre de sommets, le nombre minimal?
- 3. On suppose que le graphe *G* est acyclique et a *k* composantes connexes. Soient deux sommets *a* et *b* de *G* et le graphe *G'* qui est le même que *G* avec une arête de plus qui a pour extrémités {*a*, *b*}. Montrer que soit *G'* contient un cycle, soit *G'* a *k* − 1 composantes connexes.
- 4. En déduire qu'un graphe acyclique à n sommets a au plus n-1 arêtes.

Exercice 4 (Composantes fortement connexes) Étant donné un graphe G orienté, la composante fortement connexe C(s) d'un sommet s de G est l'ensemble des sommets s' de G tels qu'il existe dans G un chemin de s à s' et un chemin de s' à s.

1. Identifier les composantes fortements connexes du graphe suivant.



2. Démontrer que si s_1 et s_2 appartiennent tous deux à la composante fortement connexe d'un même sommet s, alors il existe un chemin de s_1 vers s_2 .

On définit le graphe des composantes C(G) d'un graphe orienté G comme suit :

- les sommets de C(G) sont les composantes fortement connexes de G,
- il y a un arc de C(G) du sommet C_1 vers le sommet C_2 si et seulement s'il existe dans G: un sommet s_1 dans la composante C_1 , un sommet s_2 dans la composante C_2 , un arc de s_1 à s_2 .
- 3. Donner les graphe des composantes du graphe donné en exemple à la question 1.

П

- 4. Soit un graphe G et son graphe des composantes C(G). Démontrer par récurrence que pour tout k, s'il existe un chemin de longueur k dans C(G) d'un sommet C_1 à un sommet C_2 , alors pour tous sommets s_1 , s_2 de G tels que $s_1 \in C_1$ et $s_2 \in C_2$, il existe dans G un chemin de s_1 à s_2 de longueur supérieure ou égale à k.
- 5. Démontrer qu'un graphe des composantes est toujours acyclique.

Exercice 5 (Ordre et équivalence) On se donne un ensemble A et une relation R sur A qui est réflexive et transitive. On introduit la relation E définie par $E(x, y) = R(x, y) \wedge R(y, x)$

- 1. Montrer que E est une relation d'équivalence. On appelle $A_{/E}$ l'ensemble des classes d'équivalence de A pour la relation E. Montrer que pour tout $X \in A_{/E}$ on a $\forall x \ y \in X$, R(x, y).
- 2. Soit $A = \{a, b, c, d\}$ et R la relation telle que R(a, a), R(b, b), R(c, c), R(d, d), R(a, b), R(b, a), R(b, c), R(a, c). Définir la relation E et donner les classes d'équivalence correspondantes.
- 3. On introduit la relation R_E sur $A_{/E}$ par $R_E(X, Y) \equiv \exists x \in X, \exists y \in Y, R(x, y)$.
 - (a) Montrer que $R_E(X, Y) \iff \forall x \in X, \ \forall y \in Y, \ R(x, y)$.
 - (b) Montrer que R_E est une relation d'ordre sur $A_{/E}$.
 - (c) Construire la relation R_E sur l'exemple de relation de la question précédente.