
Lambda-calculus and programming language semantics
Thibaut Balabonski @ UPSay
Fall 2023
https://www.lri.fr/∼blsk/LambdaCalculus/

Chapter 2: reduction strategies
Reduction graph

There may be several possible reductions for a given term.
The set of all possible reductions can be pictured as a graph

(�x.xx) ((�y.y) a)

((�y.y) a) ((�y.y) a)

a ((�y.y) a)

((�y.y) a) a

aa

(�x.xx) a

Questions:

• are some paths better than others?

• is there always a result in the end? is it unique?

1 Normalisation

Normal form
A normal form is a term that cannot be reduced anymore

Examples

• x

• �x.xy

• x (�y.y) (�z.zx)

Counter-examples

• (�x.x) y

• x ((�y.y) (�z.zx))

If t →∗
t
′ and t′ is normal, the term t

′ is said to be a normal form of t
This de�nes our informal notion of a result of a term

Terms without normal form

Ω = (�x.xx) (�x.xx)

→ (xx){x ← �x.xx}

= x{x ← �x.xx} x{x ← �x.xx}

= (�x.xx) (�x.xx)

= Ω

Summary:

1

https://www.lri.fr/~blsk/LambdaCalculus/

• reduction of Ω does not terminate

• Ω is a term withour “result”

What about this other example?
(�xy.y) Ω z

Normalization properties
A term t is:

• strongly normalizing if every reduction sequence starting from t eventually reaches a normal form

(�xy.y) ((�z.z) (�z.z))

• weakly normalizing, or normalizable, if there is at least one reduction sequence starting from t and
reaching a normal form

(�xy.y) ((�z.zz) (�z.zz))

Note: normalization (strong or weak), is an undecidable property (see chapter on �-computability)

2 Reduction strategies

Reduction orders

@

�x

t

@

�y

u

v

Normal order : reduce the most external redex �rst

• apply functions without reducing the arguments

Applicative order : reduce the most internal redex �rst

• normalize the arguments before reducing the function application itself

For disjoint redexes: from le� to right

Exercise: normal order vs. applicative order
Compare normal order reduction and applicative order reduction of the following terms:

1. (�xy.x) z Ω

2. (�x.xx) ((�y.y) z)

3. (�x.x(�y.y)) (�z.(�a.aa)(z b))

In each case: does another order allow shorter sequences?
Answer

2

1. Normal order
(�xy.x) z Ω

→ (�y.z) Ω

→ z

Applicative order
(�xy.x) z Ω

→ (�y.z) Ω

→ (�y.z) Ω

→ …

Normal order reduction is as short as possible

2. Normal order
(�x.xx) ((�y.y) z)

→ ((�y.y) z) ((�y.y) z)

→ z ((�y.y) z)

→ zz

Applicative order
(�x.xx) ((�y.y) z)

→ (�x.xx) z

→ zz

Applicative order reduction is as short as possible

3. Normal order
(�x.x(�y.y)) (�z.(�a.aa) (z b))

→ (�z.(�a.aa)(z b)) (�y.y)

→ (�a.aa) ((�y.y) b)

→ ((�y.y) b) ((�y.y) b)

→ b ((�y.y) b)

→ bb

Applicative order
(�x.x(�y.y)) (�z.(�a.aa)(z b))

→ (�x.x(�y.y)) (�z.(z b) (z b))

→ (�z.(z b) (z b)) (�y.y)

→ ((�y.y) b) ((�y.y) b)

→ b ((�y.y) b)

→ bb

Shortest reduction
(�x.x(�y.y)) (�z.(�a.aa) (z b))

→ (�z.(�a.aa)(z b)) (�y.y)

→ (�a.aa) ((�y.y) b)

→ (�a.aa) b

→ bb

Normalizing strategy
Property of normal order reduction

• If a term t does have a normal form then normal order reduction reaches this normal form

(proof in another chapter)
Such a reducion strategy is said to be normalizing

3

3 Confluence

Confluences
Diamond property

t

t1 t2 implies ∃u tq

u

t1 t2

Con�uence

t

t1 t2

* *
implies ∃u tq

u

t1 t2

* *

The �-calculus does not have the diamond property

(�x.xx) ((�y.y) a)

((�y.y) a) ((�y.y) a)

aa

(�x.xx) a

It is however con�uent

Confluence of the �-calculus

1. One can prove that the �-calculus is locally con�uent, which is:

t

t1 t2 implique ∃u tq

u

t1 t2

* *

2. Then one closes every opening diagram

t

u1

u2

…

v1

v2

…

by repeated application of local con�uence.

4

Counter-example: local confluence does not imply confluence

a b c d

This relation is locally con�uent, but one cannot close the following diagram

b

a d

* *

Why repeated local confluence is not a proof

t

u1

...

uk

v1

...

vl

w
* *

No guarantee that the opening subdiagrams

u1

uk w

* *
and

v1

w vl

* *

are smaller than the �rst diagram!

Confluence of the �-calculus, for real
Proof of Tait and Martin-Löf
De�ne a relation ⇒� which:

• is “between” →� and →
∗

�

• has the diamond property

Idea: reduce several redexes in parallel in such a way that, for instance:

((�y.y)a) ((�y.y)a) ⇒� aa

Proof of Tait and Martin-Löf: structure of the argument

• Since ⇒� has the diamond property, one deduces that ⇒∗

�
has the diamond property

• With →� ⊆ ⇒� ⊆ →
∗

�
, one deduces ⇒∗

�
= →

∗

�

• therefore →
∗

�
has the diamond property

• and →� is con�uent

5

Defining ⇒�

Base case “identity” reduction for variables

x ⇒� x

Inductive cases parallel reduction of subterms

t ⇒� t
′

�x.t ⇒� �x.t
′

t1 ⇒� t
′

1
t2 ⇒� t

′

2

t1 t2 ⇒� t
′

1
t
′

2

Redexes parallel reduction of the �-redex and its subterms

t ⇒� t
′

u ⇒� u
′

(�x.t) u ⇒� t
′
{x ← u

′
}

Example of parallel reduction

y ⇒� y

z ⇒� z

�z.z ⇒� �z.z

(�y.y) (�z.z)⇒� �z.z x ⇒� x

((�y.y) (�z.z)) x ⇒� (�z.z) x

w ⇒� w a ⇒� a

(�w.w)a ⇒� a

(�x.((�y.y) (�z.z)) x) ((�w.w) a) ⇒� (�z.z) a

Remark: one reduces only already-present redexes the resulting term may contain “new” redexes

Exercise: framing ⇒�

Prove that
t ⇒� t

Prove that
→� ⊆ ⇒�

Prove that
⇒� ⊆ →

∗

�

Answer

• t ⇒� t by induction on t .

– Case of a variable x . Then by de�nition x ⇒� x .

– Case of an application t1 t2. Induction hypotheses: t1 ⇒� t1 and t2 ⇒� t2. Then by application
rule t1 t2 ⇒� t1 t2.

– Case of an abstraction �x.t . Induction hypothesis: t ⇒� t . Then by abstraction rule �x.t ⇒�

�x.t .

• →�⊆⇒� by induction on→� .

– Case of �-reduction at the root (�x.t) u →� t{x ← u}. By previous result t ⇒� t and
u ⇒� u. Then by redex rule (�x.t) u ⇒� t{x ← u}.

– Case of reduction at the le� of an application t u →� t
′
u with t →� t

′. Induction hypothe-
sis: t ⇒� t

′. Moreover, by the previous result u ⇒� u. Then by application rule t u ⇒� t
′
u.

– Cases of reduction at the right of an application or under an abstraction similar.

6

• ⇒�⊆→
∗

�
by induction on⇒� .

– Variable rule: x ⇒� x . In particular x →
0

�
x .

– Abstraction rule: �x.t ⇒� �x.t
′ with t ⇒� t

′. Induction hypothesis: t →
∗

�
t
′. Then by

recurrence on the length of the sequence �x.t →∗

�
�x.t

′.

– Application rule: t1 t2 ⇒� t
′

1
t
′

2
with t1 ⇒� t

′

1
and t2 ⇒� t

′

2
. Induction hypotheses: t1 →∗

�
t
′

1

and t2 →∗

�
t
′

2
. Then t1 t2 →∗

�
t
′

1
t2 →

∗

�
t
′

1
t
′

2
.

– Redex rule: (�x.t) u ⇒� t
′
{x ← u

′
} with t ⇒� t

′ and u ⇒� u
′. Induction hypotheses:

t →
∗

�
t
′ and u →

∗

�
u
′. Then (�x.t) u →

∗

�
(�x.t

′
) u →

∗

�
(�x.t

′
) u

′
→� t

′
{x ← u

′
}.

Exercise: method of Tait and Martin-Löf
Prove that if → has the diamond property, then its re�exive-transitive closure →

∗ has the
diamond property

Prove that if two relations → and ⇒ are such that

→ ⊆ ⇒ ⊆ →
∗

then their re�exive-transitive closures ⇒∗ and →
∗ are equal

Answer

• Assume→ has the diamond property. If b ← a →
n
c then there is d such that b →n

d ← c (proof
by recurrence on the length n of the sequence on the right). Then, we prove that if bk ← a →

n
c,

then there is d such that b →n
d
k
← c (recurrence on k). Then→∗ has the diamond property.

• From →⊆⇒⊆→
∗ we deduce →∗

⊆⇒∗
⊆→

∗∗. Remark: →∗∗
=→

∗. Then →
∗
⊆⇒∗

⊆→
∗, which means

→
∗
=⇒∗.

Diamond property for parallel reduction
If s ⇔ t ⇒ r then there is u such that s ⇒ u ⇔ r

By induction on the derivation of t ⇒� r

• Case x ⇒ x . Then s = x , and we de�ne u = x

• Case �x.t0 ⇒ �x.r0 with t0 ⇒ r0. Then s = �x.s0 with s0 ⇔ t0.

By induction hypothesis there is u0 such that s0 ⇒ u0 ⇔ r0.

Therefore �x.s0 ⇒ �x.u0 ⇔ �x.r0

• Case t1t2 ⇒ r1r2 with t1 ⇒ r1 and t2 ⇒ r2. Two cases for s ⇔ t1t2.

– if s = s1 s2 with s1 ⇔ t1 and s2 ⇔ t2

by induction hypotheses there are u1 and u2 such that s1 ⇒ u1 ⇔ r1 and s2 ⇒ u2 ⇔ r2,
therefore s1s2 ⇒ u1u2 ⇔ r1r2

– if s = s1{x ← s2} with t1 = �x.t
′

1
and s1 ⇔ t

′

1
et s2 ⇔ t2,

then r1 = �x.r
′

1
with t

′

1
⇒ r

′

1
and by induction hypotheses there are u1 and u2 such that

s1 ⇒ u1 ⇔ r
′

1
et s2 ⇒ u2 ⇔ r2,

therefore u1{x ← u2} ⇔ (�x.r
′

1
)r2

and we conclude if we can show that s1{x ← s2} ⇒ u1{x ← u2}

Lemma: if a ⇒� a
′ and b ⇒� b

′ then a{x ← b}⇒� a
′
{x ← b

′
} coming soon

• Case (�x.t1)t2 ⇒ r1{x ← r2} with t1 ⇒ r1 et t2 ⇒ r2. Two cases for s ⇔ (�x.t1)t2.

– if s = (�x.s1)s2 with s1 ⇔ t1 and s2 ⇔ t2 we conclude as above.

– if s = s1{x ← s2} with s1 ⇔ t1 and s2 ⇔ t2

then by induction hypotheses there are u1 and u2 such that s1 ⇒ u1 ⇔ r1 and s2 ⇒ u2 ⇔ r2,
and we conclude if we can show that s1{x ← s2} ⇒ u1{x ← u2} ⇔ r1{x ← r2}

Same lemma

7

Lemma a ⇒� a
′
∧ b ⇒� b

′
⟹ a{x ← b}⇒� a

′
{x ← b

′
}

By induction on the derivation of a ⇒� a
′

• Case y ⇒ y .

Case on x and y .

– If x = y, then x{x ← b} = b ⇒ b
′
= x{x ← b

′
}

– If x ≠ y, then y{x ← b} = y ⇒ y = y{x ← b
′
}

• Case �y.a0 ⇒ �y.a
′

0
with a0 ⇒ a

′

0
.

Then (�y.a0){x ← b} = �y.(a0{x ← b}) and by induction hypothesis a0{x ← b} ⇒ a
′

0
{x ←

b
′
}.

Therefore �y.(a0{x ← b}) ⇒ �y.(a
′

0
{x ← b

′
}) = (�x.a

′

0
){x ← b

′
}

• Case a1a2 ⇒ a
′

1
a
′

2
with a1 ⇒ a

′

1
et a2 ⇒ a

′

2
.

Then (a1a2){x ← b} = (a1{x ← b})(a2{x ← b}) and (a
′

1
a
′

2
){x ← b

′
} = (a

′

1
{x ← b

′
})(a

′

2
{x ←

b
′
})

and by induction hypotheses a1{x ← b}⇒ a
′

1
{x ← b

′
} and a2{x ← b}⇒ a

′

2
{x ← b

′
}.

Therefore (a1a2){x ← b}⇒ (a
′

1
a
′

2
){x ← b

′
}

• Case (�y.a1)a2 ⇒ a
′

1
{y ← a

′

2
} with a1 ⇒ a

′

1
and a2 ⇒ a

′

2
.

Then ((�y.a1)a2){x ← b} = (�y.a1{x ← b})(a2{x ← b}).

By induction hypotheses we have a1{x ← b}⇒� a
′

1
{x ← b

′
} and a2{x ← b}⇒� a

′

2
{x ← b

′
}.

Therefore (�y.a1{x ← b})(a2{x ← b}) ⇒ (a
′

1
{x ← b

′
}){y ← a

′

2
{x ← b

′
}}.

With �-renaming we can choose y ≠ x and y ∉ fv(b′), therefore by substitution lemma (a′
1
{x ←

b
′
}){y ← a

′

2
{x ← b

′
}} = (a

′

1
{y ← a

′

2
}){x ← b

′
}.

Substitution lemma
If x ≠ y and x ∉ fv(v) then

t{x ← u}{y ← v} = t{y ← v}{x ← u{y ← v}}

Proof by induction on t

• Case of a variable.

– Case t = x . Then x{x ← u}{y ← v} = u{y ← v} and x{y ← v}{x ← u{y ← v}} =

x{x ← u{y ← v}} = u{y ← v}

– Case t = y. Then y{x ← u}{y ← v} = y{y ← v} = v and y{y ← v}{x ← u{y ← v}} =

v{x ← u{y ← v}} = v

– Case t = z, otherwise. Then z{x ← u}{y ← v} = z and s{y ← v}{x ← u{y ← v}} = z

• Case of an application t1 t2. Assume t1{x ← u}{y ← v} = t1{y ← v}{x ← u{y ← v}} and
t2{x ← u}{y ← v} = t2{y ← v}{x ← u{y ← v}} Then

(t1 t2){x ← u}{y ← v}

= (t1{x ← u} t2{x ← u}){y ← v}

= t1{x ← u}{y ← v} t2{x ← u}{y ← v}

= t1{y ← v}{x ← u{y ← v}} t2{y ← v}{x ← u{y ← v}}

= (t1{y ← v} t2{y ← v}){x ← u{y ← v}}

= (t1 t2){y ← v}{x ← u{y ← v}}

8

• Case of an abstraction �z.t . Assume t{x ← u}{y ← v} = t{y ← v}{x ← u{y ← v}} and by
Barendregt convention z ≠ x and z ≠ y and z ∉ fv(u) and z ∉ fv(v) (and z ∉ fv(u{y ← v}))
Then

(�z.t){x ← u}{y ← v}

= (�z.(t{x ← u})){y ← v}

= �z.(t{x ← u}{y ← v})

= �z.(t{y ← v}{x ← u{y ← v}})

= (�z.(t{y ← v})){x ← u{y ← v}}

= (�z.t){y ← v}{x ← u{y ← v}}

Corollary: Church-Rosser theorem
If

t1 =� t2

then there is u such that
t1 →

∗

�
u et t2 →

∗

�
u

Consequences

• if t has a normal form n, then t →
∗
n

• any �-term can has only one normal form

• if two normal forms n and m are syntactically di�erent, then n ≠� m

4 Confluence: another proof

Strip lemma
Property of the �-calculus:

t

t1 t2

*
implies ∃u tq

u

t1 t2

* *

Idea: identify the redex R that is reduced by the step t → t1. Then track what remains of R in t2, and
reduce every occurrence. (proof later in the chapter)

The strip lemma implies confluence
If t1 →∗

tn and t1 →∗
u1, then there exists un such that tn →∗

un and u1 →∗
un.

Proof by recurrence on the length of the reduction sequence t1 → t2 → t3 → … → tn. Each step
uses the strip lemma to make one “strip” in the following diagram.

t1

u1t2

u2t3

u3

tn

un

*

*

*

*

*

*

9

Residuals
Consider a �-reduction step t

p

−→ t
′ of a redex (�x.u)v at position p in t . Positions of t can be tracked

in t′. Let q be a position in t , and de�ne D(q) the set of descendant positions of q in t′.

• Positions outside of (�x.u)v still exist, unmodi�ed, in t′.

D(q) = {q} if p is not a pre�x of q

• The positions p of the redex (�x.u)v and p.1 of the abstraction �x.u have no descendants.

• Every part of u still exist in u{x ← v}. The positions however are slightly modi�ed between t
and t′ since an application and an abstraction disappeared.

D(p.1.0.q) = {p.q}

(We could argue on what happens to the occurrences of x . Here we choose to keep them in the
descendant relation.)

• Every part of v exist in u{x ← v} in each substituted occurrence of v (whose number can be
arbitrary). The new position of each occurrence of v in u{x ← v} corresponds to the position of
an occurrence of x in u.

D(p.2.q) = {p.px .q ∣ px position of an occurrence of x in u}

A redex R′ at position q′ in t′ is a residual of a redex R at position q in t a�er t
p

−→ t
′ if q′ ∈ D(q).

Marked �-terms
A simple solution to track the residuals of a set of redexes in a given source term is to add some

“marks” in our �-terms. For this we introduce an extension Λ of the syntax, where �-abstractions can be
underlined. This extended grammar is:

t ∶∶= x variable
| t t application
| �x.t ordinary abstraction
| �x.t marked abstraction

The �-reduction rule applies for both ordinary �’s and marked �’s.

(�x.t) u →� t{x ← u}

(�x.t) u →� t{x ← u}

Free variables, variable renaming and substitution are also extended to treat marked �’s as ordinary �’s.

fv(x) = {x}

fv(t u) = fv(t) ∪ fv(u)
fv(�x.t) = fv(t) ⧵ {x}
fv(�x.t) = fv(t) ⧵ {x}

x{x ← v} = v

y{x ← v} = y if y ≠ x

(t u){x ← v} = t{x ← v} u{x ← v}

(�y.t){x ← v} = �y.(t{x ← v}) if y ≠ x and y ∉ fv(v)
(�y.t){x ← v} = �y.(t{x ← v}) if y ≠ x and y ∉ fv(v)

�x.t =� �y.(t{x ← y}) if y ∉ fv(t)
�x.t =� �y.(t{x ← y}) if y ∉ fv(t)

10

Removing marks
Let t ∈ Λ be a marked term. De�ne |t | the ordinary �-term obtained by removing all the marks in t .

|x| = x

|t u| = |t| |u|

|�x.t| = �x.|t |

|�x.t| = �x.|t |

We can trivially check that the marks do not interfere with reduction.
Lemma 1.

For any t, t′ ∈ Λ, t → t
′ i� |t | → |t

′
|

Diagrammatically:
t t

′

u u
′

|| ||

t t
′

u u
′

|| ||

(solid arrows are assumptions, dashed arrow are deduced)

Reducing marked redexes
Let t ∈ Λ be a marked term. De�ne '(t) the term obtained by reducing all marked redexes in t (and

removing any remaining mark).

'((�x.t) u) = ('(t)){x ← '(u)}

'(x) = x

'(t u) = '(t) '(u) if t does not start with �
'(�x.t) = �x.'(t)

'(�x.t) = �x.'(t)

Lemma 2. Commutation of ' and substitution.

For any t, u ∈ Λ, '(t{x ← u}) = '(t){x ← '(u)}

Proof by induction on t .
Lemma 3. Commutation of ' and �-reduction.

For any t, t′ ∈ Λ, if t → t
′ then '(t) → '(t

′
)

Diagrammatically:
t t

′

u u
′

' '

*

Proof by induction on the derivation of t → t
′, using lemma 2.

Lemma 4. The simultaneous reduction performed by ' can be realized with ordinary �-reduction.

For any t ∈ Λ, |t | →
∗

�
'(t)

Diagrammatically:
t

u v

|| '

*

Proof by induction on t .

11

Proof of the strip lemma
Consider the reduction t1 →� u1 of a single �-redex R = (�x.a) b, and a sequence t1 → t2 → t3 →

…→ tn. Let t′1 be the term obtained from t1 by marking the � in R. First remark that '(t′
1
) is precisly the

term u1 obtained by reducing R in t1.
t1

t2

t3

tnt
′

1

u1

||

'

Since marks do not interfere with reduction (n − 1 applications of lemma 1), we can reproduce the se-
quence t1 →∗

tn starting from t
′

1
.

t1

t2

t3

tnt
′

1

t
′

2

t
′

3

t
′

n
u1

||

||

||

||'

Then by lemma 3 (applied n − 1 times), we build a sequence starting from u1.
t1

t2

t3

tnt
′

1

t
′

2

t
′

3

t
′

n
u1

u2

u3

un

*
*

||

||

||

||'

'

'

'

Finally, by lemma 4 on the last triangle formed with the terms tn, t′n, un, we deduce a reduction sequence
from tn = |t

′

n
| to un = '(t′n).
t1

t2

t3

tnt
′

1

t
′

2

t
′

3

t
′

n
u1

u2

u3

un

*
*

*

||

||

||

||'

'

'

'

12

	Normalisation
	Reduction strategies
	Confluence
	Confluence: another proof

