
Lambda-calculus and programming language semantics
Thibaut Balabonski @ UPSay
Winter 2023
https://www.lri.fr/∼blsk/LambdaCalculus/

Chapter 1: lambda-calculus
1 A computational theory of function

Timeline

1870 Which ground for mathematics ? Sets or functions ?

1920 Moses Schön�nkel, Haskell Curry: combinatory logic. Basic blocks for building functions.

1936 Alonzo Church: �-calculus. Characterization of computable functions. Equivalent to Turing ma-
chines. Solves the Entscheidungsproblem.

1970+ �-calculus grows together with computer science. Functional programming. Proof assistants.

Functions
One concept, various notations.

Maths x ↦ x

f ↦ (x ↦ f (f (x)))

Caml fun x -> x
fun f -> (fun x -> f(f x))

Python lambda x: x
lambda f: (lambda x: f(f(x)))

�-calculus �x.x

�f .(�x.f (f x))

2 �-calcul: basic definitions

The �-calculus is de�ned by a set of terms, which represent programs or algorithms, and by conversion
rules, which describe how computation is performed.

Terms (expressions)
The �-calculus syntax consists of a notion of expression, or term. Terms are built using three con-

structs.

x variable, reference to a function parameter

t1t2 application of a term t1 to a term t2, t1 is to be seen as a function and t2 as its given argument.

�x.t function with a single parameter x , whose result is given by t

Functions are de�ned by their behaviour.

1

https://www.lri.fr/~blsk/LambdaCalculus/

Examples

• Identity
�x.x

takes a paremeter x and returns the value of x

• Constant functions generator
�c.(�x.c)

takes a parameter c and returns a constant function whose result is constantly c

• Distribution
�x.(�y.(�z.((x z) (y z))))

takes a parameter x and... let’s see later

• What ?
�x.(x x)

takes a parameter x and self-applies it?

Notations

• Instead of �x1.(… (�xn.t) …) we write

�x1…xn.t

• Instead of (… (t u1) … un) we write
t u1…un

or even t u⃗ with u⃗ = u1…un

For instance:
�c.(�x.c) �cx.c

�x.(�y.(�z.((x z) (y z)))) �xyz.xz(yz)

Curryfication and n-ary functions
There is no cartesian product in core �-calculus.

• A function (x, y) ↦ t with two parameters is encoded as

�x.�y.t or �xy.t

• An application f (x, y) of a binary function to two parameters is encoded as

f x y

Functions are curry�ed (tribute to Haskell Curry).
This encoding allows partial applications.

Computing with the �-calculus
Smallest computing block: a function applied to an argument.

(�x.t) u → t{x ← u}

Result :

t where each occurrence of x is replaced by u t{x ← u}

2

Sample computation

(�xyz.xz (yz)) (�ab.a) t u

{x ← �ab.a}

→ (�yz.(�ab.a)z (yz)) t u

{y ← t}

→ (�z.(�ab.a)z (tz)) u

{z ← u}

→ (�ab.a)u (tu)

{a ← u}

→ (�b.u) (tu)

{b ← tu}

→ u

Exercise : reduction
Compute the result of

(�xy.yx) (�ab.b) (�s.stu)

Answer
(�xy.yx) (�ab.b) (�s.stu)

→ (�y.y (�ab.b)) (�s.stu)

→ (�s.stu) (�ab.b)

→ (�ab.b) t u

→ (�b.b) u

→ u

Exercise : combinatory logic
Combinatory logic (Schön�nkel, 1920 - Curry, 1930) uses the �ve symbols I , K , S, B, C (called “com-

binators”) and one reduction rule for each.

I x → x

K x y → x

S x y z → xz (yz)

B x y z → x (yz)

C x y z → xz y

Find �-terms equivalent to these combinators
Compute the results of the following expressions

1. S K K x

2. S (K S) K

Answer �-terms equivalent to combinators

• I = �x.x

• K = �xy.x

• S = �xyz.xz(yz)

• B = �xyz.x(yz)

• C = �xyz.xzy

Reductions

3

• S K K is equivalent to I
S K K x → Kx(Kx)

→ x

• S (K S) K is equivalent to B

S (K S) K x y z → (K S x) (K x) y z

→ S (K x) y z

→ (K x z) (y z)

→ x (y z)

Dubious replacements / variable capture
How should we resolve the following replacements?

(�x.(�x.x)) y → (�x.x){x ← y}

(�x.(�y.x)) y → (�y.x){x ← y}

Related: what is the live-range of a variable?

3 Formalization of �-terms

Set of terms
The set Λ of the �-terms is the smallest set that contains:

1. x for all variable x
2. �x.t if t ∈ Λ
3. t1 t2 if t1 ∈ Λ and t2 ∈ Λ

Same de�nition, stated as an algebraic grammar.

t ∶∶= x | �x.t | t1 t2

This de�nition is recursive, and allows recursive reasoning.

Term = tree
The expression

(�xy.xy(x(�z.z)) (�ab.ba)

denotes the tree

@

�x

�y

@

@

x y

@

x
�z

z

�a

�b

@

b a

4

Positions in a term
Position: word over the alphabet {0, 1, 2} denoting a path from the root.

"

1

10

100

1001

10011 10012

1002

10021 10022

100220

2

20

200

2001 2002

Set pos(t) of the positions of the term t

pos(x) = {"}

pos(�x.t) = {"} ∪ 0 ⋅ pos(t)
pos(t1 t2) = 1 ⋅ pos(t1) ∪ 2 ⋅ pos(t2)

Encoding in caml
An algebraic datatype for �-terms

type term =
| Var of string
| Abs of string * term
| App of term * term

Encoding of the term �ab.ba

Abs("a", Abs("b", App(Var "b", Var "a")))

Defining functions on lambda-terms
Recursive de�nition of f , with three cases:

• f (x) base

• f (�x.t) using f (t)

• f (t1 t2) using f (t1) and f (t2)

Examples
f@ : number of applications fv : number of variable occurrences

f@(x) = 0

f@(�x.t) = f@(t)

f@(t1 t2) = 1 + f@(t1) + f@(t2)

fv(x) = 1

fv(�x.t) = fv(t)

fv(t1 t2) = fv(t1) + fv(t2)

Defining a function in caml
Coding f@

let rec nb_app = function
| Var _ -> 0
| Abs(_, t) -> nb_app t
| App(t1, t2) -> 1 + nb_app t1 + nb_app t2

Coding fv

5

let rec nb_var = function
| Var _ -> 1
| Abs(_, t) -> nb_var t
| App(t1, t2) -> nb_var t1 + nb_var t2

Induction principle on lambda-terms
Goal: proving that a property P is true for all �-terms. Three steps:

• prove P(x) for any variable x

• prove P(�x.t) assuming that P(t) is true

• prove P(t1 t2) assuming that P(t1) and P(t2) are both true

Example of inductive reasoning
Goal: for any t ∈ Λ, fv(t) = 1 + f@(t)

• Proof of P(x). By de�nition, fv(x) = 1 and f@(x) = 0 Then fv(x) = 1 + f@(x)

• Proof of P(t) ⇒ P(�x.t). Assume fv(t) = 1 + f@(t). Then

fv(�x.t) = fv(t) by de�nition of fv
= 1 + f@(t) by induction hypothesis
= 1 + f@(�x.t) by de�nition of f@

• Proof of P(t1) ∧ P(t2) ⇒ P(t1 t2). Assume fv(t1) = 1 + f@(t1) and fv(t2) = 1 + f@(t2). Then

fv(t1 t2)

= fv(t1) + fv(t2) by de�nition of fv
= 1 + f@(t1) + 1 + f@(t2) by induction hypotheses
= 1 + (1 + f@(t1) + f@(t2))

= 1 + f@(t1 t2) by de�nition of f@

4 Variables and substitutions

A note on variables
The �-abstraction

�x.t

introduces a variable x locally in t We call it a bound variable
In other words:

• the name x is not known outside of t

• seen from the outside, the name x means nothing

• changing the name x does not a�ect the outside world

Free variables
Variables that can be seen from “outside”

fv(x) = {x}

fv(t1 t2) = fv(t1) ∪ fv(t2)
fv(�x.t) = fv(t) ⧵ {x}

Term with no free variables: closed term, or combinator
A name which appears both free and bound in a term:

x (�x.x)

6

Substitution
Replacing free occurrences of x in t by u.

t{x ← u}

De�nition: inductively on the structure of t .

y{x ← u} =

{

u if x = y
y if x ≠ y

(t1 t2){x ← u} = t1{x ← u} t2{x ← u}

(�y.t){x ← u} =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

�y.t if x = y
�y.t{x ← u} if x ≠ y and y ∉ fv(u)
�z.t{y ← z}{x ← u} if x ≠ y and y ∈ fv(u)

z new variable

Barendregt’s convention
To avoid abuse of names, we consider only terms where

no variable name appears both free and bound in any given subterm

Don’t write... Write... instead
�x.(x (�x.x)) �x.(x (�y.y))

Simpli�ed de�nition for the substitution, relying on the convention

y{x ← u} =

{

u si x = y
y si x ≠ y

(t1 t2){x ← u} = t1{x ← u} t2{x ← u}

(�y.t){x ← u} = �y.t{x ← u}

(Un)stability of Barendregt’s convention

(�x.xx) (�yz.yz)

→ (�yz.yz) (�yz.yz)

→ �z.((�yz.zy)z)

Preserving Barendregt’s convention over reduction requires changing some variable names during
computation

Bound variables renaming: �-conversion

�x.t =� �y.(t{x ← y}) if y ∉ fv(t)

The �-conversion does not change the meaning of a term:

• we can apply it whenever we need it

The �-conversion is a congruence:

t =� t
′

⟹ �x.t =� �x.t
′

t1 =� t
′

1
⟹ t1 t2 =� t

′

1
t2

t2 =� t
′

2
⟹ t1 t2 =� t1 t

′

2

• we can apply it wherever we need it

From now on we assume that any term we work with satis�es Barendregt’s convention.

7

Exercise : bound variables and renaming
Rename some variables of these terms suivants so that they obey Barendregt’s convention.

1. �x.(�x.xy)(�y.xy)

2. �xy.x(�y.(�y.y)yz)

Compute the result of
(�f .f f) (�ab.b a b)

Answer

1. �x.(�x.xy)(�y.xy) =� �x.(�z.zy)(�t.xt)

2. �xy.x(�y.(�y.y)yz) =� �xy.x(�a.(�b.b)az)

3.
(�f .f f) (�ab.b a b) →� (�ab.b a b) (�ab.b a b)

→� �ab.b (�ab.b a b) b

=� �b.b (�xy.y x y) b

Exercise : free variables and substitution
Prove that

fv(t{x ← u}) ⊆ (fv(t) ⧵ {x}) ∪ fv(u)

Are these two sets equal?
Answer Proof by induction on the structure of t

• Case where t is a variable

– case x : fv(x{x ← u}) = fv(u) ⊆ (fv(t) ⧵ {x}) ∪ fv(u)

– case y ≠ x : fv(y{x ← u}) = fv(y) = {y}, and {y} is indeed a subset of (fv(y) ⧵ {x}) ∪ fv(u) =
{y} ∪ fv(u)

• Case where t is an application t1 t2. Assume fv(t1{x ← u}) ⊆ (fv(t1) ⧵ {x}) ∪ fv(u) and
fv(t2{x ← u}) ⊆ (fv(t2) ⧵ {x}) ∪ fv(u) (it is our induction hypothesis). Then

fv((t1 t2){x ← u})

= fv((t1{x ← u}) (t2{x ← u})) by de�nition of substitution
= fv(t1{x ← u}) ∪ fv(t2{x ← u}) by de�nition of fv
⊆ (fv(t1) ⧵ {x}) ∪ fv(u) ∪ (fv(t2) ⧵ {x}) ∪ fv(u) by induction hypothesis
= (fv(t1) ⧵ {x}) ∪ (fv(t2) ⧵ {x}) ∪ fv(u)
= ((fv(t1) ∪ fv(t2)) ⧵ {x}) ∪ fv(u)
= (fv(t1 t2) ⧵ {x}) ∪ fv(u)

• Case where t is a �-abstraction �y.t0. Assume x ≠ y and y ∉ fv(u) (if not, �-rename it). Assume
fv(t0{x ← u}) ⊆ (fv(t0) ⧵ {x}) ∪ fv(u) (induction hypothesis). Then

fv((�y.t0){x ← u})

= fv(�y.(t0{x ← u})) since x ≠ y and y ∉ fv(u)
= fv(t0{x ← u}) ⧵ {y}

⊆ ((fv(t0) ⧵ {x}) ∪ fv(u)) ⧵ y induction hypothesis
= ((fv(t0) ⧵ {x} ⧵ {y}) ∪ (fv(u) ⧵ y)
= ((fv(t0) ⧵ {x} ⧵ {y}) ∪ fv(u) since y ∉ fv(u)
= ((fv(t0) ⧵ {y} ⧵ {x}) ∪ fv(u)
= (fv(�y.t0) ⧵ x) ∪ fv(u)

The sets are not equal: if x ∉ fv(t) then u disappears in t{x ← u}, together with its free variables.

8

5 Formalisation of the reduction

�-reduction
Application of a function to an argument

(�x.t) u

The result if given by the function body, in which the formal parameter x is linked to the argument
u.

(�x.t) u →� t{x ← u}

where t{x ← u} denotes substitution without capture

�-reduction, pictured on trees

@

�x

�y

@

@

x y

@

x �z

z

�a

�b

@

b
a

⟶� �y

@

@

y

@

�z

z

�a

�b

@

b
a

�a

�b

@

b
a

�-reduction, programmed in caml
Function for reducing a �-redex

let beta_reduction = function
| App(Abs(x, t), u) -> subst t x u
| _ -> failwith "not␣a␣beta -redex"

Auxiliary function : subst t x u computes t{x ← u}

let rec subst t x u = match t with
| Var y -> if x = y then u else t
| App(t1, t2) -> App(subst t1 x u,

subst t2 x u)
| Abs(y, t) -> (* renaming ? *)

Congruence
The �-reduction rule can be applied anywhere in a term. This can be formalized using inference

rules.

(�x.t) u →� t{x ← u}

t →� t
′

t u →� t
′
u

u →� u
′

t u →� t u
′

t →� t
′

�x.t →� �x.t
′

9

Position of a reduction
Write

t

p

−→� t
′

when t reduces to t′ by contracting a redex at position p

(�x.t) u

"

−→� t{x ← u}

t

p

−→� t
′

t u

1⋅p

−−→� t
′
u

u

p

−→� u
′

t u

2⋅p

−−→� t u
′

t

p

−→� t
′

�x.t

0⋅p

−−→� �x.t
′

Justifying a reduction using a derivation tree

(�y.zy) x

"

−→ zx

x ((�y.zy) x)

2

−→ x (zx)

�x.(x ((�y.zy) x))

02

−−→ �x.(x (zx))

(�x.x ((�y.zy)x)) z

102

−−−→ (�x.x (zx)) z

Inductive reasoning on a reduction
Since the reduction relation t →� t

′ is de�ned by inference rules, there is an associated inductive
reasoning principle. On can prove that a property P is such that

∀t, t
′
, t →� t

′
⟹ P(t, t

′
)

by simply checking the following four points:

• P((�x.t)u, t{x ← u}) for any x , t and u base case

• P(tu, t′u) for any t , t′ and u such that P(t, t′) inductive case

• P(tu, tu′) for any t , u and u′ such that P(u, u′) another inductive case

• P(�x.t, �x.t′) for any x , t and t′ such that P(t, t′) yet another inductive case

Notice that these four conditions are quite similar to the four inference rules

Inductive reasoning on reduction
Reduction does not generate free variables.

If t → t
′ , then fv(t′) ⊆ fv(t)

Proof by induction on the derivation of t → t
′.

• Case (�x.t) u → t{x ← u}. We already proved: fv(t{x ← u}) ⊆ (fv(t) ⧵ {x}) ∪ fv(u). Moreover,
we have

fv((�x.t) u) = fv(�x.t) ∪ fv(u)
= (fv(t) ⧵ {x}) ∪ fv(u)

10

• Case t u → t
′
u with t → t

′. Then

fv(t′ u) = fv(t′) ∪ fv(u) by de�nition
⊆ fv(t) ∪ fv(u) by induction hypothesis
= fv(t u) by de�nition

• Case t u′ → t u
′ with u → u

′ similar.

• Case �x.t → �x.t
′ with t → t

′. Then

fv(�x.t′) = fv(t′) ⧵ {x} by de�nition
⊆ fv(t) ⧵ {x} by induction hypothesis
= fv(�x.t) by de�nition

Reduction sequences

→� one step

→
∗

�
re�exive transitive closure: 0, 1 or many steps

↔� symmetric closure: one step, forward or backward

=� re�exive, symmetric, transitive closure (equivalence)

Additional (optional) rule : �
Depending on what we want to model, can be used in both directions:

• �-contraction
�x.(t x) →� t

• �-expansion
t →� �x.(t x)

Related to extensional equality (Leibniz equality)

Alternative formalization: reduction in contexts
Focus on the redex r reduced in a term t

t = [r] → [r ′] = t′

with r = (�x.u)v and r ′ = u{x ← v}

 is a context: a term with one hole

 ∶∶= □ |  t | t  | �x.

[u] is the result of �lling the hole of  with the term u

Exercise: contexts and subterms
Here are some decompositions of �x.(x �y.xy) into a context and a term [u]

 □ �x.□ �x.(□ �y.xy) �x.(x □) ...

u �x.(x �y.xy) x �y.xy x �y.xy ...

What are the other possible decompositions?
We already showed that

(�x.x ((�y.zy)x)) z → (�x.x (zx)) z

What are the context and the redex associated to this reduction?

11

Answer Other decompositions of �x.(x �y.xy)

 �x.(x (�y.□)) �x.(x (�y.□ y)) �x.(x (�y.x □))

u xy x y

Decomposition of the reduction:
[(�y.zy)x] → [zx]

with  = (�x.x □) z

Exercise: equivalence of the two formalizations (first way)
Prove that if

t →� t
′

then there are , x , u, v such that

t = [(�x.u)v] et t
′
= [u{x ← v}]

Answer Proof by induction on the derivation of t →� t
′.

• Base case t = (�x.u)v →� u{x ← v} = t
′. Straightforward conclusion with the context □

• Case t = t1t2 →� t
′

1
t2 = t

′ with t1 →� t
′

1
. Assume there are 1, x , u and v such that t1 = 1[(�x.u)v]

and t′
1
= 1[u{x ← v}] (induction hypothesis). Then conclude with  = 1 t2

• Case t = t1t2 →� t1t
′

2
= t

′ with t2 →� t
′

2
similar, using context  = t1 2

• Case t = �y.t0 →� �y.t
′

0
= t

′ with t0 →� t
′

0
similar, using context  = �y.0

Pure �-calculus: summary
Minimalistic formalism

• Variables

• �-abstraction

• Application

• �-renaming

• �-reduction

Theoretically, we do not need anything else! see chapter on �-computability

6 Extended �-calculi

PCF: Programming with Computable Functions
The �-calculus can be extended with various programming features we want to study. Pick your

favorite:

• integer arithmetic

• booleans and conditionals

• data structures

• recursive functions

• ...

PCF is a standard package of such extensions

12

Extending the �-calculus
Ingredients

• new syntax

• reduction rules

• extended de�nitions (e.g. substitution)

• extended proofs

Integer arithmetic
New shapes of terms

t ∶∶= ...

| n integer
| t1 op t2 binary operation ⊕, ⊖, ...

New base reduction rules

n1 ⊕ n2 → n with n = n1 + n2

New congruence rules

t1 → t
′

1

t1 ⊕ t2 → t
′

1
⊕ t2

t2 → t
′

2

t1 ⊕ t2 → t1 ⊕ t
′

2

Extended de�nitions

fv(t1 op t2) = fv(t1) ∪ fv(t2)
(t1 op t2){x ← u} = (t1{x ← u}) op (t2{x ← u})

Booleans and conditionals
New shapes of terms

t ∶∶= ...

| T true
| F false
| isZero(t) test
| if t1 then t2 else t3 conditional expression

New base rules
isZero(0) → T
isZero(n) → F n ≠ 0

if T then t1 else t2 → t1

if F then t1 else t2 → t2

+ new congruence rules

Pairs
New shapes of terms

t ∶∶= ...

| ⟨t1, t2⟩ pair
| �1(t) le� projection
| �2(t) right projection

New base rules
�1(⟨t1, t2⟩) → t1

�2(⟨t1, t2⟩) → t2

+ new congruence rules

13

Linked lists
New shapes of terms

t ∶∶= ...

| Nil empty list
| t1::t2 combine an element (head) and a list (tail)
| isNil(t) test
| hd(t) head element
| tl(t) tail of the list

New base rules
isNil(Nil) → T

isNil(t1::t2) → F
hd(t1::t2) → t1

tl(t1::t2) → t2

+ congruence rules

Recursion
New shapes of terms

t ∶∶= ...

| Fix(t) �xed point

New base rules
Fix(t) → t (Fix(t))

+ congruence rules

Exercise : extended reduction
Compute the value of the expression

Fix(�f s.if isNil(s) then 0 else 1 ⊕ (f (tl(s)))) (2::4::8::Nil)

Answer. Write F = �f s.if isNil(s) then 0 else 1 ⊕ (f (tl(s))).

Fix(F) (2::4::8::Nil)
→ F (Fix(F)) (2::4::8::Nil)
→ (�s.if isNil(s) then 0 else 1 ⊕ (Fix(F))(tl(s))) (2::4::8::Nil)
→ if isNil(2::4::8::Nil) then 0 else 1 ⊕ (Fix(F))(tl(2::4::8::Nil))
→ if F then 0 else 1 ⊕ (Fix(F))(tl(2::4::8::Nil))
→ 1 ⊕ (Fix(F))(tl(2::4::8::Nil))
→ 1 ⊕ (Fix(F))(4::8::Nil)
...

→ 1 ⊕ 1 ⊕ 1 ⊕ (Fix(F) Nil)
→ 1 ⊕ 1 ⊕ 1 ⊕ (F (Fix(F)) Nil)
→ 1 ⊕ 1 ⊕ 1 ⊕ ((�s.if isNil(s) then 0 else 1 ⊕ (Fix(F))(tl(s))) Nil)
→ 1 ⊕ 1 ⊕ 1 ⊕ (if isNil(Nil) then 0 else 1 ⊕ (Fix(F))(tl(Nil)))
→ 1 ⊕ 1 ⊕ 1 ⊕ 0

→ 1 ⊕ 1 ⊕ 1

→ 1 ⊕ 2

→ 3

14

7 de Bruijn notation

Use numbers instead of variable names

�x.�y.(y x ((�y.xy) y))

�x

�y

@

@

y x

@

�y

@

x y

y

Replace each variable occurrence with the number of � between the occurrence and its binder

�.�.0 1 ((�.20) 0)

What we gain: the need for variable renamings disappears

de Bruijn, in caml
�-terms with de Bruijn indices

type term =
| Var of int
| App of term * term
| Abs of term

Encoding of the term �.�.0 1 ((�.20) 0)

Abs(Abs(App(App(Var 0, Var 1),
App(Abs(App(Var 2, Var 0)),

Var 0))))

Substitutions and indices
�-reduction

• substitution of 0 (occurrences bound by the � in the redex)

(�.0 (�.0 1)) t →� t (�.0 t)

• other indices under the �-abstraction of the redex should be adjusted (-1)

(�.0 1 (�.0 1)) t ̸→� t 1 (�.0 t)

il faut les décrementer

• indices in the substituted argument should also be adjusted each time we cross a � (+1)

(�.0 1 (�.0 1)) 0 ̸→� 0 1 (�.0 0)

15

Substitution, in caml
Substitution of the index i

let rec subst t i u = match t with
| Var j -> if i=j then u

else if i<j then Var (j-1)
else t

| App(t1,t2) -> App(subst t1 i u,
subst t2 i u)

| Abs t -> let u' = shift 0 u in
Abs (subst t (i+1) u')

Auxiliary function: shi� indices greater of equal to k

let rec shift k u = match u with
| Var j -> if k<=j

then Var (j+1)
else u

| App(t1, t2) -> App(shift k t1,
shift k t2)

| Abs t -> Abs (shift (k+1) t)

Exercise: de Bruijn notation
Write the following terms using de Bruijn indices

1. �x.(�x.xy)(�y.xy)

2. �xy.x(�y.(�y.y)yz)

Write the following term using de Bruijn indices, then reduce it

(�f .f f) (�ab.b a b)

Answer

1. �.(�.02)(�.10)

2. �.�.1(�.(�.0)03

3.
(�.00) (�.�.010) → (�.�.010) (�.�.010)

→ �.0(�.�.010)0

Homework – write it down and send it to me before next course
Prove that if x ≠ y and x ∉ fv(v) then

t{x ← u}{y ← v} = t{y ← v}{x ← u{y ← v}}

16

	A computational theory of function
	-calcul: basic definitions
	Formalization of -terms
	Variables and substitutions
	Formalisation of the reduction
	Extended -calculi
	Notation de de Bruijn

