Lambda-calculus and programming language semantics

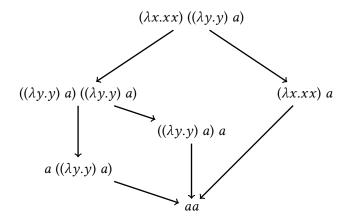
Thibaut Balabonski @ UPSay Fall 2023

https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 2: reduction strategies

Reduction graph

There may be several possible reductions for a given term. The set of all possible reductions can be pictured as a graph



Questions:

- are some paths better than others?
- is there always a result in the end? is it unique?

1 Normalisation

Normal form

A *normal form* is a term that cannot be reduced anymore

Examples

Counter-examples

x

• $(\lambda x.x)$ y

• $\lambda x.xy$

• $x((\lambda y.y)(\lambda z.zx))$

• $x (\lambda y.y) (\lambda z.zx)$

If $t \to^* t'$ and t' is normal, the term t' is said to be a normal form of t. This defines our informal notion of a *result* of a term

Terms without normal form

$$\Omega = (\lambda x.xx) (\lambda x.xx)
\rightarrow (xx)\{x \leftarrow \lambda x.xx\}
= x\{x \leftarrow \lambda x.xx\} x\{x \leftarrow \lambda x.xx\}
= (\lambda x.xx) (\lambda x.xx)
= \Omega$$

Summary:

- reduction of Ω does not terminate
- Ω is a term withour "result"

What about this other example?

 $(\lambda xy.y) \Omega z$

Normalization properties

A term *t* is:

• *strongly normalizing* if every reduction sequence starting from *t* eventually reaches a normal form

$$(\lambda x y. y) ((\lambda z. z) (\lambda z. z))$$

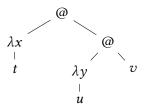
• weakly normalizing, or normalizable, if there is at least one reduction sequence starting from t and reaching a normal form

$$(\lambda xy.y)\;((\lambda z.zz)\;(\lambda z.zz))$$

Note: normalization (strong or weak), is an undecidable property (see chapter on λ -computability)

2 Reduction strategies

Reduction orders



Normal order: reduce the most external redex first

• apply functions without reducing the arguments

Applicative order: reduce the most internal redex first

• normalize the arguments before reducing the function application itself

For disjoint redexes: from left to right

Exercise: normal order vs. applicative order

Compare normal order reduction and applicative order reduction of the following terms:

- 1. $(\lambda x y.x) z \Omega$
- 2. $(\lambda x.xx)((\lambda y.y)z)$
- 3. $(\lambda x.x(\lambda y.y))(\lambda z.(\lambda a.aa)(z b))$

In each case: does another order allow shorter sequences? *Answer*

1. Normal order

$$(\lambda x y.x) z \Omega$$

$$\rightarrow (\lambda y.z) \Omega$$

$$\rightarrow z$$

Applicative order

$$(\lambda x y.x) z \Omega$$

$$\rightarrow (\lambda y.z) \Omega$$

$$\rightarrow (\lambda y.z) \Omega$$

$$\rightarrow ...$$

Normal order reduction is as short as possible

2. Normal order

$$(\lambda x.xx) ((\lambda y.y) z)$$

$$\rightarrow ((\lambda y.y) z) ((\lambda y.y) z)$$

$$\rightarrow z ((\lambda y.y) z)$$

$$\rightarrow zz$$

Applicative order

$$(\lambda x.xx) ((\lambda y.y) z) \\ \rightarrow (\lambda x.xx) z \\ \rightarrow zz$$

Applicative order reduction is as short as possible

3. Normal order

$$(\lambda x. x(\lambda y. y)) (\lambda z. (\lambda a. aa) (z b))$$

$$\rightarrow (\lambda z. (\lambda a. aa)(z b)) (\lambda y. y)$$

$$\rightarrow (\lambda a. aa) ((\lambda y. y) b)$$

$$\rightarrow ((\lambda y. y) b) ((\lambda y. y) b)$$

$$\rightarrow b ((\lambda y. y) b)$$

$$\rightarrow bb$$

Applicative order

$$(\lambda x. x(\lambda y. y)) (\lambda z. (\lambda a. aa)(z b))$$

$$\rightarrow (\lambda x. x(\lambda y. y)) (\lambda z. (z b) (z b))$$

$$\rightarrow (\lambda z. (z b) (z b)) (\lambda y. y)$$

$$\rightarrow ((\lambda y. y) b) ((\lambda y. y) b)$$

$$\rightarrow b ((\lambda y. y) b)$$

$$\rightarrow bb$$

Shortest reduction

$$(\lambda x. x(\lambda y. y)) (\lambda z. (\lambda a. aa) (z b))$$

$$\rightarrow (\lambda z. (\lambda a. aa)(z b)) (\lambda y. y)$$

$$\rightarrow (\lambda a. aa) ((\lambda y. y) b)$$

$$\rightarrow (\lambda a. aa) b$$

$$\rightarrow bb$$

Normalizing strategy

Property of normal order reduction

• If a term *t* does have a normal form then *normal order* reduction reaches this normal form

(proof in another chapter)

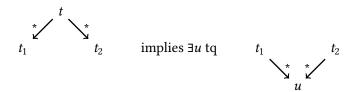
Such a reducion strategy is said to be normalizing

3 Confluence

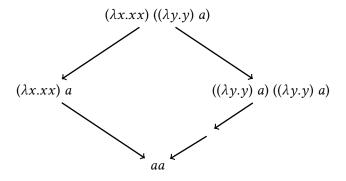
Confluences

Diamond property

Confluence



The λ -calculus does not have the diamond property



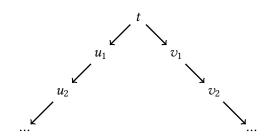
It is however confluent

Confluence of the λ -calculus

1. One can prove that the λ -calculus is *locally confluent*, which is:



2. Then one closes every opening diagram

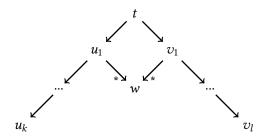


by repeated application of local confluence.

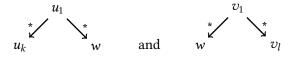
Counter-example: local confluence does not imply confluence

This relation is locally confluent, but one cannot close the following diagram

Why repeated local confluence is not a proof



No guarantee that the opening subdiagrams



are smaller than the first diagram!

Confluence of the λ -calculus, for real

Proof of Tait and Martin-Löf

Define a relation \Rightarrow_{β} which:

- is "between" \rightarrow_{β} and \rightarrow_{β}^{*}
- has the diamond property

Idea: reduce several redexes in parallel in such a way that, for instance:

$$((\lambda y.y)a)((\lambda y.y)a) \Rightarrow_{\beta} aa$$

Proof of Tait and Martin-Löf: structure of the argument

• Since \Rightarrow_{β} has the diamond property, one deduces that \Rightarrow_{β}^{*} has the diamond property

5

- $\bullet \ \, \text{With} \quad \longrightarrow_{\beta} \ \subseteq \ \rightrightarrows_{\beta} \ \subseteq \ \longrightarrow_{\beta}^{*}, \, \text{one deduces} \quad \rightrightarrows_{\beta}^{*} \ = \ \longrightarrow_{\beta}^{*}$
- therefore \rightarrow^*_{β} has the diamond property
- and \rightarrow_{β} is confluent

Defining $\rightrightarrows_{\beta}$

Base case

"identity" reduction for variables

$$\overline{x \Rightarrow_{\beta} x}$$

Inductive cases

parallel reduction of subterms

$$\frac{t \implies_{\beta} t'}{\lambda x.t \implies_{\beta} \lambda x.t'} \qquad \frac{t_1 \implies_{\beta} t'_1 \qquad t_2 \implies_{\beta} t'_2}{t_1 \ t_2 \implies_{\beta} t'_1 \ t'_2}$$

Redexes

parallel reduction of the β -redex and its subterms

$$\frac{t \Rightarrow_{\beta} t' \quad u \Rightarrow_{\beta} u'}{(\lambda x.t) \ u \Rightarrow_{\beta} t' \{x \leftarrow u'\}}$$

Example of parallel reduction

$$\frac{\overline{z \Rightarrow_{\beta} z}}{y \Rightarrow_{\beta} y} \frac{\overline{z \Rightarrow_{\beta} z}}{\lambda z.z \Rightarrow_{\beta} \lambda z.z} \\
\frac{(\lambda y.y) (\lambda z.z) \Rightarrow_{\beta} \lambda z.z}{x \Rightarrow_{\beta} x} \frac{w \Rightarrow_{\beta} w}{(\lambda w.w)a \Rightarrow_{\beta} a} \\
\frac{((\lambda y.y) (\lambda z.z)) x \Rightarrow_{\beta} (\lambda z.z) x}{(\lambda w.w)a) \Rightarrow_{\beta} (\lambda z.z) a}$$

Remark: one reduces only already-present redexes the resulting term may contain "new" redexes

Exercise: framing \Rightarrow_{β}

Prove that

$$t \Rightarrow_{\beta} t$$

Prove that

$$\longrightarrow_{\beta} \subseteq \rightrightarrows_{\beta}$$

Prove that

$$\Rightarrow_{\beta} \subseteq \rightarrow_{\beta}^{*}$$

Answer

- $t \rightrightarrows_{\beta} t$ by induction on t.
 - Case of a variable x. Then by definition $x \rightrightarrows_{\beta} x$.
 - Case of an application t_1 t_2 . Induction hypotheses: $t_1 \rightrightarrows_{\beta} t_1$ and $t_2 \rightrightarrows_{\beta} t_2$. Then by application rule t_1 $t_2 \rightrightarrows_{\beta} t_1$ t_2 .
 - Case of an abstraction $\lambda x.t$. Induction hypothesis: $t \Rightarrow_{\beta} t$. Then by abstraction rule $\lambda x.t \Rightarrow_{\beta} \lambda x.t$.
- $\rightarrow_{\beta} \subseteq \Longrightarrow_{\beta}$ by induction on \rightarrow_{β} .
 - Case of β -reduction at the root $(\lambda x.t)$ $u \to_{\beta} t\{x \leftarrow u\}$. By previous result $t \rightrightarrows_{\beta} t$ and $u \rightrightarrows_{\beta} u$. Then by redex rule $(\lambda x.t)$ $u \rightrightarrows_{\beta} t\{x \leftarrow u\}$.
 - Case of reduction at the left of an application t $u \to_{\beta} t'$ u with $t \to_{\beta} t'$. Induction hypothesis: $t \rightrightarrows_{\beta} t'$. Moreover, by the previous result $u \rightrightarrows_{\beta} u$. Then by application rule t $u \rightrightarrows_{\beta} t'$ u.
 - Cases of reduction at the right of an application or under an abstraction similar.

- $\Rightarrow_{\beta} \subseteq \longrightarrow_{\beta}^{*}$ by induction on \Rightarrow_{β} .
 - Variable rule: $x \rightrightarrows_{\beta} x$. In particular $x \to_{\beta}^{0} x$.
 - Abstraction rule: $\lambda x.t \rightrightarrows_{\beta} \lambda x.t'$ with $t \rightrightarrows_{\beta} t'$. Induction hypothesis: $t \to_{\beta}^* t'$. Then by recurrence on the length of the sequence $\lambda x.t \to_{\beta}^* \lambda x.t'$.
 - Application rule: $t_1 \ t_2 \Rightarrow_{\beta} t'_1 \ t'_2$ with $t_1 \Rightarrow_{\beta} t'_1$ and $t_2 \Rightarrow_{\beta} t'_2$. Induction hypotheses: $t_1 \rightarrow_{\beta}^* t'_1$ and $t_2 \rightarrow_{\beta}^* t'_2$. Then $t_1 \ t_2 \rightarrow_{\beta}^* t'_1 \ t_2 \rightarrow_{\beta}^* t'_1 \ t'_2$.
 - Redex rule: $(\lambda x.t)$ $u \rightrightarrows_{\beta} t'\{x \leftarrow u'\}$ with $t \rightrightarrows_{\beta} t'$ and $u \rightrightarrows_{\beta} u'$. Induction hypotheses: $t \to_{\beta}^* t'$ and $u \to_{\beta}^* u'$. Then $(\lambda x.t)$ $u \to_{\beta}^* (\lambda x.t')$ $u \to_{\beta}^* (\lambda x.t')$ $u' \to_{\beta} t'\{x \leftarrow u'\}$.

Exercise: method of Tait and Martin-Löf

Prove that if \rightarrow has the diamond property, then its reflexive-transitive closure \rightarrow^* has the diamond property

Prove that if two relations \rightarrow and \Rightarrow are such that

$$\rightarrow$$
 \subseteq \rightrightarrows \subseteq \rightarrow^*

then their reflexive-transitive closures \Rightarrow^* and \rightarrow^* are equal *Answer*

- Assume \to has the diamond property. If $b \leftarrow a \to^n c$ then there is d such that $b \to^n d \leftarrow c$ (proof by recurrence on the length n of the sequence on the right). Then, we prove that if $b^k \leftarrow a \to^n c$, then there is d such that $b \to^n d^k \leftarrow c$ (recurrence on k). Then \to^* has the diamond property.
- From $\rightarrow \subseteq \rightrightarrows \subseteq \longrightarrow^*$ we deduce $\rightarrow^* \subseteq \rightrightarrows^* \subseteq \longrightarrow^{**}$. Remark: $\rightarrow^{**} = \longrightarrow^*$. Then $\rightarrow^* \subseteq \rightrightarrows^* \subseteq \longrightarrow^*$, which means $\rightarrow^* = \rightrightarrows^*$.

Diamond property for parallel reduction

If $s = t \Rightarrow r$ then there is u such that $s \Rightarrow u = r$

By induction on the derivation of $t \rightrightarrows_{\beta} r$

- Case $x \Rightarrow x$. Then s = x, and we define u = x
- Case $\lambda x.t_0 \Rightarrow \lambda x.r_0$ with $t_0 \Rightarrow r_0$. Then $s = \lambda x.s_0$ with $s_0 \Leftarrow t_0$.

By induction hypothesis there is u_0 such that $s_0 \Rightarrow u_0 \models r_0$.

Therefore $\lambda x.s_0 \Rightarrow \lambda x.u_0 \Leftarrow \lambda x.r_0$

- Case $t_1t_2 \implies r_1r_2$ with $t_1 \implies r_1$ and $t_2 \implies r_2$. Two cases for $s \not\models t_1t_2$.
 - if $s = s_1 s_2$ with $s_1
 ot t_1$ and $s_2
 ot t_2$ by induction hypotheses there are u_1 and u_2 such that $s_1
 ot the u_1
 ot the u_2
 ot the u_3
 ot the u_4
 ot the u_5
 ot u_6
 ot u_7
 ot u_8
 ot u_9
 ot u_8
 ot u_9
 ot u_9$
 - if $s = s_1\{x \leftarrow s_2\}$ with $t_1 = \lambda x.t_1'$ and $s_1 \rightleftharpoons t_1'$ et $s_2 \rightleftharpoons t_2$, then $r_1 = \lambda x.r_1'$ with $t_1' \rightrightarrows r_1'$ and by induction hypotheses there are u_1 and u_2 such that $s_1 \rightrightarrows u_1 \rightleftharpoons r_1'$ et $s_2 \rightrightarrows u_2 \rightleftharpoons r_2$,

therefore $u_1\{x \leftarrow u_2\} = (\lambda x.r_1')r_2$

and we conclude if we can show that $s_1\{x \leftarrow s_2\} \implies u_1\{x \leftarrow u_2\}$

Lemma: if $a \rightrightarrows_{\beta} a'$ and $b \rightrightarrows_{\beta} b'$ then $a\{x \leftarrow b\} \rightrightarrows_{\beta} a'\{x \leftarrow b'\}$

coming soon

- Case $(\lambda x.t_1)t_2 \Rightarrow r_1\{x \leftarrow r_2\}$ with $t_1 \Rightarrow r_1$ et $t_2 \Rightarrow r_2$. Two cases for $s = (\lambda x.t_1)t_2$.
 - if $s = (\lambda x. s_1)s_2$ with $s_1 = t_1$ and $s_2 = t_2$ we conclude as above.
 - if $s = s_1\{x \leftarrow s_2\}$ with $s_1 \not\models t_1$ and $s_2 \not\models t_2$ then by induction hypotheses there are u_1 and u_2 such that $s_1 \rightrightarrows u_1 \not\models r_1$ and $s_2 \rightrightarrows u_2 \not\models r_2$, and we conclude if we can show that $s_1\{x \leftarrow s_2\} \rightrightarrows u_1\{x \leftarrow u_2\} \not\models r_1\{x \leftarrow r_2\}$ Same lemma

Lemma $a \rightrightarrows_{\beta} a' \land b \rightrightarrows_{\beta} b' \implies a\{x \leftarrow b\} \rightrightarrows_{\beta} a'\{x \leftarrow b'\}$ By induction on the derivation of $a \rightrightarrows_{\beta} a'$

• Case $y \Rightarrow y$.

Case on x and y.

- If
$$x = y$$
, then $x\{x \leftarrow b\} = b \implies b' = x\{x \leftarrow b'\}$

- If
$$x \neq y$$
, then $y\{x \leftarrow b\} = y \Rightarrow y = y\{x \leftarrow b'\}$

• Case $\lambda y.a_0 \Rightarrow \lambda y.a_0'$ with $a_0 \Rightarrow a_0'$.

Then $(\lambda y.a_0)\{x \leftarrow b\} = \lambda y.(a_0\{x \leftarrow b\})$ and by induction hypothesis $a_0\{x \leftarrow b\} \Rightarrow a_0'\{x \leftarrow b'\}$.

Therefore
$$\lambda y.(a_0\{x \leftarrow b\}) \implies \lambda y.(a_0'\{x \leftarrow b'\}) = (\lambda x.a_0')\{x \leftarrow b'\}$$

• Case $a_1a_2 \Rightarrow a_1'a_2'$ with $a_1 \Rightarrow a_1'$ et $a_2 \Rightarrow a_2'$.

Then $(a_1a_2)\{x \leftarrow b\} = (a_1\{x \leftarrow b\})(a_2\{x \leftarrow b\})$ and $(a_1'a_2')\{x \leftarrow b'\} = (a_1'\{x \leftarrow b'\})(a_2'\{x \leftarrow b'\})$

and by induction hypotheses $a_1\{x \leftarrow b\} \rightrightarrows a_1'\{x \leftarrow b'\}$ and $a_2\{x \leftarrow b\} \rightrightarrows a_2'\{x \leftarrow b'\}$.

Therefore $(a_1a_2)\{x \leftarrow b\} \rightrightarrows (a_1'a_2')\{x \leftarrow b'\}$

• Case $(\lambda y.a_1)a_2 \Rightarrow a_1'\{y \leftarrow a_2'\}$ with $a_1 \Rightarrow a_1'$ and $a_2 \Rightarrow a_2'$.

Then $((\lambda y.a_1)a_2)\{x \leftarrow b\} = (\lambda y.a_1\{x \leftarrow b\})(a_2\{x \leftarrow b\}).$

By induction hypotheses we have $a_1\{x \leftarrow b\} \Rightarrow_{\beta} a'_1\{x \leftarrow b'\}$ and $a_2\{x \leftarrow b\} \Rightarrow_{\beta} a'_2\{x \leftarrow b'\}$.

Therefore $(\lambda y.a_1\{x \leftarrow b\})(a_2\{x \leftarrow b\})$ $\Rightarrow (a_1'\{x \leftarrow b'\})\{y \leftarrow a_2'\{x \leftarrow b'\}\}.$

With α -renaming we can choose $y \neq x$ and $y \notin fv(b')$, therefore by substitution lemma $(a'_1\{x \leftarrow b'\})\{y \leftarrow a'_2\{x \leftarrow b'\}\} = (a'_1\{y \leftarrow a'_2\})\{x \leftarrow b'\}$.

Substitution lemma

If $x \neq y$ and $x \notin fv(v)$ then

$$t\{x \leftarrow u\}\{y \leftarrow v\} \quad = \quad t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$$

Proof by induction on *t*

- · Case of a variable.
 - Case t = x. Then $x\{x \leftarrow u\}\{y \leftarrow v\} = u\{y \leftarrow v\}$ and $x\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} = x\{x \leftarrow u\{y \leftarrow v\}\} = u\{y \leftarrow v\}$
 - Case t = y. Then $y\{x \leftarrow u\}\{y \leftarrow v\} = y\{y \leftarrow v\} = v$ and $y\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} = v\{x \leftarrow u\{y \leftarrow v\}\} = v$
 - Case t = z, otherwise. Then $z\{x \leftarrow u\}\{y \leftarrow v\} = z$ and $s\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} = z$
- Case of an application t_1 t_2 . Assume $t_1\{x \leftarrow u\}\{y \leftarrow v\} = t_1\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$ and $t_2\{x \leftarrow u\}\{y \leftarrow v\} = t_2\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$ Then

$$(t_1 \ t_2)\{x \leftarrow u\}\{y \leftarrow v\}$$

$$= (t_1\{x \leftarrow u\} \ t_2\{x \leftarrow u\})\{y \leftarrow v\}$$

$$= t_1\{x \leftarrow u\}\{y \leftarrow v\} \ t_2\{x \leftarrow u\}\{y \leftarrow v\}$$

$$= t_1\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} \ t_2\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$$

$$= (t_1\{y \leftarrow v\} \ t_2\{y \leftarrow v\})\{x \leftarrow u\{y \leftarrow v\}\}$$

$$= (t_1 \ t_2)\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$$

• Case of an abstraction $\lambda z.t$. Assume $t\{x \leftarrow u\}\{y \leftarrow v\} = t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$ and by Barendregt convention $z \neq x$ and $z \neq y$ and $z \notin \mathsf{fv}(u)$ and $z \notin \mathsf{fv}(v)$ (and $z \notin \mathsf{fv}(u\{y \leftarrow v\})$) Then

$$(\lambda z.t)\{x \leftarrow u\}\{y \leftarrow v\}$$

$$= (\lambda z.(t\{x \leftarrow u\}))\{y \leftarrow v\}$$

$$= \lambda z.(t\{x \leftarrow u\}\{y \leftarrow v\})$$

$$= \lambda z.(t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\})$$

$$= (\lambda z.(t\{y \leftarrow v\}))\{x \leftarrow u\{y \leftarrow v\}\}$$

$$= (\lambda z.t)\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$$

Corollary: Church-Rosser theorem

If

$$t_1 =_{\beta} t_2$$

then there is u such that

$$t_1 \longrightarrow_{\beta}^* u$$
 et $t_2 \longrightarrow_{\beta}^* u$

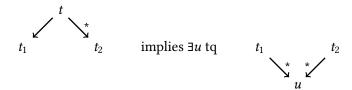
Consequences

- if t has a normal form n, then $t \rightarrow^* n$
- any λ -term can has only one normal form
- if two normal forms n and m are syntactically different, then $n \neq_{\beta} m$

4 Confluence: another proof

Strip lemma

Property of the λ -calculus:

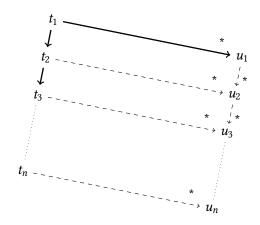


Idea: identify the redex R that is reduced by the step $t \to t_1$. Then track what remains of R in t_2 , and reduce every occurrence. (proof later in the chapter)

The strip lemma implies confluence

If $t_1 \to^* t_n$ and $t_1 \to^* u_1$, then there exists u_n such that $t_n \to^* u_n$ and $u_1 \to^* u_n$.

Proof by recurrence on the length of the reduction sequence $t_1 \to t_2 \to t_3 \to \dots \to t_n$. Each step uses the strip lemma to make one "strip" in the following diagram.



Residuals

Consider a β -reduction step $t \xrightarrow{p} t'$ of a redex $(\lambda x.u)v$ at position p in t. Positions of t can be tracked in t'. Let q be a position in t, and define D(q) the set of descendant positions of q in t'.

• Positions outside of $(\lambda x.u)v$ still exist, unmodified, in t'.

$$D(q) = \{q\}$$
 if p is not a prefix of q

- The positions p of the redex $(\lambda x.u)v$ and p.1 of the abstraction $\lambda x.u$ have no descendants.
- Every part of u still exist in $u\{x \leftarrow v\}$. The positions however are slightly modified between t and t' since an application and an abstraction disappeared.

$$D(p.1.0.q) = \{p.q\}$$

(We could argue on what happens to the occurrences of x. Here we choose to keep them in the descendant relation.)

Every part of v exist in u{x ← v} in each substituted occurrence of v (whose number can be arbitrary). The new position of each occurrence of v in u{x ← v} corresponds to the position of an occurrence of x in u.

$$D(p.2.q) = \{p.p_x.q \mid p_x \text{ position of an occurrence of } x \text{ in } u\}$$

A redex R' at position q' in t' is a residual of a redex R at position q in t after $t \xrightarrow{p} t'$ if $q' \in D(q)$.

Marked λ -terms

A simple solution to track the residuals of a set of redexes in a given source term is to add some "marks" in our λ -terms. For this we introduce an extension $\underline{\Lambda}$ of the syntax, where λ -abstractions can be underlined. This extended grammar is:

$$\begin{array}{cccc} t & ::= & x & \text{variable} \\ & | & t & t & \text{application} \\ & | & \lambda x.t & \text{ordinary abstraction} \\ & | & \underline{\lambda} x.t & \text{marked abstraction} \end{array}$$

The *β*-reduction rule applies for both ordinary λ 's and marked $\underline{\lambda}$'s.

$$\begin{array}{ccc} (\lambda x.t) \ u & \longrightarrow_{\beta} & t\{x \leftarrow u\} \\ (\underline{\lambda}x.t) \ u & \longrightarrow_{\beta} & t\{x \leftarrow u\} \end{array}$$

Free variables, variable renaming and substitution are also extended to treat marked $\underline{\lambda}$'s as ordinary λ 's.

$$fv(x) = \{x\}$$

$$fv(t u) = fv(t) \cup fv(u)$$

$$fv(\lambda x.t) = fv(t) \setminus \{x\}$$

$$fv(\underline{\lambda}x.t) = fv(t) \setminus \{x\}$$

$$x\{x \leftarrow v\} = v$$

$$y\{x \leftarrow v\} = y \qquad \text{if } y \neq x$$

$$(t u)\{x \leftarrow v\} = t\{x \leftarrow v\} u\{x \leftarrow v\}$$

$$(\lambda y.t)\{x \leftarrow v\} = \lambda y.(t\{x \leftarrow v\}) \qquad \text{if } y \neq x \text{ and } y \notin fv(v)$$

$$(\underline{\lambda}y.t)\{x \leftarrow v\} = \underline{\lambda}y.(t\{x \leftarrow v\}) \qquad \text{if } y \neq x \text{ and } y \notin fv(v)$$

$$\lambda x.t =_{\alpha} \lambda y.(t\{x \leftarrow y\}) \qquad \text{if } y \notin fv(t)$$

$$\underline{\lambda}x.t =_{\alpha} \underline{\lambda}y.(t\{x \leftarrow y\}) \qquad \text{if } y \notin fv(t)$$

Removing marks

Let $t \in \underline{\Lambda}$ be a marked term. Define |t| the ordinary λ -term obtained by removing all the marks in t.

$$|x| = x$$

$$|t u| = |t| |u|$$

$$|\lambda x.t| = \lambda x.|t|$$

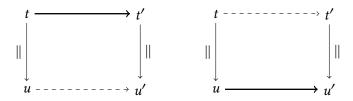
$$|\underline{\lambda}x.t| = \lambda x.|t|$$

We can trivially check that the marks do not interfere with reduction.

Lemma 1.

For any
$$t, t' \in \underline{\Lambda}$$
, $t \to t'$ iff $|t| \to |t'|$

Diagrammatically:



(solid arrows are assumptions, dashed arrow are deduced)

Reducing marked redexes

Let $t \in \underline{\Lambda}$ be a marked term. Define $\varphi(t)$ the term obtained by reducing all marked redexes in t (and removing any remaining mark).

$$\begin{array}{rcl} \varphi((\underline{\lambda}x.t)\;u) &=& (\varphi(t))\{x \longleftarrow \varphi(u)\} \\ \varphi(x) &=& x \\ \varphi(t\;u) &=& \varphi(t)\;\varphi(u) & \text{if t does not start with $\underline{\lambda}$} \\ \varphi(\lambda x.t) &=& \lambda x.\varphi(t) \\ \varphi(\underline{\lambda}x.t) &=& \lambda x.\varphi(t) \end{array}$$

Lemma 2. Commutation of φ and substitution.

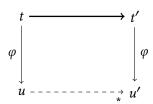
For any
$$t, u \in \underline{\Lambda}$$
, $\varphi(t\{x \leftarrow u\}) = \varphi(t)\{x \leftarrow \varphi(u)\}$

Proof by induction on t.

Lemma 3. Commutation of φ and β -reduction.

For any
$$t, t' \in \underline{\Lambda}$$
, if $t \to t'$ then $\varphi(t) \to \varphi(t')$

Diagrammatically:

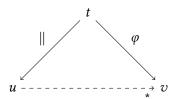


Proof by induction on the derivation of $t \to t'$, using lemma 2.

Lemma 4. The simultaneous reduction performed by φ can be realized with ordinary β -reduction.

For any
$$t \in \underline{\Lambda}$$
, $|t| \rightarrow_{\beta}^{*} \varphi(t)$

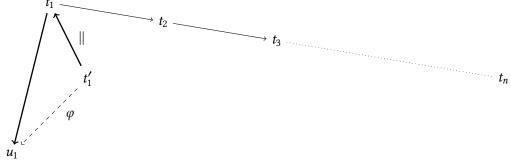
Diagrammatically:



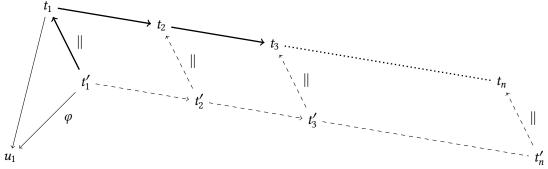
Proof by induction on t.

Proof of the strip lemma

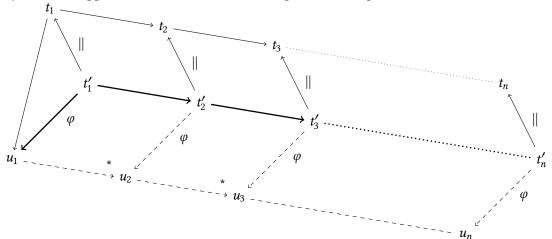
Consider the reduction $t_1 \to_{\beta} u_1$ of a single β -redex $R = (\lambda x.a) b$, and a sequence $t_1 \to t_2 \to t_3 \to ... \to t_n$. Let t_1' be the term obtained from t_1 by marking the λ in R. First remark that $\varphi(t_1')$ is precisely the term u_1 obtained by reducing R in t_1 .



Since marks do not interfere with reduction (n-1 applications of lemma 1), we can reproduce the sequence $t_1 \rightarrow^* t_n$ starting from t'_1 .



Then by lemma 3 (applied n-1 times), we build a sequence starting from u_1 .



Finally, by lemma 4 on the last triangle formed with the terms t_n , t'_n , u_n , we deduce a reduction sequence from $t_n = |t'_n|$ to $u_n = \varphi(t'_n)$.

