Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay
Fall 2023
https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 2: reduction strategies

Reduction graph
There may be several possible reductions for a given term.
The set of all possible reductions can be pictured as a graph

(Ax.xx) (Ay.y) a)

TN

(Ay.y) a) (Ay. y (Ax.xx) a

‘ (Ay.y) a) a

Questions:
« are some paths better than others?

« is there always a result in the end? is it unique?

1 Normalisation

Normal form
A normal form is a term that cannot be reduced anymore

Examples Counter-examples
o X e (Axx)y
o Ax.xy o x ((Ay.y) (Az.zx))

o x (Ay.y) (Az.zx)

If t =" t/ and ¢’ is normal, the term ¢’ is said to be a normal form of ¢
This defines our informal notion of a result of a term

Terms without normal form

Q = (Ax.xx) (Ax.xx)
— (xx){x «— Ax.xx}
= x{x «— Ax.xx} x{x «— Ax.xx}
= (Ax.xx) (Ax.xx)
= Q

Summary:

https://www.lri.fr/~blsk/LambdaCalculus/

« reduction of Q does not terminate
« Qis aterm withour “result”

What about this other example?
(Axy.y) Q z

Normalization properties
A term t is:

« strongly normalizing if every reduction sequence starting from t eventually reaches a normal form
(Axy.y) (Az.2) (Az.2))

« weakly normalizing, or normalizable, if there is at least one reduction sequence starting from t and
reaching a normal form

(Axy.y) (Az.zz) (Az.z2))

Note: normalization (strong or weak), is an undecidable property (see chapter on A-computability)

2 Reduction strategies

Reduction orders

Normal order: reduce the most external redex first
« apply functions without reducing the arguments
Applicative order: reduce the most internal redex first
« normalize the arguments before reducing the function application itself

For disjoint redexes: from left to right

Exercise: normal order vs. applicative order
Compare normal order reduction and applicative order reduction of the following terms:

1. (Axy.x) z Q
2. (Ax.xx) (Ay.y) 2)

3. (Ax.x(Ay.y)) (Az.(Aa.aa)(z b))

In each case: does another order allow shorter sequences?
Answer

1. Normal order
(Axy.x) z Q
— (Ay.2) Q

—_ z

Applicative order
(Axy.x) z Q
— (Ay.2) Q
— (Ay.z2) Q

—

Normal order reduction is as short as possible

2. Normal order
(Ax.xx) (Ay.y) z)
— ((4y.y) 2) (Ay.y) 2)
— z((4y.y) 2)

— 2z

Applicative order
(Ax.xx) (Ay.y) 2)

— (Ax.xx) z
— 2z

Applicative order reduction is as short as possible

3. Normal order
(Ax.x

—~

Ay.y)) (Az.(Aa.aa) (z b))
Az.(Aa.aa)(z b)) (Ay.y)
Aa.aa) ((1y.y) b)

(27.9) b) (Ay.y) b)

b (1y.y) b)

bb

~ o~ ~

Ll

Applicative order

(Ax.x(1y.y)) (Az.(Aa.aa)(z b))
(Ax.x(Ay.y)) (Az.(z b) (z b))
(Az(z b) (z b)) (Ay.y)
((19.9) b) (Ay.y) b)
b (1y.y) b)
bb

L

Shortest reduction
(Ax.x(Ay.y)) (Az.(Aa.aa) (z b))

(Az.(Aa.aa)(z b)) (Ay.y)
(Aa.aa) ((Ay.y) b)
(Aa.aa) b

bb

i

Normalizing strategy
Property of normal order reduction

« If a term t does have a normal form then normal order reduction reaches this normal form

(proof in another chapter)
Such a reducion strategy is said to be normalizing

3 Confluence

Confluences
Diamond property

h Iy implies Ju tq h oy

Confluence

7N

b Iy implies Ju tq b Iy

The A-calculus does not have the diamond property

(Ax.xx) (Ay.y) a)

(Ax.xx)

(Ay-y) @) (Ay-y) @)
\ /

It is however confluent

Confluence of the A-calculus

1. One can prove that the A-calculus is locally confluent, which is:

t/\

t implique Ju tq o) t

2. Then one closes every opening diagram

t

7N\

Uy (%]

/ N\

Uz U2

e N

by repeated application of local confluence.

Counter-example: local confluence does not imply confluence

N\

aé<——» c——>d

e

This relation is locally confluent, but one cannot close the following diagram
b
N
Why repeated local confluence is not a proof
t
U / \ vy
/.../ >4 \...\

Ui &)

No guarantee that the opening subdiagrams

N /N

and w i

are smaller than the first diagram!

Confluence of the A-calculus, for real
Proof of Tait and Martin-Léf
Define a relation =4 which:

« is “between” —p and —%p
« has the diamond property

Idea: reduce several redexes in parallel in such a way that, for instance:

(Ay.y)a) (Ay-y)a) =p aa

Proof of Tait and Martin-Lof: structure of the argument

- Since = has the diamond property, one deduces that =5 has the diamond property
« With —p < =5 < —>ﬁ one deduces :;23 = —>ﬁ
+ therefore —7% has the diamond property

«and —p isconfluent

Defining =

Base case “identity” reduction for variables
X =g X
Inductive cases parallel reduction of subterms
/ / /
t 3p t h =p t Iy =g 1y
Axt =g Ax.t hity =p 1t
Redexes parallel reduction of the -redex and its subterms

t 3p t/ u =g u
(Ax.t)u =p t'{x «—u'}

Example of parallel reduction

zZ3pz
y=pY Az.z =g Az.z
(Ay.y) (Az.2) =4 Az.z X =px w =g w a=gpa
((Ay.y) (Az.2)) x =5 (Az.2) x (Aw.w)a =5 a

(Ax.((Ay.y) (Az.2)) x) (Aw.w) a) =p (Az.2) a

Remark: one reduces only already-present redexes the resulting term may contain “new” redexes

Exercise: framing =

Prove that
t = B t
Prove that
— i c = B
Prove that
=p < —fﬁ
Answer

 t =5 t by induction on ¢.

— Case of a variable x. Then by definition x =4 x.

— Case of an application t; t,. Induction hypotheses: t; =4 t; and t; = t,. Then by application
rule t to jﬁ t b.

— Case of an abstraction Ax.t. Induction hypothesis: t = t. Then by abstraction rule Ax.t =
Ax.t. O
« —pc= by induction on —.
— Case of p-reduction at the root (Ax.t) u —4 t{x <« u}. By previous result t =34 t and
u =4 u. Then by redex rule (Ax.t) u =4 t{x < u}.

— Case of reduction at the left of an application t u —p t’ u with t —g t’. Induction hypothe-
sis: t =34 . Moreover, by the previous result u =g u. Then by application rule t u =4 t’ u.

— Cases of reduction at the right of an application or under an abstraction similar.

* =3pc— by induction on =.

— Variable rule: x =4 x. In particular x —>% X.

— Abstraction rule: Ax.t =g Ax.t’ with t =4 . Induction hypothesis: ¢+ —7 . Then by
recurrence on the length of the sequence Ax.t —5 Ax.t.

— Application rule: # t, =4 #; t; with t; =4 t{ and &, =4 #;. Induction hypotheses: t; —7 #{
and t, —p t. Thenty t, >4 t{ t, —p 1] 5.

- Redex rule: (Ax.t) u =g t'{x <« v’} with t =4 ¢’ and u =4 u’. Induction hypotheses:
t—p t’ and u —% #'. Then (Ax.t) u —% Ax.t') u —5 (Ax.t') v/ —p t'{x — u'}.

Exercise: method of Tait and Martin-Lof

Prove thatif — has the diamond property, then its reflexive-transitive closure =~ —" has the
diamond property

Prove that if two relations — and = are such that

*

— ¢ = < —

then their reflexive-transitive closures =" and —" are equal
Answer

« Assume — has the diamond property. If b «— a —" c then there is d such that b —" d < ¢ (proof
by recurrence on the length n of the sequence on the right). Then, we prove that if b¥ < a —" ¢,
then there is d such that b —" d¥ < ¢ (recurrence on k). Then —" has the diamond property.

e From —c—=c—" we deduce —"'c="c—"". Remark: —"=—". Then —"c="c—", which means
I

Diamond property for parallel reduction
If s&=t=r thenthereis u suchthat s=utr
By induction on the derivation of t =g r

« Case x = x. Then s = x, and we define u = x

« Case Ax.ty = Ax.ry with fy = ry. Then s = Ax.sp with sy & t,.
By induction hypothesis there is uy such that sy = uy &= rp.
Therefore Ax.sy = Ax.uy &= Ax.rg

« Case hity, = rr, with y = r, and &, = ry. Two cases for s & i t,.

—if s=s; s with s;&=# and s, &= 6
by induction hypotheses there are u; and u; such that s = u; & and s, = up & 1y,
therefore s;s5 = wuy & rnn
- ifs=s{x — s} with 4 = Ax.t] and s; &=] et s, & B,
then r = Ax.r{ with # = r{ and by induction hypotheses there are u; and u, such that
S i Su et Uy =,
therefore u{x «— w} &= (Ax.r))r
and we conclude if we can show that s {x < s;} = w{x «— w}
Lemma: ifa =g a’ and b =g b’ then a{x « b} =p a’{x < b’} coming soon

o Case (Ax.fy))ty =2 n{x <« r} with t{ = r; et t, = r,. Two cases for s & (Ax.t)t.

— if s =(Ax.s1)s; with s; &= t; and s; £ 1, we conclude as above.

—if s=s{x <« s} with s; =t and s, &= 1,
then by induction hypotheses there are u; and u; suchthat s; = w; &= r and s = wp & 1y,
and we conclude if we can show that s;{x < s} = w{x «— w} & r{x—nr}
Same lemma

Lemma a=gd b=l — af{x—b}=3pd{x—10}
By induction on the derivation of a =4 a’
« Case y = y.

Case on x and y.

- If x=y,then x{x<« b} =b = b = x{x< '}
- If x#y,then y{x—b} =y =y =y{x0V}

« Case Ay.ap =X Ay.a with ay = af.
Then (Ay.ap){x < b} = Ay.(ap{x < b}) and by induction hypothesis ao{x «— b} = af{x «—
b'}.
Therefore Ay.(ay{x < b}) = Ay.(aj{x «— b'}) = (Ax.a{){x <« b’}

« Case aja, = aja, with a; = a] et ay = df.
Then (a1a){x < b} = (a1{x — b})(az{x < b})and (aj@)){x < V'} = (a{{x « V' })(a{x —
v'})
and by induction hypotheses a;{x < b} = a]{x < b’} and ax{x «— b} = aj{x «— b'}.
Therefore (ajax){x < b} = (a]a)){x «— b’}

« Case (Ay.a1)a; =% aj{y « a4} with a; = a] and a; =2 aj.
Then ((Ay.a1)az){x < b} = (Ay.a1{x — b})(a{x < b}).
By induction hypotheses we have a;{x «— b} =g a{{x « b’} and a,{x < b} =3 aj{x < V'}.
Therefore (Ay.a;{x < b})(ax{x — b}) = (aj{x — V'}){y «— aj{x — V'}}.

With a-renaming we can choose y # x and y ¢ fv(V’), therefore by substitution lemma (af{x «—
Wy «— ay{x — b'}} = (a1{y <« a)}){x < V'}.

Substitution lemma
If x#y and x¢fv(v) then

Hx —uf{y —ov} = Hy—oj{x—uly—ov}}
Proof by induction on ¢
« Case of a variable.
— Case t = x. Then x{x «— u}{y «— v} = u{y «— v} and x{y «— v}{x «— u{y «— v}} =

x{x —uly — v}} = u{y < v}

— Case t = y. Then y{x «— u}{y «— v} = y{y «— v} =vand y{y «— v}{x «— u{y «— v}} =
vix—u{ly—ov}}=vo

— Case t = z, otherwise. Then z{x «— u}{y <« v} =zand s{y «— v}{x — u{y «— v}} =2

« Case of an application t; t,. Assume t;{x «— u}{y «— v} = 1{y «— v}{x «— u{y < v}} and
b{x «— ul{y « v} = o{y < v}{x «— u{y < v}} Then

(t t){x — up{y < v}

= ({x — u} f{x —uPh{y < v}

= hix — ul{y < v} bi{x — up{y < v}

= tiy — ol{x —u{y < v}} &{y — vi{x — uly « v}}
= ({y < v} b{y — vh{x —uly « o}}

= (b){y — vi{x —uly < v}}

« Case of an abstraction Az.t. Assume t{x «— u}{y <« v} = t{y «— v}{x «— u{y < v}} and by
Barendregt convention z # x and z # y and z ¢ fv(u) and z ¢ fv(v) (and z ¢ fv(u{y <« v}))
Then

(z.){x — ully — v}

(Az.(t{x — up){y < v}

= Az.(t{x «— u}{y < v})

Az(Hy — v{x — u{y — v}})

(Az(t{y — o}){x — ufy — v}}

(Az.t){y < vi{x — u{y < v}}

Corollary: Church-Rosser theorem
If
tl :ﬁ tz

then there is u such that
7] —>ﬁ u et ty —>ﬁ u

Consequences
« if t has anormal form n,then t —>" n
» any A-term can has only one normal form

« if two normal forms n and m are syntactically different, then n #5 m

4 Confluence: another proof

Strip lemma
Property of the A-calculus:

t
/N
b ty implies Ju tq

5] 15
N
u

Idea: identify the redex R that is reduced by the step t — #;. Then track what remains of R in t;, and
reduce every occurrence. (proof later in the chapter)

The strip lemma implies confluence

Ifty > t, and t; —" uy, then there exists u, such that t, —" u, and u; —" u,.

Proof by recurrence on the length of the reduction sequence t; — t, — #3 — ... — t,. Each step
uses the strip lemma to make one “strip” in the following diagram.

Residuals ,
Consider a f-reduction step t — ' of a redex (Ax.u)v at position p in . Positions of ¢ can be tracked
in t’. Let g be a position in ¢, and define D(q) the set of descendant positions of g in t'.

« Positions outside of (Ax.u)v still exist, unmodified, in ¢’.

D(q) = {q} if p is not a prefix of g

+ The positions p of the redex (Ax.u)v and p.1 of the abstraction Ax.u have no descendants.

« Every part of u still exist in u{x «<— v}. The positions however are slightly modified between ¢
and ¢’ since an application and an abstraction disappeared.

D(p.1.0.9) = {p-q}

(We could argue on what happens to the occurrences of x. Here we choose to keep them in the
descendant relation.)

« Every part of v exist in u{x «— v} in each substituted occurrence of v (whose number can be
arbitrary). The new position of each occurrence of v in u{x «— v} corresponds to the position of
an occurrence of x in u.

D(p.2.q) = {p-px-q | px position of an occurrence of x in u}

A redex R’ at position ¢’ in t’ is a residual of a redex R at position g in ¢ after 15 v if q € D(q).

Marked A-terms

A simple solution to track the residuals of a set of redexes in a given source term is to add some
“marks” in our A-terms. For this we introduce an extension A of the syntax, where A-abstractions can be
underlined. This extended grammar is:

t o= x variable
| tt application
| Ax.t ordinary abstraction
| Axt marked abstraction

The p-reduction rule applies for both ordinary A’s and marked A’s.

(Axt)u —p t{x « u}
(Axt)u —p t{x < u}

Free variables, variable renaming and substitution are also extended to treat marked A’s as ordinary A’s.

fv(x) = {x}
fv(itu) = fv(t)ufv(u)
fv(Ax.t) = fv()\{x}
fv(dx.t) = fv()\{x}
x{x—v} = w
y{x—ov} =y ify+x
(tw{x—v} = t{x— v}u{x— v}

Ay.){x — v} = Ay(t{x <« v}) if y+ xandy ¢ fv(v)
Ay {x«— v} = Ay(t{x < v}) if y # xand y ¢ fv(v)
Axt =4 Ay(t{x < y}) if y ¢ fv(t)

Axt = Ay(t{x < y}) if y ¢ fv(t)

10

Removing marks
Let t € A be a marked term. Define |t| the ordinary A-term obtained by removing all the marks in t.

Xl = x
tul = |t]]ul
[Ax.t] = Ax.|t|
Ax.t] = Ax.|t|
We can trivially check that the marks do not interfere with reduction.
Lemma 1.
For any t,t’ € A, t—t iff |t — ||
Diagrammatically:
t————————— ¢/ fommmmm o %
| | | |
U----------- > Uy ——

(solid arrows are assumptions, dashed arrow are deduced)

Reducing marked redexes
Let t € A be a marked term. Define ¢(t) the term obtained by reducing all marked redexes in ¢ (and
removing any remaining mark).

p((Ax.t)u) = (p(){x — o(uw)}
px) = x
p(tu) = o) e(u) if t does not start with A
p(Ax.t) = Ax.@(t)
plhxt) = Ax.g(t)

Lemma 2. Commutation of ¢ and substitution.
For any t,u € A, o(t{x < u}) = p(t){x — o(u)}

Proof by induction on ¢.
Lemma 3. Commutation of ¢ and f-reduction.

Forany t,t' € A,if t— 1+t then ¢(t) — o)

Diagrammatically:

Proof by induction on the derivation of t — t/, using lemma 2.
Lemma 4. The simultaneous reduction performed by ¢ can be realized with ordinary f-reduction.

For any t € A, |t] —5 (1)

Diagrammatically:

Proof by induction on ¢.

11

Proof of the strip lemma

Consider the reduction #; — u; of a single fi-redex R = (Ax.a) b, and a sequence t; — t, — 13 —
.. — t,. Let t{ be the term obtained from # by marking the A in R. First remark that ¢(t) is precisly the
term u; obtained by reducing R in #;.

.tn

1
Since marks do not interfere with reduction (n - 1 applications of lemma 1), we can reproduce the se-

quence t; —" t, starting from ¢{.
5}

Moo Y Nl by
0 Ty N
U TTe-- tr,l
Then by lemma 3 (applied n - 1 times), we build a sequence starting from u;.
5}
—_— \
[T
|
t{ I tn
\ .
0 Ty ||
//,’ ® ///
wo__) L//, /// o e t
Tt up .7
o “’u3i\ e

S,
Finally, by lemma 4 on the last triangle formed with the terms t,, t/, u,, we deduce a reduction sequence
from t, = |t}] to u, = @(t)).

12

	Normalisation
	Reduction strategies
	Confluence
	Confluence: another proof

