Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay Fall 2023 https://www.lri.fr/∼[blsk/LambdaCalculus/](https://www.lri.fr/~blsk/LambdaCalculus/)

Chapter 2: reduction strategies

Reduction graph

There may be several possible reductions for a given term. The set of all possible reductions can be pictured as a graph

Questions:

- are some paths better than others?
- is there always a result in the end? is it unique?

1 Normalisation

Normal form

A *normal form* is a term that cannot be reduced anymore

Examples

- Counter-examples
- \hat{x} • $(\lambda x.x)$ y
- $\lambda x.xy$ • $x((\lambda y.y)(\lambda z.zx))$
- $x(\lambda y. y) (\lambda z. zx)$

If $t \rightarrow^* t'$ and t' is normal, the term t' is said to be a normal form of t This defines our informal notion of a *result* of a term

Terms without normal form

$$
\Omega = (\lambda x. xx) (\lambda x. xx)
$$

\n
$$
\rightarrow (xx) \{x \leftarrow \lambda x. xx\}
$$

\n
$$
= x \{x \leftarrow \lambda x. xx\} x \{x \leftarrow \lambda x. xx\}
$$

\n
$$
= (\lambda x. xx) (\lambda x. xx)
$$

\n
$$
= \Omega
$$

Summary:

- reduction of Ω does not terminate
- Ω is a term withour "result"

What about this other example?

 $(\lambda x \nu, \nu) \Omega z$

Normalization properties

A term t is:

• *strongly normalizing* if every reduction sequence starting from t eventually reaches a normal form

$$
(\lambda xy.y) ((\lambda z.z) (\lambda z.z))
$$

• weakly normalizing, or normalizable, if there is at least one reduction sequence starting from t and reaching a normal form

$$
(\lambda xy.y) ((\lambda z.zz) (\lambda z.zz))
$$

Note: normalization (strong or weak), is an undecidable property (see chapter on λ *-computability)*

2 Reduction strategies

Reduction orders

Normal order: reduce the most external redex first

• apply functions without reducing the arguments

Applicative order: reduce the most internal redex first

• normalize the arguments before reducing the function application itself

For disjoint redexes: from left to right

Exercise: normal order vs. applicative order

Compare normal order reduction and applicative order reduction of the following terms:

- 1. $(\lambda xy.x) z \Omega$
- 2. $(\lambda x. x x) ((\lambda y. y) z)$
- 3. $(\lambda x.x(\lambda y.y))(\lambda z.(\lambda a.aa)(z b))$

In each case: does another order allow shorter sequences? *Answer*

1. Normal order

$$
(\lambda xy.x) z \Omega
$$

\n
$$
\rightarrow (\lambda y.z) \Omega
$$

\n
$$
\rightarrow z
$$

Applicative order

$$
(\lambda xy.x) z \Omega
$$

\n
$$
\rightarrow (\lambda y.z) \Omega
$$

\n
$$
\rightarrow (\lambda y.z) \Omega
$$

\n
$$
\rightarrow ...
$$

Normal order reduction is as short as possible

2. Normal order

$$
(\lambda x. xx) ((\lambda y. y) z)
$$

\n
$$
\rightarrow ((\lambda y. y) z) ((\lambda y. y) z)
$$

\n
$$
\rightarrow z ((\lambda y. y) z)
$$

\n
$$
\rightarrow zz
$$

Applicative order

$$
(\lambda x. x x) ((\lambda y. y) z)
$$

\n
$$
\rightarrow (\lambda x. x x) z
$$

\n
$$
\rightarrow z z
$$

Applicative order reduction is as short as possible

3. Normal order

$$
(\lambda x.x(\lambda y.y)) (\lambda z.(\lambda a.aa) (z b))
$$

\n
$$
\rightarrow (\lambda z.(\lambda a.aa)(z b)) (\lambda y.y)
$$

\n
$$
\rightarrow (\lambda a.aa) ((\lambda y.y) b)
$$

\n
$$
\rightarrow ((\lambda y.y) b) ((\lambda y.y) b)
$$

\n
$$
\rightarrow b ((\lambda y.y) b)
$$

\n
$$
\rightarrow b b
$$

Applicative order

$$
(\lambda x.x(\lambda y.y)) (\lambda z.(\lambda a.aa)(z b))
$$

\n
$$
\rightarrow (\lambda x.x(\lambda y.y)) (\lambda z.(z b) (z b))
$$

\n
$$
\rightarrow (\lambda z.(z b) (z b)) (\lambda y.y)
$$

\n
$$
\rightarrow ((\lambda y.y) b) ((\lambda y.y) b)
$$

\n
$$
\rightarrow b(b)
$$

\n
$$
\rightarrow b b
$$

\nShortest reduction
\n
$$
(\lambda x.x(\lambda y.y)) (\lambda z.(\lambda a.aa) (z b))
$$

\n
$$
\rightarrow (\lambda z.(\lambda a.aa)(z b)) (\lambda y.y)
$$

\n
$$
\rightarrow (\lambda a.aa) ((\lambda y.y) b)
$$

\n
$$
\rightarrow (\lambda a.aa) b
$$

\n
$$
\rightarrow b b
$$

Normalizing strategy

Property of *normal order* reduction

• If a term *t* does have a normal form then *normal order* reduction reaches this normal form

(proof in another chapter)

Such a reducion strategy is said to be *normalizing*

3 Confluence

Confluences

Diamond property

The λ -calculus does not have the diamond property

It is however confluent

Confluence of the 𝜆**-calculus**

1. One can prove that the λ -calculus is *locally confluent*, which is:

2. Then one closes every opening diagram

by repeated application of local confluence.

Counter-example: local confluence does not imply confluence

This relation is locally confluent, but one cannot close the following diagram

Why repeated local confluence is not a proof

No guarantee that the opening subdiagrams

are smaller than the first diagram!

Confluence of the 𝜆**-calculus, for real**

Proof of Tait and Martin-Lof¨ Define a relation \implies_{β} which:

- is "between" \longrightarrow_{β} and $\longrightarrow_{\beta}^{*}$
- has the diamond property

Idea: reduce several redexes in parallel in such a way that, for instance:

$$
((\lambda y.y)a)((\lambda y.y)a) \quad \Rightarrow_{\beta} \quad aa
$$

Proof of Tait and Martin-Löf: structure of the argument

- Since \Rightarrow_{β} has the diamond property, one deduces that \Rightarrow_{β}^* has the diamond property
- With $\rightarrow_{\beta} \subseteq \Rightarrow_{\beta} \subseteq \rightarrow_{\beta}^*$, one deduces $\Rightarrow_{\beta}^* = \rightarrow_{\beta}^*$
- therefore \rightarrow_{β}^* has the diamond property
- and \rightarrow_{β} is confluent

Defining \Rightarrow ^{β}

Base case *"identity" reduction for variables*

$$
\overline{x \implies_\beta x}
$$

Inductive cases *parallel reduction of subterms*

$$
\frac{t \Rightarrow_{\beta} t'}{\lambda x.t \Rightarrow_{\beta} \lambda x.t'} \qquad \qquad \frac{t_1 \Rightarrow_{\beta} t'_1 \qquad t_2 \Rightarrow_{\beta} t'_2}{t_1 \ t_2 \Rightarrow_{\beta} t'_1 \ t'_2}
$$

Redexes

\n
$$
parallel reduction of the \beta-redex and its subterms
$$

$$
\frac{t \Rightarrow_{\beta} t' \quad u \Rightarrow_{\beta} u'}{(\lambda x.t) u \Rightarrow_{\beta} t' \{x \leftarrow u'\}}
$$

Example of parallel reduction

$$
\frac{\overline{z \rightrightarrows_{\beta} y}}{(\lambda y. y) (\lambda z. z) \rightrightarrows_{\beta} \lambda z. z} \frac{\overline{z \rightrightarrows_{\beta} z. z}}{(\lambda y. y) (\lambda z. z) \rightrightarrows_{\beta} \lambda z. z} \frac{\overline{x \rightrightarrows_{\beta} x}}{x \rightrightarrows_{\beta} x} \frac{\overline{w \rightrightarrows_{\beta} w}}{(\lambda w. w) a \rightrightarrows_{\beta} a} \frac{\overline{w \rightrightarrows_{\beta} w}}{(\lambda w. w) a \rightrightarrows_{\beta} a} \frac{\overline{w \rightrightarrows_{\beta} w}}{(\lambda w. w) a \rightrightarrows_{\beta} a}
$$

Remark: one reduces only already-present redexes *the resulting term may contain "new" redexes*

Exercise: framing \implies ^{β}

Prove that

Prove that

Prove that

 $\Rightarrow_{\beta} \in \rightarrow_{\beta}^*$

 \rightarrow_{β} \subseteq \Rightarrow_{β}

 \implies_{β} t

Answer

- $t \rightrightarrows_{\beta} t$ by induction on t .
	- **−** Case of a variable *x*. Then by definition $x \rightrightarrows_{\beta} x$.
	- **–** Case of an application t_1 t_2 . Induction hypotheses: $t_1 \rightrightarrows_{\beta} t_1$ and $t_2 \rightrightarrows_{\beta} t_2$. Then by application rule t_1 $t_2 \rightrightarrows_{\beta} t_1$ t_2 .
	- **–** Case of an abstraction $\lambda x.t.$ Induction hypothesis: $t \rightrightarrows_{β} t$. Then by abstraction rule $\lambda x.t \rightrightarrows_{β} t$ $\lambda x.t.$ \Box
- $\rightarrow \beta \subseteq \rightrightarrows_{\beta}$ by induction on $\rightarrow \beta$.
	- Case of *β*-reduction at the root ($λx.t$) $u \rightarrow β$ $t\{x \leftarrow u\}$. By previous result $t \rightrightarrows β$ t and $u \rightrightarrows_{\beta} u$. Then by redex rule $(\lambda x.t) u \rightrightarrows_{\beta} t\{x \leftarrow u\}.$
	- Case of reduction at the left of an application $t u \rightarrow_\beta t' u$ with $t \rightarrow_\beta t'$. Induction hypothesis: $t \rightrightarrows_{\beta} t'$. Moreover, by the previous result $u \rightrightarrows_{\beta} u$. Then by application rule $t u \rightrightarrows_{\beta} t' u$.
	- **–** Cases of reduction at the right of an application or under an abstraction similar.
- $\Rightarrow_{\beta} \subseteq \rightarrow_{\beta}^*$ by induction on \Rightarrow_{β} .
	- **–** Variable rule: $x \rightrightarrows_{\beta} x$. In particular $x \rightharpoonup_{\beta}^{0} x$.
	- **–** Abstraction rule: $\lambda x. t \implies \beta \lambda x. t'$ with $t \implies \beta t'$. Induction hypothesis: $t \rightarrow^*_{\beta} t'$. Then by recurrence on the length of the sequence $\lambda x.t \rightarrow_{\beta}^{*} \lambda x.t'.$
	- Application rule: t_1 $t_2 \rightrightarrows_{\beta} t'_1$ t'_2 with $t_1 \rightrightarrows_{\beta} t'_1$ and $t_2 \rightrightarrows_{\beta} t'_2$. Induction hypotheses: $t_1 \rightrightarrows_{\beta} t'_1$ and $t_2 \rightarrow_{\beta}^* t'_2$. Then t_1 , $t_2 \rightarrow_{\beta}^* t'_1$, $t_2 \rightarrow_{\beta}^* t'_1$, t'_2 .
	- $-$ Redex rule: $(\lambda x. t)$ $u \rightrightarrows_{\beta} t' \{x \leftarrow u'\}$ with $t \rightrightarrows_{\beta} t'$ and $u \rightrightarrows_{\beta} u'$. Induction hypotheses: $t \to_{\beta}^* t'$ and $u \to_{\beta}^* u'$. Then $(\lambda x. t) u \to_{\beta}^* (\lambda x. t') u \to_{\beta}^* (\lambda x. t') u' \to_{\beta}^* t' \{x \leftarrow u'\}.$

Exercise: method of Tait and Martin-Löf

Prove that if \rightarrow has the diamond property, then its reflexive-transitive closure \rightarrow^* has the diamond property

Prove that if two relations \rightarrow and \Rightarrow are such that

 \rightarrow \subseteq \Rightarrow \subseteq \rightarrow \rightarrow

then their reflexive-transitive closures \Rightarrow^* and \rightarrow^* are equal

Answer

- Assume \rightarrow has the diamond property. If $b \leftarrow a \rightarrow^n c$ then there is d such that $b \rightarrow^n d \leftarrow c$ (proof by recurrence on the length n of the sequence on the right). Then, we prove that if $b^k \leftarrow a \rightarrow^n c,$ then there is d such that $b \to^n d^k \leftarrow c$ (recurrence on k). Then \to^* has the diamond property.
- From →⊆⇒⊆→[∗] we deduce →*⊆⇒[∗]≤→**. Remark: →**=→*. Then →*⊆⇒*⊆→*, which means $\rightarrow^*=\rightrightarrows^*$.

Diamond property for parallel reduction

If $s \neq t \Rightarrow r$ then there is u such that $s \Rightarrow u \neq r$

By induction on the derivation of $t \rightrightarrows_{\beta} r$

- Case $x \rightrightarrows x$. Then $s = x$, and we define $u = x$
- Case $\lambda x.t_0 \implies \lambda x.r_0$ with $t_0 \implies r_0$. Then $s = \lambda x.s_0$ with $s_0 \not\equiv t_0$. By induction hypothesis there is u_0 such that $s_0 \rightrightarrows u_0 \rightrightarrows r_0$. Therefore $\lambda x . s_0 \Rightarrow \lambda x . u_0 \Leftarrow \lambda x . r_0$
- Case $t_1t_2 \rightrightarrows r_1r_2$ with $t_1 \rightrightarrows r_1$ and $t_2 \rightrightarrows r_2$. Two cases for $s \rightrightarrows t_1t_2$.
	- **−** if $s = s_1 s_2$ with $s_1 \not\equiv t_1$ and $s_2 \not\equiv t_2$ by induction hypotheses there are u_1 and u_2 such that $s_1 \rightrightarrows u_1 \rightrightarrows u_1 \rightrightarrows u_2 \rightrightarrows u_2 \rightrightarrows u_2 \rightrightarrows u_1$ therefore $s_1 s_2 \implies u_1 u_2 \not\models r_1 r_2$
	- $-$ if $s = s_1\{x \leftarrow s_2\}$ with $t_1 = \lambda x \cdot t'_1$ and $s_1 \leftarrow t'_1$ et $s_2 \leftarrow t_2$, then $r_1 = \lambda x . r'_1$ with $t'_1 \implies r'_1$ and by induction hypotheses there are u_1 and u_2 such that $s_1 \rightrightarrows u_1 \succeq r'_1$ et $s_2 \rightrightarrows u_2 \succeq r_2$, therefore $u_1\{x \leftarrow u_2\} \leftarrow (\lambda x . r'_1) r_2$ and we conclude if we can show that $s_1\{x \leftarrow s_2\} \Rightarrow u_1\{x \leftarrow u_2\}$ *Lemma:* if $a \rightrightarrows_{\beta} a'$ and $b \rightrightarrows_{\beta} b'$ then $a\{x \leftarrow b\} \rightrightarrows_{\beta} a'\{x \leftarrow b'\}$ } *coming soon*
- Case $(\lambda x. t_1) t_2 \rightrightarrows r_1 \{x \leftarrow r_2\}$ with $t_1 \rightrightarrows r_1$ et $t_2 \rightrightarrows r_2$. Two cases for $s \rightrightarrows (\lambda x. t_1) t_2$.
	- **–** if $s = (\lambda x . s_1) s_2$ with $s_1 \nleftrightarrow t_1$ and $s_2 \nleftrightarrow t_2$ we conclude as above.
	- **–** if $s = s_1 \{ x \leftarrow s_2 \}$ with $s_1 \not\equiv t_1$ and $s_2 \not\equiv t_2$ then by induction hypotheses there are u_1 and u_2 such that $s_1 \rightrightarrows u_1 \rightrightarrows r_1$ and $s_2 \rightrightarrows u_2 \rightrightarrows r_2$, and we conclude if we can show that $s_1\{x \leftarrow s_2\} \implies u_1\{x \leftarrow u_2\} \models r_1\{x \leftarrow r_2\}$ *Same lemma*

Lemma $a \rightrightarrows_{\beta} a' \wedge b \rightrightarrows_{\beta} b' \implies a\{x \leftarrow b\} \rightrightarrows_{\beta} a'\{x \leftarrow b'\}$ *By induction on the derivation of a* \Rightarrow_{β} *a*^{\prime}

• Case $v \rightrightarrows v$.

Case on x and y .

- $-$ If $x = y$, then $x\{x \leftarrow b\} = b \implies b' = x\{x \leftarrow b'\}$ $-$ If $x \neq y$, then $y\{x \leftarrow b\} = y \Rightarrow y = y\{x \leftarrow b'\}$
- Case $\lambda y.a_0 \Rightarrow \lambda y.a'_0$ with $a_0 \Rightarrow a'_0$.

Then $(\lambda y.a_0){x \leftarrow b} = \lambda y.(a_0{x \leftarrow b})$ and by induction hypothesis $a_0{x \leftarrow b} \Rightarrow a'_0{x \leftarrow b}$ b' .

Therefore
$$
\lambda y.(a_0\{x \leftarrow b\}) \implies \lambda y.(a'_0\{x \leftarrow b'\}) = (\lambda x. a'_0)\{x \leftarrow b'\}
$$

- Case $a_1a_2 \rightrightarrows a'_1a'_2$ with $a_1 \rightrightarrows a'_1$ et $a_2 \rightrightarrows a'_2$. Then $(a_1a_2){x \leftarrow b} = (a_1{x \leftarrow b})(a_2{x \leftarrow b})$ and $(a'_1a'_2){x \leftarrow b'} = (a'_1{x \leftarrow b'})(a'_2{x \leftarrow b})$ $b'\}$ and by induction hypotheses $a_1\{x \leftarrow b\} \rightrightarrows a'_1\{x \leftarrow b'\}$ and $a_2\{x \leftarrow b\} \rightrightarrows a'_2\{x \leftarrow b'\}$. Therefore $(a_1a_2)\{x \leftarrow b\} \rightrightarrows (a'_1a'_2)\{x \leftarrow b'\}$ • Case $(\lambda y. a_1)a_2 \rightrightarrows a'_1\{y \leftarrow a'_2\}$ with $a_1 \rightrightarrows a'_1$ and $a_2 \rightrightarrows a'_2$.
- Then $((\lambda \gamma.a_1)a_2)\{x \leftarrow b\} = (\lambda \gamma.a_1\{x \leftarrow b\})(a_2\{x \leftarrow b\}).$ By induction hypotheses we have $a_1\{x \leftarrow b\} \rightrightarrows_{\beta} a'_1\{x \leftarrow b'\}$ and $a_2\{x \leftarrow b\} \rightrightarrows_{\beta} a'_2\{x \leftarrow b'\}$. Therefore $(\lambda y. a_1 \{x \leftarrow b\}) (a_2 \{x \leftarrow b\}) \implies (a'_1 \{x \leftarrow b'\}) \{y \leftarrow a'_2 \{x \leftarrow b'\}\}.$ With α -renaming we can choose $y \neq x$ and $y \notin f(v(b'))$, therefore by substitution lemma $(a'_1\{x \leftarrow$ $b'\}$ } { $y \leftarrow a'_2\{x \leftarrow b'\}$ = $(a'_1\{y \leftarrow a'_2\})\{x \leftarrow b'\}.$

Substitution lemma

If $x \neq y$ and $x \notin f(v(v))$ then

$$
t\{x \leftarrow u\}\{y \leftarrow v\} = t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}
$$

Proof by induction on t

- Case of a variable.
	- $-$ Case $t = x$. Then $x\{x \leftarrow u\}\{y \leftarrow v\} = u\{y \leftarrow v\}$ and $x\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$ $x\{x \leftarrow u\{y \leftarrow v\}\} = u\{y \leftarrow v\}$
	- $-$ Case $t = y$. Then $y\{x \leftarrow u\}\{y \leftarrow v\} = y\{y \leftarrow v\} = v$ and $y\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} = v$ $v\{x \leftarrow u\{y \leftarrow v\}\} = v$
	- Case $t = z$, otherwise. Then $z\{x \leftarrow u\}\{y \leftarrow v\} = z$ and $s\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} = z$
- Case of an application t_1 t_2 . Assume $t_1\{x \leftarrow u\}\{y \leftarrow v\} = t_1\{y \leftarrow v\}\{x \leftarrow u\}\{y \leftarrow v\}$ and $t_2\{x \leftarrow u\}\{y \leftarrow v\} = t_2\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}\$ Then

$$
(t_1 t_2){x \leftarrow u}{y \leftarrow v}
$$

= $(t_1{x \leftarrow u} t_2{x \leftarrow u}){y \leftarrow v}$
= $t_1{x \leftarrow u}{y \leftarrow v} t_2{x \leftarrow u}{y \leftarrow v}$
= $t_1{y \leftarrow v}{x \leftarrow u}{y \leftarrow v} t_2{y \leftarrow v}{x \leftarrow u}{y \leftarrow v}$
= $(t_1{y \leftarrow v} t_2{y \leftarrow v}){x \leftarrow u}{y \leftarrow v}$
= $(t_1 t_2){y \leftarrow v} {x \leftarrow u}{y \leftarrow v}$

• Case of an abstraction $\lambda z.t.$ Assume $t\{x \leftarrow u\{y \leftarrow v\} = t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}\}$ and by Barendregt convention $z \neq x$ and $z \neq y$ and $z \notin f(v(u))$ and $z \notin f(v(v))$ (and $z \notin f(v(u \{y \leftarrow v\}))$ Then

$$
(\lambda z.t)\{x \leftarrow u\}\{y \leftarrow v\}
$$

= $(\lambda z.(t\{x \leftarrow u\}))\{y \leftarrow v\}$
= $\lambda z.(t\{x \leftarrow u\}\{y \leftarrow v\})$
= $\lambda z.(t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\})$
= $(\lambda z.(t\{y \leftarrow v\}))\{x \leftarrow u\{y \leftarrow v\}\}$
= $(\lambda z.t)\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$

Corollary: Church-Rosser theorem

If

 $t_1 =_\beta t_2$

then there is u such that

$$
t_1 \rightarrow^*_{\beta} u
$$
 et $t_2 \rightarrow^*_{\beta} u$

Consequences

- if *t* has a normal form *n*, then $t \rightarrow^* n$
- any λ -term can has only one normal form
- if two normal forms n and m are syntactically different, then $n \neq_{\beta} m$

4 Confluence: another proof

Strip lemma

Property of the λ -calculus:

Idea: identify the redex R that is reduced by the step $t \to t_1$. Then track what remains of R in t_2 , and reduce every occurrence. (proof later in the chapter)

The strip lemma implies confluence

If $t_1 \rightarrow^* t_n$ and $t_1 \rightarrow^* u_1$, then there exists u_n such that $t_n \rightarrow^* u_n$ and $u_1 \rightarrow^* u_n$.

Proof by recurrence on the length of the reduction sequence $t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow ... \rightarrow t_n$. Each step uses the strip lemma to make one "strip" in the following diagram.

Residuals

 $\overline{\mathcal{L}}$ consider a β-reduction step $\overline{t} \stackrel{p}{\rightarrow} t'$ of a redex ($\lambda x.u$) v at position p in $t.$ Positions of t can be tracked in t' . Let q be a position in t , and define $D(q)$ the set of *descendant positions* of q in t' .

• Positions outside of $(\lambda x. u)v$ still exist, unmodified, in t'.

$$
D(q) = \{q\} \qquad \text{if } p \text{ is not a prefix of } q
$$

- The positions p of the redex $(\lambda x. u)v$ and $p.1$ of the abstraction $\lambda x. u$ have no descendants.
- Every part of u still exist in $u\{x \leftarrow v\}$. The positions however are slightly modified between t and t' since an application and an abstraction disappeared.

$$
D(p.1.0.q)=\{p.q\}
$$

(We could argue on what happens to the occurrences of x . Here we choose to keep them in the descendant relation.)

• Every part of v exist in $u\{x \leftarrow v\}$ in each substituted occurrence of v (whose number can be arbitrary). The new position of each occurrence of v in $u\{x \leftarrow v\}$ corresponds to the position of an occurrence of x in u .

 $D(p,2,q) = \{p, p_x, q \mid p_x \text{ position of an occurrence of } x \text{ in } u\}$

A redex R' at position q' in t' is a *residual* of a redex R at position q in t after $t \stackrel{p}{\to} t'$ if $q' \in D(q)$.

Marked λ-terms

A simple solution to track the residuals of a set of redexes in a given source term is to add some "marks" in our λ -terms. For this we introduce an extension Λ of the syntax, where λ -abstractions can be underlined. This extended grammar is:

The β -reduction rule applies for both ordinary λ 's and marked $\underline{\lambda}$'s.

$$
(\lambda x.t) u \rightarrow_{\beta} t\{x \leftarrow u\}
$$

$$
(\underline{\lambda}x.t) u \rightarrow_{\beta} t\{x \leftarrow u\}
$$

Free variables, variable renaming and substitution are also extended to treat marked λ 's as ordinary λ 's.

$$
f v(x) = \{x\}
$$

\n
$$
f v(t u) = f v(t) v f v(u)
$$

\n
$$
f v(\lambda x.t) = f v(t) \setminus \{x\}
$$

\n
$$
f v(\lambda x.t) = f v(t) \setminus \{x\}
$$

\n
$$
x\{x \leftarrow v\} = v
$$

\n
$$
y\{x \leftarrow v\} = y
$$

\n
$$
(t u)\{x \leftarrow v\} = t\{x \leftarrow v\} u\{x \leftarrow v\}
$$

\n
$$
(\lambda y.t)\{x \leftarrow v\} = \lambda y.(t\{x \leftarrow v\})
$$

\n
$$
(\lambda y.t)\{x \leftarrow v\} = \lambda y.(t\{x \leftarrow v\})
$$

\nif $y \neq x$ and $y \notin f v(v)$
\n
$$
(\lambda y.t)\{x \leftarrow v\} = \lambda y.(t\{x \leftarrow y\})
$$

\nif $y \neq x$ and $y \notin f v(v)$
\n
$$
\lambda x.t = \alpha \lambda y.(t\{x \leftarrow y\})
$$

\nif $y \notin f v(t)$
\nif $y \notin f v(t)$

Removing marks

Let $t \in \Lambda$ be a marked term. Define |t| the ordinary λ -term obtained by removing all the marks in t.

$$
|x| = x
$$

\n
$$
|t u| = |t| |u|
$$

\n
$$
|\lambda x.t| = \lambda x.|t|
$$

\n
$$
|\underline{\lambda}x.t| = \lambda x.|t|
$$

We can trivially check that the marks do not interfere with reduction.

Lemma 1.

For any
$$
t, t' \in \underline{\Lambda}
$$
, $t \to t'$ iff $|t| \to |t'|$

Diagrammatically:

(solid arrows are assumptions, dashed arrow are deduced)

Reducing marked redexes

Let $t \in \Lambda$ be a marked term. Define $\varphi(t)$ the term obtained by reducing all marked redexes in t (and removing any remaining mark).

$$
\varphi((\underline{\lambda}x.t) u) = (\varphi(t))\{x \leftarrow \varphi(u)\}
$$

\n
$$
\varphi(x) = x
$$

\n
$$
\varphi(t u) = \varphi(t) \varphi(u)
$$
if *t* does not start with $\underline{\lambda}$
\n
$$
\varphi(\lambda x.t) = \lambda x.\varphi(t)
$$

\n
$$
\varphi(\underline{\lambda}x.t) = \lambda x.\varphi(t)
$$

Lemma 2. Commutation of φ and substitution.

For any $t, u \in \Lambda$, $\varphi(t\{x \leftarrow u\}) = \varphi(t)\{x \leftarrow \varphi(u)\}$

Proof by induction on t.

Lemma 3. Commutation of φ and β -reduction.

For any
$$
t, t' \in \Delta
$$
, if $t \to t'$ then $\varphi(t) \to \varphi(t')$

Diagrammatically:

Proof by induction on the derivation of $t \rightarrow t'$, using lemma 2.

Lemma 4. The simultaneous reduction performed by φ can be realized with ordinary β -reduction.

For any
$$
t \in \underline{\Lambda}
$$
, $|t| \rightarrow_{\beta}^{*} \varphi(t)$

Diagrammatically:

Proof by induction on t.

Proof of the strip lemma

Consider the reduction $t_1 \rightarrow \beta u_1$ of a single β -redex $R = (\lambda x.a) b$, and a sequence $t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4$ $\ldots \to t_n$. Let t'_1 be the term obtained from t_1 by marking the λ in R. First remark that $\varphi(t'_1)$ is precisly the term u_1 obtained by reducing R in t_1 .

Since marks do not interfere with reduction ($n - 1$ applications of lemma 1), we can reproduce the sequence $t_1 \rightarrow^* t_n$ starting from t'_1 .

Then by lemma 3 (applied $n - 1$ times), we build a sequence starting from u_1 .

Finally, by lemma 4 on the last triangle formed with the terms t_n , t_n' , u_n , we deduce a reduction sequence from $t_n = |t'_n|$ to $u_n = \varphi(t'_n)$.

