
Programming languages, semantics, compilers
Thibaut Balabonski @ Université Paris-Saclay. M1 MPRI, Fall 2024.

This course explores programming languages, focusing on two main topics:
— their semantics, that is the formal description of the meaning of programs ;
— their compilation, that is the decomposition of high-level source language programs

into simpler instructions whose execution can be performed by a computer.
We will define a functional programming language with a rich type system, and build an
optimizing compiler and an execution environment for this language.

Part I

Contents
1 Semantics and interpretation of a functional language 2

1.1 Concrete syntax and abstract syntax . 2
1.2 Inductive structures . 2
1.3 An interpret for FUN . 5
1.4 Natural semantics . 8
1.5 Small step operational semantics . 12
1.6 Equivalence between small step and big step 14
1.7 Extensions . 16

2 Types and safety 17
2.1 Types values and operations . 17
2.2 Typing judgment and inference rules . 19
2.3 Type safety . 22
2.4 Type verification for FUN . 24
2.5 Polymorphism . 26
2.6 Type inference . 29

1

1 Semantics and interpretation of a functional language
In this chapter, we define and interpret a minimal functional programming language, called
FUN. Here is a sample FUN program.

let rec fact = fun n ->
if n = 0 then

1
else

n * fact (n-1)
in
fact 6

Programs in this language are made of expressions, combining basic arithmetic capabilities
with richer elements, such as the definition and use of (possibly recursive) functions.

1.1 Concrete syntax and abstract syntax
The arithmetic features of the FUN language enable a variety of numerical calculations. For
instance:

> (1+23)*456+7
> (1 + 23) * 456 + 7
> (1+23) *456 +7

These three different writings all represent the same arithmetic expression (1 + 23) × 456 + 7.
We consider two levels of syntax for any programming language. The concrete syntax

corresponds to what is written by the programmer. It is a raw text, a character string, and
represents the observable part of the language. Conversely, the abstract syntax gives a
structured representation of a program, shaped as a tree. It is a central tool both for handling
programs inside a compiler, and for reasoning on programs in a formal way. Moreover, the
abstract syntax tends to focus on the heart of the language, abstracting away many writing
artifacts.

Differences between the two levels of syntax. Unsignificant elements of the concrete
syntax, such as spaces and comments, are not carried over to the abstract syntax. Parentheses,
become in the concrete syntax for the correct association between operators and their
operands, become useless in the intrinsically structured abstract syntax. Hence, the three
strings of characters seen above correspond to the same arithmetic abstract syntax tree.

Add

Mul

Add

1 23

456

7

The concrete syntax of a programming language often provides simplified writings for
common operations, named syntactic sugar. These simplified forms however do not entail
any new structure in the abstract syntax: they are just combinations of core elements of the
language. For instance:

— in python, the increment instruction x += 1 is a shortcut for the assignment instruction
x = x + 1 and produces the very same abstract syntax tree;

— in C, the access instruction t[i] is nothing more than a small pointer arithmetic
expression *(t+i) ;This syntactic sugar as some

funny consequences: it allows
writing 2[t] for the same effect as

t[2].

— in caml, a function definition let f x = e is actually an ordinary variable defini-
tion, whose value is provided by an anonymous function: let f = fun x -> e; sim-
ilarly the definition of a two-parameter function let f x y = e is decomposed as
let f = fun x -> fun y -> e.

1.2 Inductive structures
Abstract syntax tree have an inductive structure, which can be describe using a form
of recursion: a program is built by combining program fragments, themselves build by

2

combining smaller fragments, an so on. This structure allows defining recursive functions
working on abstract syntax tree, and reasoning on programs using structural induction.

Inductive objects. We define a set of inductive objects with:
1. some base objects,
2. a finite set of constructors, that can combine already built objects to define new

objects.
We then consider the set of all objects that can be built using the two previous points. The
arity of a constructor is the number of elements it combines. Base objects can be seen as
constructors with arity zero. The signature of a set of inductive objects is the set comprising
its base objects and its constructors.

Example: lists. Linked lists can be seen as a set of inductive objects defined by:
— a unique base object: the empty list, written [],
— a unique constructor, which builds a new list 𝑒 :: ℓ by adding a new element 𝑒 at the

head of a list ℓ.

Example: arithmetic expressions. We define a minimal set of arithmetic expression 𝔸
with:

— the integer constants as base objects,

0 1 2 3 ...

— some binary constructors, each combining two already built expressions, such as
addition or multiplication.

Add

𝑒1 𝑒2

Mul

𝑒1 𝑒2

On can lighten the handling of such expression using mathematical notations such as 𝑛,
𝑒1 ⊕ 𝑒2 or 𝑒1 ⊗ 𝑒2. For now, we keep symbols ⊕ and ⊗ that are different from the usual + and
×, to unambiguously distinguish the language and its interpretation.

— The operator + is a mathematical element, which applies to two numbers to define a
third. It satisfies the equation 1 + 2 = 3 and will serve for the interpretation of our
language of expressions.

— The constructor ⊕ is a syntactic element, which applies to two expressions to build a
third. It serves at defining the language itself, in which 1 ⊕ 2 ≠ 3.

This light notation for the abstract syntax must always use enough parentheses, to remove
any ambiguity in the structure of expressions. Thus we forbid 𝑒1 ⊕ 𝑒2 ⊕ 𝑒3 ⊕ 𝑒4, and write
one of the five possible structures instead, such as (𝑒1 ⊕ 𝑒2) ⊕ (𝑒3 ⊕ 𝑒4) or 𝑒1 ⊕ ((𝑒2 ⊕ 𝑒3) ⊕ 𝑒4).
Similarly, we do not let any of the usual mathematical priority conventions implicit: we
explicitly write 1 ⊕ (2 ⊗ 3) when representing the usual mathematical expression 1 + 2 × 3.

Defining functions on a set of inductive objects. Each object of a set 𝐸 of inductive
objects can be built using only the base objects and the constructors. A function 𝑓 applicable
to the elements of 𝐸 can thus be defined in a very succinct way:

— for each base element 𝑒, give 𝑓 (𝑒),
— for each 𝑛-ary constructor 𝑐, describe 𝑓 (𝑐(𝑒1, … , 𝑒𝑛)) using the subelements 𝑒𝑖 and their

images 𝑓 (𝑒𝑖).
This define a unique image for each element of 𝐸.

We provide below three sets of equations on our arithmetic expressions. These equations
define functions nbCst, nbOp and eval, such that nbCst(𝑒) gives the number of constants in
the arithmetic expression 𝑒, nbOp(𝑒) gives the number of operators in 𝑒, and eval(𝑒) gives
the numerical value obtained after performing the calculation described by 𝑒. Notive that
writing such functions requires a clear distinction between arithmetic expressions themselves
(the syntax) and the associated value (the semantics). In particular, the constructor ⊕ is a
syntactic element (a constructor) representing an addition, that should not be confused with

3

the operator + which is the mathematical interpretation of the addition (a function).

{
nbCst(n) = 1

nbCst(𝑒1 ⊕ 𝑒2) = nbCst(𝑒1) + nbCst(𝑒2)
nbCst(𝑒1 ⊗ 𝑒2) = nbCst(𝑒1) + nbCst(𝑒2)

{
nbOp(n) = 0

nbOp(𝑒1 ⊕ 𝑒2) = 1 + nbOp(𝑒1) + nbOp(𝑒2)
nbOp(𝑒1 ⊗ 𝑒2) = 1 + nbOp(𝑒1) + nbOp(𝑒2)

{
eval(n) = 𝑛

eval(𝑒1 ⊕ 𝑒2) = eval(𝑒1) + eval(𝑒2)
eval(𝑒1 ⊗ 𝑒2) = eval(𝑒1) × eval(𝑒2)

Programming with inductive objects. Algebraic types in caml allow precisely the
definition of sets of inductive objects, by providing a set of constructors and, for each
constructor, the types of the elements it combines. Here a base object is just seen as a
constructor with arity zero.

For instance, lists containing elements of type ’a are defined by the base object [], and a
constructor :: that applies to an element and a list.

type ’a list =
| []
| (::) of ’a * ’a list

Expressions are defined similarly, using three constructors.

type expr =
| Cst of int
| Add of expr * expr
| Mul of expr * expr

Remark: we cannot define in caml an infinite amount of base objects. Thus we describe all
integer constants using a unique constructor Cst that takes an integer as parameter. With
such a definition, the abstract syntax expression (1 ⊕ 2) ⊕ (3 ⊗ 4) can be defined in caml by:

Add(Add(Cst 1, Cst 2), Mul(Cst 3, Cst 4))

With such algebraic types, the equations written above to define functions on arithmetic
expressions translate straightforwardly into code, in the form of recursive functions.

let rec nb_cst = function
| Cst n -> 1
| Add(e1, e2) -> nb_cst e1 + nb_cst e2
| Mul(e1, e2) -> nb_cst e1 + nb_cst e2

let rec eval = function
| Cst n -> n
| Add(e1, e2) -> eval e1 + eval e2
| Mul(e1, e2) -> eval e1 * eval e2

Additional note on caml: parts of the expression that are not used in the computation can be
ignored, and identical cases can be factored:

let rec nb_op = function
| Cst _ -> 0
| Add(e1, e2) | Mul(e1, e2) -> nb_op e1 + nb_op e2

Reasoning by structural induction. Each object in a set 𝐸 of inductive objects can be
built using only the base objects and the constructors. Proving that a given property 𝐸 is
valid for all elements in 𝐸 reduces to:

— proving that 𝑃(𝑒) is valid for each base element 𝑒,
— proving, for each 𝑛-ary constructor 𝑐, that if any 𝑛 element 𝑒1, ..., 𝑒𝑛 all satisfy 𝑃(𝑒𝑖),

then the property 𝑃 is still valid for the combined element 𝑐(𝑒1, … , 𝑒𝑛). In other words,
for any constructor and any elements, 𝑃(𝑒1) ∧ … ∧ 𝑃(𝑒𝑛) ⟹ 𝑃(𝑐(𝑒1, … , 𝑒𝑛)).Remark that this paragraph is

very similar to the one
concerning the definition of a

function! 4

Thus, we ensure that it is not possible to build an element 𝑒 that does not satisfy the target
property 𝑃.

This proof technique is called proof by structural induction. The first point describe
base cases (one for each base element). The second point describe inductive cases (or
recursive cases, one for each non-nullary constructor). In the second point hypotheses 𝑃(𝑒1)
to 𝑃(𝑒𝑛) that can be used for justifying 𝑃(𝑐(𝑡1, … , 𝑡𝑛)) are called induction hypotheses.

Here is how this principle can be instantiated for our two examples.
— Proving that a property 𝑃 is valid for all lists reduces to:

1. proving that it is valid for the empty list [],
2. for any list ℓ and any element 𝑒, proving that if 𝑃 is valid for ℓ (induction hypoth-

esis), then it is still valid for 𝑒 :: ℓ.
— Proving that a property 𝑃 is valid for all arithmetic expressions reduces to:

1. proving that it is valid for all integer constants,
2. for any expressions 𝑒1 and 𝑒2, proving that if 𝑃 is valid for 𝑒1 and 𝑒2 (induction

hypotheses), then it is still valid for 𝑒1 ⊕ 𝑒2,
3. for any expressions 𝑒1 and 𝑒2, proving that if 𝑃 is valid for 𝑒1 and 𝑒2 (induction

hypotheses), then it is still valid for 𝑒1 ⊗ 𝑒2.

Let us prove that for any arithmetic expression, the number of constants is exactly
one more than the number of binary operators. Let us write 𝑃(𝑒) the property nbCst(𝑒) =
nbOp(𝑒) + 1, and check the base and the inductive cases:

— Case of a constant (base case): for any constant nwe have nbCst(n) = 1 and nbOp(n) =
0. Then the property 𝑃 is satisfied by the term n.

— Case of an addition (inductive case): let 𝑒1 and 𝑒2 be two expressions satisfying the
property 𝑃. Then

nbCst(𝑒1 ⊕ 𝑒2)
= nbCst(𝑒1) + nbCst(𝑒2) by definition of nbCst
= (nbOp(𝑒1) + 1) + (nbOp(𝑒2) + 1) by induction hypotheses
= (1 + nbOp(𝑒1) + nbOp(𝑒2)) + 1 (reorder)
= nbOp(𝑒1 ⊕ 𝑒2) + 1 by definition of nbOp

Thus, the property 𝑃 is still valid for the term Add(𝑒1, 𝑒2) = 𝑒1 ⊕ 𝑒2.
— Case of a multiplication (inductive case): similar to the case of an addition.

Thus, using structural induction we proved that for any arithmetic expression 𝑒, we have
nbCst(𝑒) = nbOp(𝑒) + 1.

1.3 An interpret for FUN
Now we will apply the principles seen above to the language FUN, which can be seen
as the core of functional programming. This languages contains richer expressions, with
in particular variables, conditional expressions, and definition and application of possibly
recursive functions.

Abstract syntax. A FUN program is made of expressions only. Its abstract syntax is
represented by a unique main type expr, with a constructor for each syntactic form. We
factor all binary operations using a unique constructor Bop, whose first parameter gives the
precise operation.

type bop = Add | Sub | Mul | Lt | Eq (* | ... *)
type expr =

(* arithmetic *)
| Int of int
| Bop of bop * expr * expr

We add constructors Var for referring to the value of a variable, and Let for defining a local
variable. Variables are identified by character strings.

(* variables *)
| Var of string
| Let of string * expr * expr

Then, the expression let x = 41 in x+1 of FUN is represented in caml by Let(”x”, Int 41, Bop(Add, Var ”x”, Int 1)).

5

We enrich the language with a ternary constructor If for conditional expressions, a
constructor Fun for the creation of an anonymous function fun x -> e, and a constructor
App for the application of a function to an argument.

(* conditional *)
| If of expr * expr * expr
(* functions *)
| Fun of string * expr
| App of expr * expr
(* recursion *)
| Fix of string * expr

Finally, the constructor Fix describes a recursive definition. The definition of a recursive
function let rec f x = e1 in e2 will be represented in caml by the abstract syntax tree
Let(”f”, Fix(”f”, Fun(”x”, e1)), e2). Note that the identifier ”f” of the function appears
twice here: once in the constructor Let for defining this name f in the expression e2, and
once in the constructor Fix to enable the (recursive) use of f in the expression Fun(”x”, e1).

Variables, values and environments. A variable denotes a value that has been computed
by another part of the program. A function interpreting programs that may contain variables
then requires two parameters: the expression that should be evaluated first, but also the values
associated to the variables of this expression. This second part is called an environment. It
associates variables names (that is, character strings) with values.

To handle such an environment, we need to define the values that can be produced by
the evaluation of an expression. Let us first focus on arithmetic and logic, for which we can
distinguish numerical and boolean values.

type value =
| VInt of int
| VBool of bool

We then need a structure of association table, which can be implemented by several data
structures. In particular:

— balanced search trees (module Map in caml) can be used to implement an environment
using an immutable structure, in a purely functional style,

— hashtables (module Hashtbl in caml) give an implementation based on a mutable data
structure.

In the code of this chapter, we use the implementation based on balanced search trees, which
can be setup with the following declarations.

module Env = Map.Make(String)
type env = value Env.t

After this declaration, the type env represents association tables with keys of type string

and values of type value. The module Env provides a constant Env.empty for an empty table,
and many functions, including Env.find for fetching the value associated to a given key, or
Env.add for adding or updating an association.

Now we can define a function

eval: expr -> env -> value

such that eval 𝑒 𝜌 returns the value of the expression 𝑒 evaluated in the environment 𝜌.
The treatment of basic arithmetic operators is similar to what we have already seen. The

novelty is that each value has to be encapsulated using the appropriate constructor VInt or
VBool, and that the kind of each operand also has to be checked.

let rec eval e env = match e with
| Int n -> VInt n
| Bop(op, e1, e2) ->

begin match op , eval e1 env , eval e2 env with
| Add , VInt n1, VInt n2 -> VInt (n1 + n2)
| Sub , VInt n1, VInt n2 -> VInt (n1 - n2)
| Mul , VInt n1, VInt n2 -> VInt (n1 * n2)
| Lt, VInt n1 , VInt n2 -> VBool (n1 < n2)
| Eq, v1, v2 -> VBool (v1 = v2)
| _ -> failwith ”unauthorized operation”

6

end
| If(c, e1, e2) ->

begin match eval c env with
| VBool b -> if b then eval e1 env else eval e2 env
| _ -> failwith ”unauthorized operation”

end

Evaluating a variablemeans fetching the associated value in the environment. The declaration
of a new local variable with let x = e1 in e2 defines an extended environment which
associates x to the value of e1, and then evaluates the expression e2 in this new environment.

| Var x -> Env.find x env
| Let(x, e1, e2) ->

let v1 = eval e1 env in
let env ’ = Env.add x v1 env in
eval e2 env ’

We deduce a function eval_top that evaluates an expression in the empty environment.

let eval_top (e: expr): value =
eval e Env.empty

Functions and functional closures. With functional programming, functions are seen
as ordinary values, which can be passed to other functions as parameters, or returned as
results. Their is a little subtlety though.

let plus n =
let f x = x + n in
f

Here, a function plus defines and returns a local function f. We give a name to this function f

for clarity, but the caml codes let
plus n = fun x -> x + n or let
plus n x = x + n would have
produced the very same effect.

The definition of f uses a variable
nwhich is external to f (it is called a free variable). Here, this variable n is a parameter of the
function plus. Two calls plus 2 and plus 3 define two differents functions. Both correspond
to the code fun x -> x + n, however we have n = 2 in the former case, and n = 3 in the
latter.

Thus, the saying that in functional programming a function is an ordinary value is slightly
simplified: the value returned by our function plus is not only the function f, but rather “the
function f together with an enrivonment providing the value of the variable n that f refers
to”. More generally, a function-value is a function together with an enrivonment providing
at least the values of all the external variables used in the function (a simple version would
be to keep the full environment in which the function has been defined, regardless of what
is actually used). We call this function/environment pair a functional closure.

We extend the type value of the possible results of the evaluation of an expression. In
addition to numbers and booleans, it now contains functional closures, with the constructor
VClos.

type value = ...
| VClos of string * expr * env

The value corresponding to the function fun x -> 𝑒 defined in the environment 𝜌 is repre-
sented by VClos(”x”, 𝑒, 𝜌).

Now we can extend our evaluation function, with two cases for the definition and the
application of a function. An anonymous function fun x -> e produces immediately a value:
it is just paired with the current environment to form a closure. In the case of an application,
we expect the value of the left member e1 to be a functional closure. Then we evaluated the
body e of this function under the new environement combining: the environment env’ given
by the closure (necessary for evaluating the external variables in the body of the function),
and the value of the argument e2 associated to the formal parameter x of the function.

let rec eval e env = match e with
...
| Fun(x, e) -> VClos(x, e, env)
| App(e1, e2) ->

let x, e, env ’ = match eval e1 env with
| VClos(x, e, env ’) -> x, e, env ’
| _ -> failwith ”unauthorized operation”

7

in
let v2 = eval e2 env in
eval e (Env.add x v2 env ’)

Recursion. A recursive function 𝑓, like any ordinary function, evaluates to a functional
closure 𝑐 = (𝑓 , 𝜌). Some special care is required however: for the function to be able to call
itself recursively, we need the environment 𝜌 of the closure 𝑐 to contain 𝑐 itself, besides other
external elements. Ideally, we would like

eval (Fix(f, Fun(x, e))) env

to produce a value v satisfying the recursive equation

v = VClos(x, e, Env.add f v env)

However, although caml authorize in some circumstances the definition of recursive values,
the definition

let rec v = VClos(x, e, Env.add f v env)

would be rejected. Indeed, since here the value vwould be, in the process of its own definition,
passed as parameter to another function (namely Env.add f), the compiler cannot guarantee
that the process is well defined.For instance, what would happen

if the function tried to explore the
structure of v before it is

sufficiently defined?

To circumvent this problem, we introduce a new shape of value VFix, used to tie the
recursive knot.

type value =
...
| VFix of expr * string * value * env

Given an expression 𝑒, an identifier 𝑓, and an environment 𝜌, the recursive value 𝑣 =
VFix(𝑒, 𝑓, 𝑣, 𝜌) is to be understood has the result of evaluating 𝑒 in the environment
Env.add 𝑓 𝑣 𝜌.

We complete our eval function with three elements:
— an evaluation rule for Fix, which produces a recursive value VFix, assuming the

considered subexpression is a function,
— an auxiliary function force: value -> value which “opens” a recursive value,
— a use of force in the evaluation of a function application, to unpack a possibly recursive

function.
Here are the parts that are added or modified:

let rec eval e env = match e with
...
| App(e1, e2) ->

let x, e, env ’ = match force (eval e1 env) with
| VClos(x, e, env ’) -> x, e, env ’
| _ -> failwith ”unauthorized operation”

in
let v2 = eval e2 env in
eval e (Env.add x v2 env ’)

| Fix(f, Fun(x, e)) ->
let rec v = VFix(Fun(x, e), f, v, env) in
v

| Fix _ -> failwith ”unauthorized operation”

and force v = match v with
| VFix(e, f, v, env) -> force (eval e (Env.add f v env))
| v -> v

1.4 Natural semantics
We provided a semantics for FUN through an interpreter written in caml. However, this semantics
itself depends on the semantics of caml! Here, we take a more abstract view, with a direct
mathematical description.

8

The semantics defines the meaning and the behaviour of programs. A programming
language generally comes with a more or less informal description of the program behaviours
that shall be expected. Here is an excerpt that appeared in the specification Java:

The Java programming language guarantees that the operands of operators
appear to be evaluated in a specific order, namely, from left to right. It is
recommended that code do not rely crucially on this specification.

This kind of documentation often contains some quantity of imprecise description or ambi-
guities. However, we can also equip a language with a formal semantics, a mathematical
characterization of the computation described by a program. This more rigorous setting
allows us to reason on the execution of programs.

Equational semantics. Earlier in this chapter, we have seen how to define an interpreta-
tion function for the expressions of a programming language, that an eval function which,
given an expression 𝑒 and an environment 𝜌 associating values to the free variables of 𝑒,
returns the expected result of evaluating 𝑒.

Here are some equations describing such a function, for a fragment of our FUN language.

eval(𝑛, 𝜌) = 𝑛
eval(𝑒1 + 𝑒2, 𝜌) = eval(𝑒1, 𝜌) + eval(𝑒2, 𝜌)

eval(𝑥, 𝜌) = 𝜌(𝑥)
eval(let 𝑥 = 𝑒1 in 𝑒2, 𝜌) = eval(𝑒2, 𝜌 ∪ {𝑥 ↦ eval(𝑒1, 𝜌)})

eval(fun 𝑥 -> 𝑒, 𝜌) = Clos(𝑥, 𝑒, 𝜌)
eval(𝑒1 𝑒2, 𝜌) = eval(𝑒, 𝜌′ ∪ {𝑥 ↦ eval(𝑒2, 𝜌)})

if eval(𝑒1, 𝜌) = Clos(𝑥, 𝑒, 𝜌′)

Remark in the equation concerning addition that the symbol + in 𝑒1 + 𝑒2 is a syntactic
element combining two FUN expressions, whereas the operator + in eval(𝑒1, 𝜌) + eval(𝑒2, 𝜌)
is the mathematical addition of the values 𝑣1 and 𝑣2 produces by the evaluation of the
expressions 𝑒1 and 𝑒2. Also, the construct Clos(𝑥, 𝑒, 𝜌) denotes a functional closure, that is a
function together with its environment.

The environment 𝜌 taken as parameter by this evaluation function was a device whose
goal was to build an efficient interpreter, using caml data structures for associating variables
and their values. For a purely mathematical specification of the value that should be produced
by the evaluation of an expression in a purely functional setting, we can instead deal with
expressions in which each variable is literally replaced by its value. By doing this replacement
we totally bypass the notion of environment, as well as the associated necessity to deal with
closures. We could have had a definition like

eval(𝑛) = 𝑛
eval(𝑒1 + 𝑒2) = eval(𝑒1) + eval(𝑒2)

eval(𝑥) = indéfini
eval(let 𝑥 = 𝑒1 in 𝑒2) = eval(𝑒2[𝑥 ∶= eval(𝑒1)])

eval(fun 𝑥 -> 𝑒) = fun 𝑥 -> 𝑒
eval(𝑒1 𝑒2) = eval(𝑒[𝑥 ∶= eval(𝑒2)])

if eval(𝑒1) = fun 𝑥 -> 𝑒

where 𝑒[𝑥 ∶= 𝑒′] denotes the replacement (called substitution) of each occurrence of the
variable 𝑥 in the expression 𝑒 by the other expression 𝑒′, and is defined by its own set of
equations.

𝑛[𝑥 ∶= 𝑒′] = 𝑛
(𝑒1 + 𝑒2)[𝑥 ∶= 𝑒′] = 𝑒1[𝑥 ∶= 𝑒′] + 𝑒2[𝑥 ∶= 𝑒′]

𝑦[𝑥 ∶= 𝑒′] = { 𝑒′ if 𝑥 = 𝑦
𝑦 otherwise

(let 𝑦 = 𝑒1 in 𝑒2)[𝑥 ∶= 𝑒′] = let 𝑦 = 𝑒1[𝑥 ∶= 𝑒′] in 𝑒2[𝑥 ∶= 𝑒′] if 𝑥 ≠ 𝑦 et 𝑦 ∉ fv(𝑒′)
(fun 𝑦 -> 𝑒)[𝑥 ∶= 𝑒′] = fun 𝑦 -> 𝑒[𝑥 ∶= 𝑒′] if 𝑥 ≠ 𝑦 et 𝑦 ∉ fv(𝑒′)

(𝑒1 𝑒2)[𝑥 ∶= 𝑒′] = 𝑒1[𝑥 ∶= 𝑒′] 𝑒2[𝑥 ∶= 𝑒′]

Remark in the cases for let and fun a side condition concerning the set fv(𝑒′) of free variables
of the substitution expression. This side condition is here to avoid having different variables
whose name collide. Here, it will be automatically satisfied as soon as all the variables
introduced in a program are given distinct names. In the 𝜆-calculus course, this part

will require some extra care.

9

This set fv(𝑒) of the free variables of an expression 𝑒 is again defined by its own set of
equations.

fv(n) = ∅
fv(x) = {𝑥}

fv(𝑒1 ⊕ 𝑒2) = fv(𝑒1) ∪ fv(𝑒2)
fv(𝑒1 ⊗ 𝑒2) = fv(𝑒1) ∪ fv(𝑒2)

fv(let x = 𝑒1 in 𝑒2) = fv(𝑒1) ∪ (fv(𝑒2) ⧵ {𝑥})
fv(fun x -> 𝑒) = fv(𝑒) ⧵ {𝑥}

fv(𝑒1 𝑒2) = fv(𝑒1) ∪ fv(𝑒2)

Natural semantics and call-by-value. The specification of the semantics of a program by
a function is mostly adapted to the specification of deterministic programs whose execution
goes well (where we indeed expect a value for every expression).

A more flexible approach consists in defining the semantics by a binary relation between
expressions and the produced values. We would then write

𝑒 ⟹ 𝑣

for any pair of an expression 𝑒 and a value 𝑣 such that the expression 𝑒 may evaluate to the
value 𝑣.

This relation, called natural semantics, or big step semantics, is defined by inference
rules and specifies possible evaluations of expressions. Any compiler is expected to comply
with the semantics of its source language.

To derive our formalisation, let us first the set of values that our expression will produce:
integer numbers, and functions.

𝑣 ∶∶= 𝑛
| fun 𝑥 -> 𝑒

Inference rules will then correspond to the equations that defined our eval function.
— eval(𝑛) = 𝑛. An integer constant is its own value. The associated rule is an axiom.

𝑛 ⟹ 𝑛

— eval(𝑒1 + 𝑒2) = eval(𝑒1) + eval(𝑒2). The value of an addition expression is obtained by
adding the values of the two subexpressions.

𝑒1 ⟹ 𝑛1 𝑒2 ⟹ 𝑛2
𝑒1 + 𝑒2 ⟹ 𝑛1 + 𝑛2

Note that this rule may apply only when the values 𝑛1 and 𝑛2 associated to 𝑒1 and 𝑒2
are indeed numbers.

— eval(let 𝑥 = 𝑒1 in 𝑒2) = eval(𝑒2[𝑥 ∶= eval(𝑒1)]). The value of an expression 𝑒2 with
a local variable 𝑥 is obtained by evaluating 𝑒2 after substituting every occurrence of 𝑥
by the value of the association expression 𝑒1.

𝑒1 ⟹ 𝑣1 𝑒2[𝑥 ∶= 𝑣1] ⟹ 𝑣

let 𝑥 = 𝑒1 in 𝑒2 ⟹ 𝑣

— eval(fun 𝑥 -> 𝑒) = fun 𝑥 -> 𝑒. A function is its own value (since variables are now
substituted, no closure is needed anymore). As for constants, the associated rule is an
axiom.

fun 𝑥 -> 𝑒 ⟹ fun 𝑥 -> 𝑒

— eval(𝑒1 𝑒2) = eval(𝑒[𝑥 = eval(𝑒2)]) if eval(𝑒1) = fun 𝑥 -> 𝑒. For the value of an
application to be defined, the value of its left member 𝑒1 must be a function. Then the
value of the application is obtained by substituting the formal parameter in the body of
the function by the value of the argument 𝑒2, then evaluating the obtained expression.

𝑒1 ⟹ fun 𝑥 -> 𝑒 𝑒2 ⟹ 𝑣2 𝑒[𝑥 ∶= 𝑣2] ⟹ 𝑣

𝑒1 𝑒2 ⟹ 𝑣

10

We obtain five rules for this fragment of FUN, and we can justify semantic judgment of
the form 𝑒 ⟹ 𝑣 using a derivation.

fun 𝑥->𝑥+𝑥 ⟹ fun 𝑥->𝑥+𝑥

fun 𝑥->𝑥+𝑥 ⟹ fun 𝑥->𝑥+𝑥

20 ⟹ 20 1 ⟹ 1

20+1 ⟹ 21

21 ⟹ 21 21 ⟹ 21

21+21 ⟹ 42

(fun 𝑥 -> 𝑥 + 𝑥) (20 + 1) ⟹ 42

let 𝑓 = fun 𝑥 -> 𝑥 + 𝑥 in 𝑓 (20 + 1) ⟹ 42

Remark that the rule given for the application of a function evaluates the argument 𝑒2
before it is substituted in the body of the function. This behaviour is consistent with the
interpretation function we introduced at the beginning, which implemented a call by value
strategy.

Call by name semantics. We could also define a variant of the semantics, based on a call
by name strategy. This variant essentially consists in replacing the application rule by the
following simpler version

𝑒1 ⟹ fun 𝑥 -> 𝑒 𝑒[𝑥 ∶= 𝑒2] ⟹ 𝑣

𝑒1 𝑒2 ⟹ 𝑣

where the argument 𝑒2 is substituted unevaluated.
Optionnally, we can also use the following variant of the rule for local variables.

𝑒2[𝑥 ∶= 𝑒1] ⟹ 𝑣

let 𝑥 = 𝑒1 in 𝑒2 ⟹ 𝑣

This call by name semantics is almost equivalent to the call by value semantics: they
mostly allow the derivation of the same judgments 𝑒 ⟹ 𝑣. The shapes of the derivations
may be different, but the important point is whether a derivation exists or not. For instance,
we can also derive

let 𝑓 = fun 𝑥 -> 𝑥 + 𝑥 in 𝑓 (20 + 1) ⟹ 42

with the call by name semantics as follows. Question: how does call by name
affect the shape of the tree?

fun 𝑥->𝑥+𝑥 ⟹ fun 𝑥->𝑥+𝑥

20 ⟹ 20 1 ⟹ 1

20+1 ⟹ 21

20 ⟹ 20 1 ⟹ 1

20+1 ⟹ 21

(20+1)+(20+1) ⟹ 42

(fun 𝑥 -> 𝑥 + 𝑥) (20 + 1) ⟹ 42

let 𝑓 = fun 𝑥 -> 𝑥 + 𝑥 in 𝑓 (20 + 1) ⟹ 42

However, these two semantics are not fully equivalent : there are some judgments 𝑒 ⟹ 𝑣
Question: can you find some?that can be derived in one but not in the other.

Reasoning on the semantics. Since the natural semantics is defined by a system of
inference rules, we can prove properties about programs and their semantics by reasoning
by induction on the derivation of a judgment 𝑒 ⟹ 𝑣. We get one case for each inference
rule, and the premises of the rules provide induction hypotheses.

Let us consider the call by name semantics for FUN

𝑛 ⟹ 𝑛

𝑒1 ⟹ 𝑛1 𝑒2 ⟹ 𝑛2
𝑒1 + 𝑒2 ⟹ 𝑛1 + 𝑛2

𝑒2[𝑥 ∶= 𝑒1] ⟹ 𝑣

let 𝑥 = 𝑒1 in 𝑒2 ⟹ 𝑣

fun 𝑥 -> 𝑒 ⟹ fun 𝑥 -> 𝑒

𝑒1 ⟹ fun 𝑥 -> 𝑒 𝑒[𝑥 ∶= 𝑒2] ⟹ 𝑣

𝑒1 𝑒2 ⟹ 𝑣

and prove that if 𝑒 ⟹ 𝑣, then 𝑣 is value such that fv(𝑣) ⊆ fv(𝑒), by induction on the
derivation of 𝑒 ⟹ 𝑣.

11

— Case 𝑛 ⟹ 𝑛: immediate, since 𝑛 is a value, and fv(𝑛) ⊆ fv(𝑛).
— Case fun 𝑥 -> 𝑒 ⟹ fun 𝑥 -> 𝑒: immediate as well.
— Case 𝑒1 + 𝑒2 ⟹ 𝑛1 + 𝑛2 with 𝑒1 ⟹ 𝑛1 and 𝑒2 ⟹ 𝑛2. By definition 𝑛1 + 𝑛2 is

an integer value. Moreover fv(𝑛1 + 𝑛2) = ∅ ⊆ fv(𝑒1 + 𝑒2). Note: induction hypotheses
concerning 𝑒1 and 𝑒2 are not used here.

— Case let 𝑥 = 𝑒1 in 𝑒2 ⟹ 𝑣 with 𝑒2[𝑥 ∶= 𝑒1] ⟹ 𝑣. The premise provides as
induction hypothesis that fv(𝑣) ⊆ fv(𝑒2[𝑥 ∶= 𝑒1]) (and 𝑣 is a value).
We need here a lemma concerning the free variables of a term to which we apply a
substitution. We use the following inclusion:Exercise: prove this inclusion, by

structural induction on the
expression 𝑒. fv(𝑒[𝑥 ∶= 𝑒′]) ⊆ (fv(𝑒) ⧵ { 𝑥 }) ∪ fv(𝑒′)

Using the lemma, we get fv(𝑣) ⊆ (fv(𝑒2) ⧵ { 𝑥 }) ∪ fv(𝑒1). Moreover, by definition we
have

fv(let 𝑥 = 𝑒1 in 𝑒2) = fv(𝑒1) ∪ (fv(𝑒2) ⧵ 𝑥)

Then fv(𝑣) ⊆ fv(let 𝑥 = 𝑒1 in 𝑒2).
— Case 𝑒1 𝑒2 ⟹ 𝑣 with 𝑒1 ⟹ fun 𝑥 -> 𝑒 and 𝑒[𝑥 ∶= 𝑒2] ⟹ 𝑣. The two premises

give as induction hypotheses that 𝑣 is a value, and that fv(fun 𝑥 -> 𝑒) ⊆ fv(𝑒1) and
fv(𝑣) ⊆ fv(𝑒[𝑥 ∶= 𝑒2]). Using the same lemma as in the last case, we get:

fv(𝑣) ⊆ fv(𝑒[𝑥 ∶= 𝑒2])
= (fv(𝑒) ⧵ { 𝑥 }) ∪ fv(𝑒2)
= fv(fun 𝑥 -> 𝑒) ∪ fv(𝑒2)
⊆ fv(𝑒1) ∪ fv(𝑒2)
= fv(𝑒1 𝑒2)

1.5 Small step operational semantics
Natural semantics associates expressions to the values their evaluation may produce. This
semantics speaks only about computations that succeed. In particular, it does not give
any information about expressions whose evaluation encounters a failure, such as 5(37),
nor about expression whose evaluation never ends, such as (fun x -> x x) (fun x -> x x).
Actually, natural semantics is not even capable of distinguishing these two situations.

Small step semantics, or reduction semantics, provide finer information by decom-
posing the evaluation 𝑒 ⟹ 𝑣 in a sequence of computation steps 𝑒 → 𝑒1 → 𝑒2 → … → 𝑣.
Then we may distinguish three main behaviours:

— a computation which, after some finite number of steps, reaches a result:

𝑒 → 𝑒1 → 𝑒2 → … → 𝑣

where 𝑣 is a value,
— a computation which, after some number of steps, stumbles on a failure state:

𝑒 → 𝑒1 → 𝑒2 → … → 𝑒𝑛

where 𝑒𝑛 is not a value, but cannot be evaluated further,
— a computation that never ends:

𝑒 → 𝑒1 → 𝑒2 → …

where computations steps go on infinitly.

Computation rules. A small step semantics is defined by a binary relation 𝑒 → 𝑒′ called
reduction relation, describing a single step of computation. This relation is itself defined
by a set of inference rules. We provide on the one hand elementary computation rules,
giving base cases, and on the second hand inference rules that allow the application of a
computation rule in a subexpression.

Let us first give the axioms for our fragment of FUN. They correspond to the main
computation rules, immediately applied at the root of an expression.

12

— Axiom for the application of a function (call by value). If a function fun 𝑥 -> 𝑒
is applied to a value 𝑣, then we may substitute 𝑣 for each occurrence of the formal
parameter 𝑥 in the body 𝑒 of the function.

(fun 𝑥 -> 𝑒) 𝑣 → 𝑒[𝑥 ∶= 𝑣]

The application of this rule assumes that the argument of the application has been
evaluated at a previous stage of the computation.

— Axiom for the replacement of a local variable by its value.

let 𝑥 = 𝑣 in 𝑒 → 𝑒[𝑥 ∶= 𝑣]

As for the application of a function, this rule may be applied only if the value 𝑣
associated to the variable 𝑥 has already been computed.

— Axiom for the addition.

𝑛1 + 𝑛2 = 𝑛

𝑛1 + 𝑛2 → 𝑛

Be careful to the “pun” here: we start with an expression 𝑛1 + 𝑛2, where the symbol +
is part of the syntax, and the result is 𝑛, the actual result of the mathematical addition
of the two numbers 𝑛1 and 𝑛2. Again, this rule can be applied only if both operands
have already been evaluated, and the obtained values are numbers.

Inference rules then describe how the base rules can be applied to subexpressions.
— Inference rules for the addition. In an expression of the form 𝑒1 + 𝑒2, we may performe

a reduction step in one or the other of the subexpressions 𝑒1 and 𝑒2. This principle
translates into two inference rules, one for each subexpression.

𝑒1 → 𝑒′1
𝑒1 + 𝑒2 → 𝑒′1 + 𝑒2

𝑒2 → 𝑒′2
𝑒1 + 𝑒2 → 𝑒1 + 𝑒′2

Using these rules, we can derive the fact one step of computation may lead from the
expression ((1+2)+3)+(4+5) to the expression (3+3)+(4+5).

1 + 2 = 3

1 + 2 → 3

(1 + 2) + 3 → 3 + 3

((1 + 2) + 3) + (4 + 5) → (3 + 3) + (4 + 5)

Remark that these rules to not say anything about the order in which the two subex-
pressions 𝑒1 and 𝑒2 have to be evaluated. The rules even allow alternating between
both subexpressions in arbitrary ways. Thus we can further derive all the steps of the
following computation sequence.

((1+2)+3)+(4+5) → (3+3)+(4+5) → (3+3)+9 → 6+9 → 15

If we prefer forcing an evaluation order from left to right for the operands, we have
to replace the last rule by the following variant, which authorize reducing the right
operand of an addition only if the left operand is already a value.

𝑒2 → 𝑒′2
𝑣1 + 𝑒2 → 𝑣1 + 𝑒′2

— Inference rules for a local variables. The rule below allow a computation step to take
place in the expression 𝑒1 defining the value of a local variable 𝑥.

𝑒1 → 𝑒′1
let 𝑥 = 𝑒1 in 𝑒2 → let 𝑥 = 𝑒′1 in 𝑒2

13

— Inference rules for applications. The two rules below always allow a computation step
to take place in the left member of an application, and restricts computation in the
right member to the cases where the left member has already been evaluated.

𝑒1 → 𝑒′1
𝑒1 𝑒2 → 𝑒′1 𝑒2

𝑒2 → 𝑒′2
𝑣1 𝑒2 → 𝑣1 𝑒′2

Remark that no rule allow a computation step to take place inside the body 𝑒 of a function
fun 𝑥 -> 𝑒. Indeed, such a function is already a value, and needs not be evaluated further.
Computation will go on in the body of function only after the function receives an argument,
whose value 𝑣 is substited for 𝑥 in 𝑒.

Summary of the inference rules defining a small step semantics for our fragment of FUN,
in call by value, with left-to-right evaluation of operands of a binary operation.

𝑒1 → 𝑒′1
𝑒1 + 𝑒2 → 𝑒′1 + 𝑒2

𝑒2 → 𝑒′2
𝑣1 + 𝑒2 → 𝑣1 + 𝑒′2

𝑛1 + 𝑛2 = 𝑛

𝑛1 + 𝑛2 → 𝑛

𝑒1 → 𝑒′1
let 𝑥 = 𝑒1 in 𝑒2 → let 𝑥 = 𝑒′1 in 𝑒2 let 𝑥 = 𝑣 in 𝑒 → 𝑒[𝑥 ∶= 𝑣]

𝑒1 → 𝑒′1
𝑒1 𝑒2 → 𝑒′1 𝑒2

𝑒2 → 𝑒′2
𝑣1 𝑒2 → 𝑣1 𝑒′2 (fun 𝑥 -> 𝑒) 𝑣 → 𝑒[𝑥 ∶= 𝑣]

Exercise: define a small step
semantics in call by name.

Note that at this fine-grained level of description of the computations, we could also
define variants corresponding to alternative evaluation strategies.

Reduction sequences. The relation 𝑒 → 𝑒′ describes elementary computation steps. We
write:

— 𝑒 → 𝑒′ when 1 computation step leads from 𝑒 to 𝑒′, and
— 𝑒 →∗ 𝑒′ when a computation leads from 𝑒 to 𝑒′ using 0, 1 or more steps (this is called a

computation sequence or a reduction sequence).
An irreducible expression is an expression 𝑒 from which no reduction step can take place,
that is such that there is no expression 𝑒′ such that 𝑒 → 𝑒′. An irreducible expression might
be one of two different things:

— a value, that is the expected result of a computation,
— a stuck expression, that is an expression describing a computation that is not over, but

for which no rule allows taking a new step.
Example of a reduction reaching a value.

let f = fun x -> x + x in f (20 + 1)
→ (fun x -> x + x) (20 + 1)
→ (fun x -> x + x) 21
→ 21 + 21
→ 42

Example of of stuck reduction.

let f = fun x -> fun y -> x + y in 1 + f 2
→ 1 + (fun x -> fun y -> x + y) 2
→ 1 + (fun y -> 2 + y)

1.6 Equivalence between small step and big step
Big step and small step semantics give slightly different points of view. The former directly
gives the results that can be expected from a program, whereas the latter gives a more
fine-grained account of the operations performed. These two views are, however, equivalent,
since they speficy the same evaluation relations. In other words,

𝑒 ⟹ 𝑣 of and only if 𝑒 →∗ 𝑣

14

Let us prove this for the two versions of the call by value semantics of our fragment of
FUN. We consider the big step semantics given by the rules

𝑛 ⟹ 𝑛 fun 𝑥 -> 𝑒 ⟹ fun 𝑥 -> 𝑒

𝑒1 ⟹ 𝑛1 𝑒2 ⟹ 𝑛2
𝑒1 + 𝑒2 ⟹ 𝑛1 + 𝑛2

𝑒1 ⟹ 𝑣1 𝑒2[𝑥 ∶= 𝑣1] ⟹ 𝑣

let 𝑥 = 𝑒1 in 𝑒2 ⟹ 𝑣

𝑒1 ⟹ fun 𝑥 -> 𝑒 𝑒2 ⟹ 𝑣2 𝑒[𝑥 ∶= 𝑣2] ⟹ 𝑣

𝑒1 𝑒2 ⟹ 𝑣

and the small step semantics given by the following rules.

𝑒1 → 𝑒′1
𝑒1 + 𝑒2 → 𝑒′1 + 𝑒2

𝑒2 → 𝑒′2
𝑣1 + 𝑒2 → 𝑣1 + 𝑒′2

𝑛1 + 𝑛2 = 𝑛

𝑛1 + 𝑛2 → 𝑛

𝑒1 → 𝑒′1
let 𝑥 = 𝑒1 in 𝑒2 → let 𝑥 = 𝑒′1 in 𝑒2 let 𝑥 = 𝑣 in 𝑒 → 𝑒[𝑥 ∶= 𝑣]

𝑒1 → 𝑒′1
𝑒1 𝑒2 → 𝑒′1 𝑒2

𝑒2 → 𝑒′2
𝑣1 𝑒2 → 𝑣1 𝑒′2 (fun 𝑥 -> 𝑒) 𝑣 → 𝑒[𝑥 ∶= 𝑣]

There: 𝑒 ⟹ 𝑣 implies 𝑒 →∗ 𝑣. Let us show this by induction on the derivation of
𝑒 ⟹ 𝑣.

— Case 𝑛 ⟹ 𝑛. We have 𝑛 →∗ 𝑛 with a sequence of 0 steps.
— Case fun 𝑥 -> 𝑒 ⟹ fun 𝑥 -> 𝑒 immediate as well.
— Case 𝑒1 + 𝑒2 ⟹ 𝑛 with 𝑒1 ⟹ 𝑛1, 𝑒2 ⟹ 𝑛2 and 𝑛 = 𝑛1 + 𝑛2. The two premises

give the induction hypotheses 𝑒1 →∗ 𝑛1 and 𝑒2 →∗ 𝑛2. From 𝑒1 →∗ 𝑛1 we deduce
𝑒1 + 𝑒2 →∗ 𝑛1 + 𝑒2 (since we consider a sequence rather than a single step, this would
actually require a simple lemma proved by induction on the length of the sequence
𝑒1 →∗ 𝑛1). Similarly, from 𝑒2 →∗ 𝑛2 we deduce 𝑛1 + 𝑒2 →∗ 𝑛1 + 𝑛2. We then obtain
the following sequence, by appending a final step using the base rule for addition.

𝑒1 + 𝑒2 →∗ 𝑛1 + 𝑒2
→∗ 𝑛1 + 𝑛2
→ 𝑛

— Case let 𝑥 = 𝑒1 in 𝑒2 ⟹ 𝑣 with 𝑒1 ⟹ 𝑣1 and 𝑒2[𝑥 ∶= 𝑣1] ⟹ 𝑣. The two
premises give the two induction hypotheses 𝑒1 →∗ 𝑣1 and 𝑒2[𝑥 ∶= 𝑣1] →∗ 𝑣. We
deduce the following reduction sequence.

let 𝑥 = 𝑒1 in 𝑒2 →∗ let 𝑥 = 𝑣1 in 𝑒2
→ 𝑒2[𝑥 ∶= 𝑣1]
→∗ 𝑣

— Case 𝑒1 𝑒2 ⟹ 𝑣 with 𝑒1 ⟹ fun 𝑥 -> 𝑒, 𝑒2 ⟹ 𝑣2 and 𝑒[𝑥 ∶= 𝑣2] ⟹ 𝑣.
The three premises give the induction hypotheses 𝑒1 →∗ fun 𝑥 -> 𝑒, 𝑒2 →∗ 𝑣2 and
𝑒[𝑥 ∶= 𝑣2] →∗ 𝑣. We deduce the following reduction sequence.

𝑒1 𝑒2 →∗ (fun 𝑥 -> 𝑒) 𝑒2
→∗ (fun 𝑥 -> 𝑒) 𝑣2
→ 𝑒[𝑥 ∶= 𝑣2]
→∗ 𝑣

Back: 𝑒 →∗ 𝑣 implies 𝑒 ⟹ 𝑣. Remark that in this statement, when writing 𝑒 →∗ 𝑣 we
assume 𝑣 to be a value. Let us prove this by induction on the length of the reduction sequence
𝑒 →∗ 𝑣.

— Case of a sequence of length 0. The expression 𝑒 is thus already a value, and necessarily
has the form either 𝑛 or fun 𝑥 -> 𝑒′. We reach an immediate conclusion with one of
the axioms

𝑛 ⟹ 𝑛 fun 𝑥 -> 𝑒′ ⟹ fun 𝑥 -> 𝑒′

15

— Case of sequence 𝑒 →∗ 𝑣 of length 𝑛 + 1, assuming that for any reduction sequence
𝑒′ →∗ 𝑣 of length 𝑛 we have 𝑒′ ⟹ 𝑣 (this is the induction hypothesis). Let us write

𝑒 → 𝑒′ → … → 𝑣

our reduction sequence 𝑒 →∗ 𝑣 in 𝑛 + 1 steps, with 𝑒′ the expression obtained after the
first step. We thus have 𝑒′ →∗ 𝑣 in 𝑛 steps, and by induction hypothesis 𝑒′ ⟹ 𝑣.
To conclude, we prove a lemma ensuring that, for any expressions, if 𝑒 → 𝑒′ and
𝑒′ ⟹ 𝑣 then 𝑒 ⟹ 𝑣.

Lemma: if 𝑒 → 𝑒′ and 𝑒′ ⟹ 𝑣 then 𝑒 ⟹ 𝑣. Proof by induction on the derivation of
𝑒 → 𝑒′.

— Case 𝑛1 + 𝑛2 → 𝑛 with 𝑛 = 𝑛1 + 𝑛2. Here we also have 𝑛 ⟹ 𝑣, which is possible
only if 𝑣 = 𝑛. We conclude with the derivation

𝑛1 ⟹ 𝑛1 𝑛2 ⟹ 𝑛2
𝑛1 + 𝑛2 ⟹ 𝑛

— Case let 𝑥 = 𝑤 in 𝑒 → 𝑒[𝑥 ∶= 𝑤], with 𝑤 a value and where the hypothesis 𝑒′ ⟹
𝑣 can be written 𝑒′ = 𝑒[𝑥 ∶= 𝑤] ⟹ 𝑣. We conclude with the derivation

𝑤 ⟹ 𝑤 𝑒[𝑥 ∶= 𝑤] ⟹ 𝑣

let 𝑥 = 𝑤 in 𝑒 ⟹ 𝑣

Note that we did not use the induction hypothesis here.
— Case 𝑒1 + 𝑒2 → 𝑒′1 + 𝑒2 with 𝑒1 + 𝑒′1 and where the hypothesis 𝑒′ ⟹ 𝑣 can be

written 𝑒′1 + 𝑒2 ⟹ 𝑣. The premise 𝑒1 + 𝑒′1 gives as induction hypothesis that “for
any value 𝑣1 such that 𝑒′1 ⟹ 𝑣1 we have 𝑒1 ⟹ 𝑣1”.
Since the judgment 𝑒′1 + 𝑒2 ⟹ 𝑣 is valid, we know that 𝑣 is obtained as 𝑛1 + 𝑛2
with 𝑛1 and 𝑛2 such that 𝑒′1 ⟹ 𝑛1 and 𝑒2 ⟹ 𝑛2 (the only inference rule whose
conclusion is compatible with our case requires these premises). Using the induction
hypothesis we then deduce 𝑒1 ⟹ 𝑛1, and we can use this judgment to complete the
following derivation.

𝑒1 ⟹ 𝑛1 𝑒2 ⟹ 𝑛2
𝑒1 + 𝑒2 ⟹ 𝑛

— The other cases are similar.
Finally, both presentations of the semantics associate the same expressions to the same

values. Small step semantics however give more information on computations that fail,
which we will use in the next chapter.

1.7 Extensions
Things you can try to go further:

— formalize the semantics of if and fix, both in big step and in small step style;
— extend FUN with lazy operators such as || and &&, which do not evaluate their second

operand when the first one already allows knowing the final result;
— extend FUN with algebraic data structures and pattern matching.

16

2 Types and safety
In this chapter we explore another aspect of the semantics of the FUN language, by classifying
the various kinds of values a program may deal with, and by guaranteeing than programs
handle them in a consistent way.

2.1 Types values and operations
Inside a computer, a piece of data is a sequence of bits. Here is 32-bits memory word.

1110 0000 0110 1100 0110 0111 0100 1000

For easier reading, we often use an hexadecimal representation. Here it would be

0x e0 6c 67 48

(the 0x prefix introduces the hexadecimal representation, then each character represents a
group of 4 bits).

What means this word? We can know it only with a very precise knowledge of the
context:

— if these bits represent a memory address, then it is the address 3 765 200 712,
— if these bits represent a 32-bit signed integer in 2’s complement, this is the number

−529 766 584,
— if these bits represent a simple precision floating point number following the IEEE754

standard, this is the number 15 492 936 × 242,
— if these bits represent a character string in Latin-1 encoding, this is the string ”Holà”.

For instance: applying integer
addition to the representations of
the two strings ”5” and ”37” may
produce the new string ”h7”.

If we forget about the context in which a sequence of bits means something, we may perform
operations that make no sense.

Inconsistent operations. All operations provided by a programming language are con-
strained. In caml for instance,

— the addition 5 + 37 of two integers is possible,
— but the operations ”5” + 37, 5 + (fun x -> 37) or 5(37) are not.
We already observed this in the previous chapter, with the interpreter for the FUN

language. The values that could be produced by an expression were split into several
categories, including numbers, booleans, and functions

type value =
| VInt of int
| VBool of bool
| VClos of string * expr * env

and some operations behave differently depending on the kind of values given as operands.
For instance, a binary arithmetic operation expected two numbers. It produced a result (of
kind VInt) when its operands were both of kind VInt, and interrupted the program otherwise
with the exception Failure ”unauthorized operation”.

let rec eval e env = match e with
| Bop(op, e1, e2) ->

begin match op, eval e1 env , eval e2 env with
| Add , VInt n1, VInt n2 -> VInt (n1 + n2)
...
| _ -> failwith ”unauthorized operation”

end

Types: a classification of values. Programming languages usually distinguish numerous
kinds of values, called types. The precise classification may differ, but some kinds are seen
in most languages. For instance:

— numbers: int, double,
— booleans: bool,
— characters: char,
— character strings: string.

Additionally, richer types can be built over these base types. For instance:
— arrays: int[],

17

— functions: int -> bool,
— data structures: struct point { int x; int y; };,
— objects: class Point { public final int x, y; ... }.

Once this classification is set, each operation is defined to apply to elements of some given
type.

In some cases, one operator may be applied to various types of elements, with different
meanings depending on the type. This is called overloading. For instance, in python or java
the operator + may apply:

— to two integers, in which case it denotes an addition: 5 + 37 = 42,
— to two strings, in which case it denotes a concatenation: ”5” + ”37”= ”537”.
Some programming languages also allow casting, that is converting a value of some

type to another type. This may even be an implicit operation. For instance, the operation
”5” + 37 mixing a string and an integer may evaluate to:

— 42 in php, where the string ”5” is converted into the number 5,
— ”537” in java, where the integer 37 is converted into the string ”37”.

Note that such a conversion may require an actual modification of the data! The number 5 is
represented by the memory word 0x 00 00 00 05, whereas the string ”5” is represented by
0x 00 00 00 35. Similarly, the number 37 is represented by 0x 00 00 00 25 and the string
”37” by 0x 00 00 37 33. In each case, casting from one type to the other requires computing
the new representation.

Summary. The type of a value gives the key for interpreting the associated data, and may
be required for selecting the appropriate operations. Moreover, inconsistent types are likely
to reveal programming errors (and programs that should not be executed).

Static type analysis. Handling types at runtime is costly in several ways:
— some memory has to be used to pair each data with an identification of its type,
— runtime tests are necessary to select the operations to apply to the data,
— execution may be interrupted when a type error appears, ...

In dynamically typed languages such as python, theses costs are paid in full. Conversely,
statically typed languages such as C, java or caml save us at least a part of this runtime
cost, since types are handled at compile time.

Static type analysis, which means type analysis performed at compilation time, consists
in associating with each expression in a program a type, which predicts the type of the
value that will be obtained when evaluating the expression. This prediction is based on
constraints given by each constructor of the abstract syntax. For instance, considering an
addition expression Bop(Add, e1, e2) we can remark that:

— the expression will produce an integer,
— for the operation to be consistent, both subexpressions e1 and e2 must also produce

integers.
Similarly, we associate to each variable a type, which gives the type of the value the variable
refers to. Thus, in let x = e in x + 1 the type of x is the type of the value produced by the
expression e, and we expect it to be the type of intergers. Following the same principles, the
type of a function make the expected types of all parameters explicit, as well as the type of
the result.

This verification of type consistency before the execution of a program is associated to
the idea, formulated by Robin Milner, that

Well-typed programs do not go wrong.

The aim of static type analysis is to reject absurd programs before they are ever executed
(or released to clients...). However, we cannot identify with absolute precision all the buggy
programs (questions of this kind are usually algorithmically undecidable). We are looking
for decidable criteria which:

— give some safety, by rejecting many absurd programs,
— and let to programmers enough expressiveness, by not rejecting too many non-absurd

programs.
This analysis may require some amount of annotations from the programmer in a source
program. Here are a few possibilities.

1. Annotate each subexpression with its intended type.

fun (x : int) ->
let (y : int) = ((x : int) + (1 : int) : int)
in (y : int)

18

The programmer has to do all the work here, and the compiler just checks consistency.
No language actually requires this amount of annotations.

2. Annotate only variables, and formal parameters of functions.

fun (x : int) -> let (y : int) = x+1 in y

Here, the compiler can deduce the type of each expression, using the given types of
the variables. This is what is asked by C or java.

3. Annotate only function parameters.

fun (x : int) -> let y = x+1 in y

4. No annotation.

fun x -> let y = x+1 in y

In this last case, the compiler must infer the type of each variable and expression,
with no help from the programmer. This is what happens with caml.

If type analysis is performed at compilation time, selecting the appropriate operation for
overloaded operators is also done at compilation time, and costs nothing at execution time.
Moreover, checking the consistency of types at compilation time allow early detection of
many program inconsistencies, and consequently early correction of bugs.

In the remaining of this chapter, we formalize the notion of type and the associated constraints,
we implement type checking and type inference for FUN, and we turn our vague notion of safety
into a theorem about well-typed programs.

2.2 Typing judgment and inference rules
Well-typed programs are characterized by a set of rules that allow justififying that “in some
context Γ, an expression 𝑒 is consistent and has type 𝜏”. This sentence is called a typing
judgment, and is written

Γ ⊢ 𝑒 ∶ 𝜏

The context Γ in a typing judgment maps a type to each variable of the expression 𝑒.
The typing judgment is not function that would give a type to every expression: it is

instead a relation between three elements: context, expression, type. In particular, some
expressions 𝑒 have no type (because they are inconsistent), and in some situations several
types are possible for a given expression and context.

Typing rules. Let us see how we can formalize the consistency and the type of an expres-
sion for a fragment of the FUN language:

𝑒 ∶∶= 𝑛
| 𝑒 + 𝑒
| 𝑥
| let 𝑥 = 𝑒 in 𝑒
| fun 𝑥 -> 𝑒
| 𝑒 𝑒

We need a base type for numbers, as well as function types.

𝜏 ∶∶= int
| 𝜏 → 𝜏

A type of the form 𝜏1 → 𝜏2 is the type of a function that expects a parameter of type 𝜏1 and
returns a result of type 𝜏2.

We associate to each construction of the language a rule giving:
— the type such expression may have, and
— the constraints that have to be satisfied for the expression to be consistent.
We start with arithmetic, and state each rule under two formats: a natural language

description, and its translation into an inference rule.
— An integer constant 𝑛 has the type int.

Γ ⊢ 𝑛 ∶ int

19

— If both expressions 𝑒1 and 𝑒2 are consistent and of type int, then the expression 𝑒1 + 𝑒2
is consistent, also with type int.

Γ ⊢ 𝑒1 ∶ int Γ ⊢ 𝑒2 ∶ int

Γ ⊢ 𝑒1 + 𝑒2 ∶ int

In the inference rule for addition, the judgments Γ ⊢ 𝑒1 ∶ int and Γ ⊢ 𝑒2 ∶ int are
premises, and the judgment Γ ⊢ 𝑒1 + 𝑒2 ∶ int is the conclusion. In other words, if
we can justify Γ ⊢ 𝑒1 ∶ int and Γ ⊢ 𝑒2 ∶ int, then the rule allows to deduce that
Γ ⊢ 𝑒1 + 𝑒2 ∶ int. Conversely, the rule for the integer constant has no premise (it is called
an axiom, or a base case), which means we do not need anything more than the rule to
justified a judgment Γ ⊢ 𝑛 ∶ int.

The rules concerning variables interact with the context Γ, also called environment,
since that is where the type a each variable is given.

— A variable has the type given by the environment.

Γ ⊢ 𝑥 ∶ Γ(𝑥)

Remark here that we consider Γ as a function: Γ(𝑥) is type that Γ associates to the
variable 𝑥. Also, this rule can be applied only if Γ(𝑥) is actually defined, that is if 𝑥 is
in the domain of Γ.

— A local variable is associated to the type of the expression that defines it.

Γ ⊢ 𝑒1 ∶ 𝜏1 Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒2 ∶ 𝜏2
Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ∶ 𝜏2

In such an expression, 𝑒2 may refer to the local variable 𝑥. Thus 𝑒2 is typed in an
extended environment written Γ, 𝑥 ∶ 𝜏1, which contains all the associations of Γ and
also the association of type 𝜏1 to the variable 𝑥. On the other hand, 𝑥 does not exist in
𝑒1, and is not a free variable of the full expression: it does not appear in the typing
environment for 𝑒1, nor for let 𝑥 = 𝑒1 in 𝑒2.

A function has a type of the form 𝛼 → 𝛽, where 𝛼 is the expected type of the parameter,
and 𝛽 the type of the result.

— A function has to be applied to an argument of the expected type.

Γ ⊢ 𝑒1 ∶ 𝜏2 → 𝜏1 Γ ⊢ 𝑒2 ∶ 𝜏2
Γ ⊢ 𝑒1 𝑒2 ∶ 𝜏1

— In the body of a function, the formal parameter is seen as an ordinary variable, whose
type corresponds to the expected type of the parameter.

Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒 ∶ 𝜏2
Γ ⊢ fun 𝑥 -> 𝑒 ∶ 𝜏1 → 𝜏2

Finally, the simple types for our fragment of the FUN language are fully defined by the
six following inference rules.

Γ ⊢ 𝑛 ∶ int

Γ ⊢ 𝑒1 ∶ int Γ ⊢ 𝑒2 ∶ int

Γ ⊢ 𝑒1 + 𝑒2 ∶ int

Γ ⊢ 𝑥 ∶ Γ(𝑥)

Γ ⊢ 𝑒1 ∶ 𝜏1 Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒2 ∶ 𝜏2
Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ∶ 𝜏2

Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒 ∶ 𝜏2
Γ ⊢ fun 𝑥 -> 𝑒 ∶ 𝜏1 → 𝜏2

Γ ⊢ 𝑒1 ∶ 𝜏2 → 𝜏1 Γ ⊢ 𝑒2 ∶ 𝜏2
Γ ⊢ 𝑒1 𝑒2 ∶ 𝜏1

Typable expressions. A typing judgment is justified by a series of deductions obtained by
applying the inference rules. For instance, given the context Γ = { 𝑥 ∶ int, 𝑓 ∶ int → int }
we may reason as follow.

1. Γ ⊢ 𝑥 ∶ int is valid, by the rule on variables.

20

2. Γ ⊢ 𝑓 ∶ int → int is valid, by the rule on variables.
3. Γ ⊢ 1 ∶ int is valid, by the rule on constants.
4. Γ ⊢ 𝑓 1 ∶ int is valid, by the rule on application, using the already justified points 2.

and 3.
5. Γ ⊢ 𝑥 + 𝑓 1 ∶ int is valid, by the rule on addition, using 1. et 4.

This reasoning is called a derivation, and can also be written as a derivation tree whose
root is the conclusion we want to justify.

Γ ⊢ 𝑥 ∶ int

Γ ⊢ 𝑓 ∶ int → int Γ ⊢ 1 ∶ int

Γ ⊢ 𝑓 1 ∶ int

Γ ⊢ 𝑥 + 𝑓 1 ∶ int

In such a tree, each bar indicates the application of an inference rule, and each subtree
justifies an auxiliary judgment (the premise of a rule).

In some situations, we may derive several judgments giving different types to the same
expression in the same context. For instance:

⊢ fun x -> x ∶ int → int

⊢ fun x -> x ∶ (int → int) → (int → int)

are both valid. Here, the absence of the context Γ means that we consider the empty context.

Untypable expressions. If an expression 𝑒 is inconsistent, no judgment Γ ⊢ 𝑒 ∶ 𝜏 can be
justified using the typing rules. We can show that an expression is not typable by showing
that any attempt at building a typing tree for the expression necessarily fails.

Consider the expression 5(37), which we can also write 5 37. It is an application. Only
one rule could possibly be used to justify Γ ⊢ 5 37 ∶ 𝜏, and the application of this rule
requires justifying the two premises Γ ⊢ 5 ∶ 𝜏 ′ → 𝜏 and Γ ⊢ 37 ∶ 𝜏 ′ (the type 𝜏 ′ may be
chosen freely, but it must be the same for both judgments). However, justifying a premise
Γ ⊢ 5 ∶ 𝜏 ′ → 𝜏 is impossible: no rule allow giving a functional type to an integer constant
(the only rule that could be applied for an integer constant would give the typing judgment
Γ ⊢ 5 ∶ int).

Consider the other example fun x -> x x. Similarly, since only one rule can possibly be
applied to each kind of expression, a derivation tree for a judgment Γ ⊢ fun x -> x x ∶ 𝜏
would necessarily have the shape

Γ, x ∶ 𝜏1 ⊢ x ∶ 𝜏1 → 𝜏2 Γ, x ∶ 𝜏1 ⊢ x ∶ 𝜏1
Γ, x ∶ 𝜏1 ⊢ x x ∶ 𝜏2

Γ ⊢ fun x -> x x ∶ 𝜏2

However, the premise Γ, x ∶ 𝜏1 ⊢ x ∶ 𝜏1 → 𝜏2 cannot be justified: the inference rules allow
only the type 𝜏1 for x, and there are no (finite) types 𝜏1 and 𝜏2 such that 𝜏1 = 𝜏1 → 𝜏2.

Reasoning on well-typed expressions. Let us prove that for any context Γ, any expres-
sion 𝑒 and any type 𝜏, if Γ ⊢ 𝑒 ∶ 𝜏 is valid then all the free variables of 𝑒 are in the domain of
Γ.

Since valid typing judgments are defined by a system of inference rules, we can establish
that some properties are true for all well-typed expressions by reasoning by induction on
the structure of the typing derivation tree. We have one proof case for each inference rule,
and each premise of the rule yields an induction hypothesis.

Let us prove that if Γ ⊢ 𝑒 ∶ 𝜏 then fv(𝑒) ⊆ dom(Γ), by induction on Γ ⊢ 𝑒 ∶ 𝜏.
— Case Γ ⊢ 𝑛 ∶ int. We have fv(𝑛) = ∅, and of course ∅ ⊆ dom(Γ).
— Case Γ ⊢ 𝑥 ∶ Γ(𝑥). We have fv(𝑥) = { 𝑥 }, and the application of the rule indeed

assumes that Γ(𝑥) is defined, which means 𝑥 ∈ dom(Γ).
— Case Γ ⊢ 𝑒1+𝑒2 ∶ int, with premises Γ ⊢ 𝑒1 ∶ int and Γ ⊢ 𝑒2 ∶ int. The premises

give two induction hypotheses fv(𝑒1) ⊆ dom(Γ) and fv(𝑒2) ⊆ dom(Γ). By definition of
free variables we have fv(𝑒1 + 𝑒2) = fv(𝑒1) ∪ fv(𝑒2). With the induction hypotheses we
deduce that fv(𝑒1) ∪ fv(𝑒2) ⊆ dom(Γ), and therefore fv(𝑒1 + 𝑒2) ⊆ dom(Γ).

21

— Case Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ∶ 𝜏2, with premises Γ ⊢ 𝑒1 ∶ 𝜏1 and Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒2 ∶ 𝜏2.
The premises give two induction hypotheses fv(𝑒1) ⊆ dom(Γ) and fv(𝑒2) ⊆ dom(Γ)∪{ 𝑥 }
(note that the premise related to the judgment Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒2 ∶ 𝜏2 mentions an envi-
ronment extended with the variable 𝑥). By definition we have fv(let 𝑥 = 𝑒1 in 𝑒2) =
fv(𝑒1) ∪ (fv(𝑒2) ⧵ { 𝑥 }). The first induction hypothesis ensures that fv(𝑒1) ⊆ dom(Γ).
The second induction hypothesis ensures that fv(𝑒2) ⊆ dom(Γ) ∪ { 𝑥 }, from which we
deduce fv(𝑒2) ⧵ { 𝑥 } ⊆ dom(Γ). Therefore we have fv(let 𝑥 = 𝑒1 in 𝑒2) ⊆ dom(Γ).

— Both cases related to functions are similar to the cases above.

Full rules for FUN. Let us now complete our system to type the full FUN language. We
need a new base type bool for boolean values.

𝜏 ∶∶= int
| bool
| 𝜏 → 𝜏

We also introduce three additional typing rules for the missing constructs.
— An expression 𝑒1 < 𝑒2 is consistent whenever the expressions 𝑒1 and 𝑒2 are numbers.

The result is of type bool.

Γ ⊢ 𝑒1 ∶ int Γ ⊢ 𝑒2 ∶ int

Γ ⊢ 𝑒1 < 𝑒2 ∶ bool

— The result of a conditional expression may come from one branch or the other. Thus
the result type 𝜏 must be valid for both branches. If the expression 𝑐 is consistent with
type bool, and if both expressions 𝑒1 et 𝑒2 are consistent with a common type 𝜏, then
the expression if 𝑐 then 𝑒1 else 𝑒2 is consistent and can be given the type 𝜏.

Γ ⊢ 𝑐 ∶ bool Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏

Γ ⊢ if 𝑐 then 𝑒1 else 𝑒2 ∶ 𝜏

— A recursive expression must have the same type 𝜏 that the recursive references it
contains. If the expression 𝑒 is consistent and of type 𝜏, in an environment where
the identifier 𝑥 also has this type 𝜏, then the expression fix 𝑥 = 𝑒 is consistent, and of
type 𝜏.

Γ, 𝑥 ∶ 𝜏 ⊢ 𝑒 ∶ 𝜏

Γ ⊢ fix 𝑥 = 𝑒 ∶ 𝜏

2.3 Type safety
The motto of typing is well-typed programs do not go wrong. In the context of our interpret
for the language FUN, this means that evaluating a well-typed program never results in an
”unauthorized operation” error. This is called a safety property of typed programs. In this
section, we state and prove this property using the formal semantics of FUN.

Typing and big step semantics. Using the notion of natural semantics, we can prove the
following statement relating the typing and the evaluation of an expression.

If Γ ⊢ 𝑒 ∶ 𝜏 and 𝑒 ⟹ 𝑣 then Γ ⊢ 𝑣 ∶ 𝜏.

This means that the evaluation relation preserves the consistency and the types of expressions.
However, note that this statement takes as hypothesis that the evaluation is indeed

possible and reaches a value. It does not prove that the evaluation of well-typed programs
indeed produce a value, and says nothing about programs that break of loop. We need the
small step semantics to get an actual safety property.

Type safety, small step version. Using a notion of reduction semantics, the safety
property may be state as: the evaluation of a well-typed program never blocks on an
inconsistent operation.

We formalize the property through two lemmas.

22

— Progress lemma: a well-typed expression is never blocked. In other words, if a well-
typed expression 𝑒 is not a value then we can perform at least one computation step
from 𝑒.

If Γ ⊢ 𝑒 ∶ 𝜏 then 𝑒 is a value or there is 𝑒′ such that 𝑒 → 𝑒′.

— Type preservation lemma: reduction preserves types. If an expression 𝑒 is consistent,
then any expression 𝑒′ obtained by reducing 𝑒 is consistent, with the type as 𝑒.

If Γ ⊢ 𝑒 ∶ 𝜏 and 𝑒 → 𝑒′ then Γ ⊢ 𝑒′ ∶ 𝜏.

Historically, the type preservation lemma was called subject reduction (explanation:
𝑒 is the “subject” of the predicate Γ ⊢ 𝑒 ∶ 𝜏).

Theses two lemmas, applied together iteratively, imply the following behaviour of any
evaluation of a well-typed expression 𝑒1 with type 𝜏: if 𝑒1 is not already a value, then it
reduces to 𝑒2, which is still well-typed with type 𝜏 and thus, in case it is not a value, reduces
in turn to 𝑒3 well-typed of type 𝜏, on so on.

(𝑒1 ∶ 𝜏) → (𝑒2 ∶ 𝜏) → (𝑒3 ∶ 𝜏) → …

At the far right side of this sequence, there are two possible scenarios: either we reach a
value 𝑣 (which, by the way, is well-typed with type 𝜏), or the reduction go on infinitely. The
reduction cannot end with a blocked expression.

Progress. If Γ ⊢ 𝑒 ∶ 𝜏, then 𝑒 is a value, or there is 𝑒′ such that 𝑒 → 𝑒′. Let us consider
the simple types for the fragment of the FUN language defined by the following rules.

Γ ⊢ 𝑛 ∶ int

Γ ⊢ 𝑒1 ∶ int Γ ⊢ 𝑒2 ∶ int

Γ ⊢ 𝑒1 + 𝑒2 ∶ int

Γ ⊢ 𝑥 ∶ Γ(𝑥)

Γ ⊢ 𝑒1 ∶ 𝜏1 Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒2 ∶ 𝜏2
Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ∶ 𝜏2

Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒 ∶ 𝜏2
Γ ⊢ fun 𝑥 -> 𝑒 ∶ 𝜏1 → 𝜏2

Γ ⊢ 𝑒1 ∶ 𝜏2 → 𝜏1 Γ ⊢ 𝑒2 ∶ 𝜏2
Γ ⊢ 𝑒1 𝑒2 ∶ 𝜏1

We will prove the lemma by induction on the derivation of Γ ⊢ 𝑒 ∶ 𝜏.
— Case Γ ⊢ 𝑛 ∶ int. Then 𝑛 is a value.
— Case Γ ⊢ fun 𝑥 -> 𝑒 ∶ 𝜏1 → 𝜏2. Then fun 𝑥 -> 𝑒 is a value.
— Case Γ ⊢ 𝑒1 𝑒2 ∶ 𝜏1, with Γ ⊢ 𝑒1 ∶ 𝜏2 → 𝜏1 and Γ ⊢ 𝑒2 ∶ 𝜏2. Induction hypotheses

give us the two following disjunctions.
1. 𝑒1 is a value or 𝑒1 → 𝑒′1,
2. 𝑒2 is a value or 𝑒2 → 𝑒′2.

We reason by case on these disjunctions.
— If 𝑒1 → 𝑒′1, then 𝑒1 𝑒2 → 𝑒′1 𝑒2: goal completed.
— Otherwise, 𝑒1 is a value 𝑣1.

— If 𝑒2 → 𝑒′2, then 𝑣1 𝑒2 → 𝑣1 𝑒′2: goal completed.
— Otherwise, 𝑒2 is a value 𝑣2. Since we have as hypothesis the typing judgment

Γ ⊢ 𝑣1 ∶ 𝜏2 → 𝜏1, we know that 𝑣1 necessarily has the shape fun 𝑥 -> 𝑒
(classification lemma detailed below). Then we have

𝑒1 𝑒2 = (fun 𝑥 -> 𝑒) 𝑣2 → 𝑒[𝑥 ∶= 𝑣2]

which completes our case.
— Other cases are similar.

Classification lemma for typed values. Let 𝑣 be a value such that Γ ⊢ 𝑣 ∶ 𝜏. Then:
— if 𝜏 = int, then 𝑣 has the shape 𝑛,
— if 𝜏 = 𝜏1 → 𝜏2, then 𝑣 has the shape fun 𝑥 -> 𝑒.

Proof by case on the last rule applied in the derivation of Γ ⊢ 𝑣 ∶ 𝜏, knowing that the only two
possible shapes for a value are: 𝑛 or fun 𝑥 -> 𝑒.

23

Type Preservation. If Γ ⊢ 𝑒 ∶ 𝜏 and 𝑒 → 𝑒′ then Γ ⊢ 𝑒′ ∶ 𝜏. Proof by induction on the
derivation of 𝑒 → 𝑒′.

— Case 𝑛1 + 𝑛2 → 𝑛 with 𝑛 = 𝑛1 + 𝑛2. The hypothesis Γ ⊢ 𝑛1 + 𝑛2 ∶ 𝜏 implies 𝜏 = int
(inversion lemma detailed below). Moreover Γ ⊢ 𝑛 ∶ int: goal completed.

— Case 𝑒1 + 𝑒2 → 𝑒′1 + 𝑒2 with 𝑒1 → 𝑒′1. The premise gives as induction hypothesis “if
Γ ⊢ 𝑒1 ∶ 𝜏 ′, then Γ ⊢ 𝑒′1 ∶ 𝜏 ′”.
The hypothesis Γ ⊢ 𝑒1 + 𝑒2 ∶ 𝜏 implies 𝜏 = int, Γ ⊢ 𝑒1 ∶ int and Γ ⊢ 𝑒2 ∶ int
(inversion lemma). Thus by induction hypothesis Γ ⊢ 𝑒′1 ∶ int, from which we
deduce the following typing derivation.

Γ ⊢ 𝑒′1 ∶ int Γ ⊢ 𝑒2 ∶ int

Γ ⊢ 𝑒1 + 𝑒2 ∶ int

— Case (fun 𝑥 in 𝑒) 𝑣 → 𝑒[𝑥 ∶= 𝑛]. Note: the corresponding rule has no premise, thus
we have no induction hypothesis.
From the hypothesis Γ ⊢ (fun 𝑥 in 𝑒) 𝑣 ∶ 𝜏 we know there is 𝜏 ′ such that Γ ⊢
fun 𝑥 in 𝑒 ∶ 𝜏 ′ → 𝜏 and Γ ⊢ 𝑣 ∶ 𝜏 ′ (inversion lemma) and from Γ ⊢ fun 𝑥 in 𝑒 ∶
𝜏 ′ → 𝜏 we further deduce Γ, 𝑥 ∶ 𝜏 ′ ⊢ 𝑒 ∶ 𝜏 (inversion lemma again).
We have on the one hand Γ, 𝑥 ∶ 𝜏 ′ ⊢ 𝑒 ∶ 𝜏 and on the other hand Γ ⊢ 𝑣 ∶ 𝜏 ′, from
which we deduce Γ ⊢ 𝑒[𝑥 ∶= 𝑣] ∶ 𝜏 using a substitution lemma detailed below.

— The other cases are similar.
Inversion lemma.

— If Γ ⊢ 𝑒1 + 𝑒2 ∶ 𝜏 then 𝜏 = int, Γ ⊢ 𝑒1 ∶ int and Γ ⊢ 𝑒2 ∶ int.
— If Γ ⊢ 𝑒1 𝑒2 ∶ 𝜏 then there is 𝜏 ′ such that Γ ⊢ 𝑒1 ∶ 𝜏 ′ → 𝜏 and Γ ⊢ 𝑒2 ∶ 𝜏 ′.
— If Γ ⊢ fun 𝑥 -> 𝑒 ∶ 𝜏 then there are 𝜏1 and 𝜏2 such that 𝜏 = 𝜏1 → 𝜏2 and Γ, 𝑥 ∶ 𝜏1 ⊢

𝑒 ∶ 𝜏2.
Proof by case on the last rule of the typing derivation.

Substitution lemma (replacing a typed variable by an identically typed expression preserves
typing).

If Γ, 𝑥 ∶ 𝜏 ′ ⊢ 𝑒 ∶ 𝜏 and Γ ⊢ 𝑒′ ∶ 𝜏 ′ then Γ ⊢ 𝑒[𝑥 ∶= 𝑒′] ∶ 𝜏.

Proof by induction on the derivation of Γ, 𝑥 ∶ 𝜏 ′ ⊢ 𝑒 ∶ 𝜏.

Type safety theorem. The following theorem combines the progress lemma and the type
preservation lemme.

If Γ ⊢ 𝑒 ∶ 𝜏 and 𝑒 →∗ 𝑒′ with 𝑒′ not reducible, then 𝑒′ is a value.

The proof is by recurrence on the length of the reduction sequence 𝑒 →∗ 𝑒′.
Summary: the safety property of typed expressions establishes a link between a static

property (type consistency) and a dynamic property (evaluation without errors) of programs. It
is still possible that a well-typed program fails to reach a value, in case the evaluation never
ends. More generally, programming languages with a strict typing discipline are able to detects
many errors early (at compilation time), which results in less errors at execution time.

2.4 Type verification for FUN
When source programs contain enough type information, it is rather easy to implement a
type checker, that is a(n other) program that checks whether a given source program is
consistently typed. In this section we use caml to write a type checker from FUN programs,
following the typing rules given in the previous sections. This program consists in a function
type_expr, which takes as parameters an expression 𝑒 and an environment Γ and which:

— returns the unique type that can be associated to 𝑒 in the environment Γ if 𝑒 is indeed
consistent in this environment,

— fails otherwise.
We define a (caml) datatype to represent the types of the FUN language.

type typ =
| TInt
| TBool
| TFun of typ * typ

24

We adapt the caml datatype representing abstract syntax trees of the FUN language to include
some type annotations. Namely, we require type annotations for the argument of a function,
and for recursive values. These annotations are the second argument of the constructors Fun
and Fix.

type bop = Add | Sub | Mul | Lt | Eq
type expr =

| Int of int
| Bop of bop * expr * expr
| Var of string
| Let of string * expr * expr
| If of expr * expr * expr
| App of expr * expr
| Fun of string * typ * expr
| Fix of string * typ * expr

Finally, we represent the environment as association tables relating variable identifiers
(string) to FUN types (typ).

module Env = Map.Make(String)
type type_env = typ Env.t

The type checker is then a recursive function

type_expr: expr -> type_env -> typ

which reasons by case on the shape of the expression and applies the corresponding inference
rule.

let rec type_expr e env = match e with

An integer constant is always consistent, and its type is int.

Γ ⊢ 𝑛 ∶ int| Int _ -> TInt

A variable is seen as consistent when it exists in the environment.

Γ ⊢ 𝑥 ∶ Γ(𝑥)| Var(x) -> Env.find x env

If it is not the case, the function Env.find will trigger an exception (namely: Not_found).
A binary operation requires each operand to be consistent, with the appropriate type. Γ ⊢ 𝑒1 ∶ int Γ ⊢ 𝑒2 ∶ int

Γ ⊢ 𝑒1 + 𝑒2 ∶ int| Bop(Add , e1, e2) ->
let t1 = type_expr e1 env in
let t2 = type_expr e2 env in
if t1 = TypInt && t2 = TypInt then

TypInt
else

failwith ”type error”

Note that this code may fail at several distinct places: when type checking e1 or e2 if one or
the other is not consistent, or explicitely with the last line if both e1 and e2 are consistent
but one do not have the expected type.

A conditional expression requires the condition to be of boolean type, and both branch
to have the same type.

Γ ⊢ 𝑐 ∶ bool

Γ ⊢ 𝑒1 ∶ 𝜏
Γ ⊢ 𝑒2 ∶ 𝜏

Γ ⊢ if 𝑐 then 𝑒1 else 𝑒2 ∶ 𝜏
| If(c, e1, e2) ->

let tc = type_expr c env in
let t1 = type_expr e1 env in
let t2 = type_expr e2 env in
if tc = TBool && t1 = t2 then

t1
else

failwith ”type error”

When a local variable 𝑥 is introduced, we deduce its type from the expression 𝑒1 that
defines the value of the variable. The obtained type is then added to the environment used
to typecheck the second expression 𝑒2.

Γ ⊢ 𝑒1 ∶ 𝜏1 Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒2 ∶ 𝜏2
Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ∶ 𝜏2

25

| Let(x, e1, e2) ->
let t1 = type_expr e1 env in
type_expr e2 (Env.add x t1 env)

This case never fails by itself (although typechecking e1 and e2 may fail).
In the case of a function, we use the annotation to provide a type for the argument. We

then check the body of the function, and use the returned type to build the full type of the
function.Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒 ∶ 𝜏2

Γ ⊢ fun 𝑥 -> 𝑒 ∶ 𝜏1 → 𝜏2 | Fun(x, tx, e) ->
let te = type_expr e (Env.add x tx env) in
TFun(tx, te)

In the case of an application, we have to check that the left expression has the type of a
function, and that the right expression has the type the function expects. These two points
are two distincts reasons for which typechecking may fail.

Γ ⊢ 𝑒1 ∶ 𝜏2 → 𝜏1 Γ ⊢ 𝑒2 ∶ 𝜏2
Γ ⊢ 𝑒1 𝑒2 ∶ 𝜏1

| App(f, a) ->
let tf = type_expr f env in
let ta = type_expr a env in
begin match tf with

| TFun(tx, te) ->
if tx = ta then

te
else

failwith ”type error”
| _ -> failwith ”type error”

end

Finally, in the case of recursive value we typecheck the expression in an environment
containing the type given by the annotation, and then check that the type of the expression
also corresponds to the annotation.Γ, 𝑓 ∶ 𝜏 ⊢ 𝑒 ∶ 𝜏

Γ ⊢ fix f = e ∶ 𝜏 | Fix(f, t, e) ->
let env ’ = Env.add f t env in
let te = type_expr e env ’ in
if te = t then

t
else

failwith ”type error”

2.5 Polymorphism
With the simply types seen in the beginning of the chapter, an expression such as

fun x -> x

may have several distinct types. However, it can have only one type at a time. In particular,
in an expression such as

let f = fun x -> x in f f

we have to chose only one type for the f, and the expression cannot be typed. This is called
a monomorphic type (literaly: one shape). You may have noticed however that caml does not
complain about the type of this expression.

This section is about parametric polymorphism, that is the possibility of using parametrized
types, which cover many variants of a given shape of type. We extend the grammar of the
types 𝜏 with two new elements:

— type variables, or type parameters, written 𝛼, 𝛽, ... denoting indeterminate types,
— a universal quantification ∀𝛼.𝜏 denoting a polymorphic type, where the type variable

𝛼 may, in 𝜏, denote any type.
For the main fragment of FUN, the set of types is then defined by the extended grammar

𝜏 ∶∶= int
| 𝜏 → 𝜏
| 𝛼
| ∀𝛼.𝜏

26

Instantiation. Polymorphic expressions have the following property: if an expression
𝑒 has a polymorphic type ∀𝛼.𝜏, then for any type 𝜏 ′ we can consider 𝑒 to also be of type
𝜏 [𝛼 ∶= 𝜏 ′] (the type 𝜏 in which each occurrence of the type parameter 𝛼 has been replaced
by 𝜏 ′).

Γ ⊢ 𝑒 ∶ ∀𝛼.𝜏

Γ ⊢ 𝑒 ∶ 𝜏[𝛼 ∶= 𝜏 ′]

The notion of type substitution 𝜏 [𝛼 ∶= 𝜏 ′] is defined by a set of equations that are similar
to the ones defining the substitution of expressions (previous chapter).

int[𝛼 ∶= 𝜏 ′] = int

𝛽[𝛼 ∶= 𝜏 ′] = { 𝜏 ′ if 𝛼 = 𝛽
𝛽 if 𝛼 ≠ 𝛽

(𝜏1 → 𝜏2)[𝛼 ∶= 𝜏 ′] = 𝜏1[𝛼 ∶= 𝜏 ′] → 𝜏2[𝛼 ∶= 𝜏 ′]

(∀𝛽.𝜏)[𝛼 ∶= 𝜏 ′] = { ∀𝛽.𝜏 if 𝛼 = 𝛽
∀𝛽.𝜏 [𝛼 ∶= 𝜏 ′] if 𝛼 ≠ 𝛽 and 𝛽 ∉ fv(𝜏 ′)

The notion of free type variable is also defined similarly.

fv(int) = ∅
fv(𝛼) = { 𝛼 }

fv(𝜏1 → 𝜏2) = fv(𝜏1) ∪ fv(𝜏2)
fv(∀𝛼.𝜏) = fv(𝜏) ⧵ { 𝛼 }

Generalisation. When an expression has a type 𝜏 containing a parameter 𝛼, and this
parameter is not constrained in any way by the context Γ, then we can consider 𝑒 as a
polymorphic expression, with type ∀𝛼.𝜏.

Γ ⊢ 𝑒 ∶ 𝜏 𝛼 ∉ fv(Γ)

Γ ⊢ 𝑒 ∶ ∀𝛼.𝜏

In this rule, the condition “𝛼 is not constrained by Γ” is stated as “𝛼 does not appear in Γ”.
Formally, the set of free type variables of an environment Γ = { 𝑥1 ∶ 𝜏1, … , 𝑥𝑛 ∶ 𝜏𝑛 } is

defined by the equation

fv({ 𝑥1 ∶ 𝜏1, … , 𝑥𝑛 ∶ 𝜏𝑛 }) = ⋃
1≤𝑖≤𝑛

fv(𝜏𝑖)

Note that this concerns only type variables. The variables 𝑥𝑖, which are variables of expres-
sions, are out of scope.

Examples and counter-examples. We can now give to the identity function fun x -> x

the polymorphic type ∀𝛼.𝛼 → 𝛼, stating that this function takes an argument of any type
and returns a result of the same type.

x ∶ 𝛼 ⊢ x ∶ 𝛼

⊢ fun x -> x ∶ 𝛼 → 𝛼 𝛼 ∉ fv(∅)

⊢ fun x -> x ∶ ∀𝛼.𝛼 → 𝛼

The key here is that fun x -> x can have the type 𝛼 → 𝛼 in the empty context, and that the
empty context, in particular, puts no constraint on 𝛼.

It is then possible to type the expression let f = fun x -> x in f f. Indeed, in the part
of the derivation tree dealing with the expression f f, we have an environment Γ = { 𝑓 ∶
∀𝛼.𝛼 → 𝛼 } with which we can complete the derivation as follows.

Γ ⊢ f ∶ ∀𝛼.𝛼 → 𝛼

Γ ⊢ f ∶ (int → int) → (int → int)

Γ ⊢ f ∶ ∀𝛼.𝛼 → 𝛼

Γ ⊢ f ∶ int → int

Γ ⊢ f f ∶ int → int

27

Note that this is not the only solution: we could also have replaced the concrete type int by
any type variable 𝛽, and even remark that the resulting type could be generalized, since 𝛽
does not appear free in Γ.

Γ ⊢ f ∶ ∀𝛼.𝛼 → 𝛼

Γ ⊢ f ∶ (𝛽 → 𝛽) → (𝛽 → 𝛽)

Γ ⊢ f ∶ ∀𝛼.𝛼 → 𝛼

Γ ⊢ f ∶ 𝛽 → 𝛽

Γ ⊢ f f ∶ 𝛽 → 𝛽 𝛽 ∉ fv(Γ)

Γ ⊢ f f ∶ ∀𝛽.𝛽 → 𝛽

This system however does not allow the type 𝛼 → ∀𝛼.𝛼 for the identity function
fun x -> x. Indeed, this would require giving to 𝑥 the type ∀𝛼.𝛼 in a context Γ = { x ∶ 𝛼 }.
Our axiom rule only allows the derivation of Γ ⊢ x ∶ 𝛼, in which 𝛼 cannot be generalized,
since it appears in Γ. Thus we (fortunately) cannot use polymorphic types to allow the
ill-formed expression (fun x -> x) 5 37.

Let us show that composition function fun f -> fun g -> fun x -> g (f x) has the
polymorphic type ∀𝛼𝛽𝛾 .(𝛼 → 𝛽) → (𝛽 → 𝛾) → (𝛼 → 𝛾). Write Γ the environment
{ f ∶ 𝛼 → 𝛽, g ∶ 𝛽 → 𝛾 , x ∶ 𝛼 }. We can build the following derivation (where three
consecutive uses of the generalization rule are merged, as well as three consecutive uses of
the typing rule for functions).

Γ ⊢ g ∶ 𝛽 → 𝛾

Γ ⊢ f ∶ 𝛼 → 𝛽 Γ ⊢ x ∶ 𝛼

Γ ⊢ f x ∶ 𝛽

Γ ⊢ g (f x) ∶ 𝛾

⊢ fun f -> fun g -> fun x -> g (f x) ∶ (𝛼 → 𝛽) → (𝛽 → 𝛾) → (𝛼 → 𝛾) 𝛼, 𝛽, 𝛾 ∉ fv(∅)

⊢ fun f -> fun g -> fun x -> g (f x) ∶ ∀𝛼𝛽𝛾 .(𝛼 → 𝛽) → (𝛽 → 𝛾) → (𝛼 → 𝛾)

Exercise: show that this composition function can also have the type ∀𝛼𝛽.(𝛼 → 𝛽) → ∀𝛾 .(𝛽 →
𝛾) → (𝛼 → 𝛾).

Hindley-Milner system. Without annotations from the programmer, the two following
questions about polymorphic types in FUN are undecidable:

— type inference: an expression 𝑒 being given, determine whether there is a type 𝜏 such
that Γ ⊢ 𝑒 ∶ 𝜏 (and provide the type),

— type verification: an expression 𝑒 and a type 𝜏 being given, determine whether Γ ⊢
𝑒 ∶ 𝜏.

These undecidability results still hold for any language extending the FUN kernel.
If we wish to check the type consistency of a program, or infer the type of a program,

we have to either require some amount of annotations from the programmer, or restrict the
use of polymorphism. Each language sets is own balance between the amount of annotation
and the expressiveness of the type system.

In caml, polymorphism is restricted by a simple fact: we cannot write any explicit
quantifier in a type. Instead, every type variable that is globally free is implicitly considered
to be universally quantified. Thus, the caml type for the first projection of a pair

fst: ’a * ’b -> ’a

is actually the generalized type ∀𝛼𝛽.𝛼 × 𝛽 → 𝛼. Similarly, the caml type for the left iterator
of a list

List.fold_left: (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

has to be understood as ∀𝛼𝛽.(𝛼 → 𝛽 → 𝛼) → 𝛼 → 𝛽 list → 𝛼.
This restricted polymorphism is common to all languages of the ML family, and called the

Hindley-Milner system. It only allows “prenex” quantification, and distinguishes the notion
of type 𝜏 without quantification, and the notion type scheme 𝜎 which is a type extended
with an arbitrary number of global quantifiers.

28

For our fragment of FUN, this can be described by the following grammar.

𝜏 ∶∶= int
| 𝜏 → 𝜏
| 𝛼

𝜎 ∶∶= ∀𝛼1…∀𝛼𝑛.𝜏

In this system, we can work with type schemes such as ∀𝛼.𝛼 → 𝛼 and ∀𝛼𝛽𝛾 .(𝛼 → 𝛽) → (𝛽 →
𝛾) → (𝛼 → 𝛾), but we cannot express a type with the shape (∀𝛼.𝛼 → 𝛼) → (∀𝛼.𝛼 → 𝛼).

In the Hindley-Milner system, we adapt contexts and typing judgments to allow the
association of a type scheme to a variable or an expression:

𝑥1 ∶ 𝜎1, … , 𝑥𝑛 ∶ 𝜎𝑛 ⊢ 𝑒 ∶ 𝜎

Note that a type scheme with zero quantifier is just a type: this new shape may also be used
to deal with simple types.

Typing rules are also adapted in a way such that type schemes are authorized only at
some specific places.

Γ ⊢ 𝑛 ∶ int

Γ ⊢ 𝑒1 ∶ int Γ ⊢ 𝑒2 ∶ int

Γ ⊢ 𝑒1 + 𝑒2 ∶ int

Γ ⊢ 𝑥 ∶ Γ(𝑥)

Γ ⊢ 𝑒1 ∶ 𝜎1 Γ, 𝑥 ∶ 𝜎1 ⊢ 𝑒2 ∶ 𝜎2
Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ∶ 𝜎2

Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒 ∶ 𝜏2
Γ ⊢ fun 𝑥 -> 𝑒 ∶ 𝜏1 → 𝜏2

Γ ⊢ 𝑒1 ∶ 𝜏2 → 𝜏1 Γ ⊢ 𝑒2 ∶ 𝜏2
Γ ⊢ 𝑒1 𝑒2 ∶ 𝜏1

Γ ⊢ 𝑒 ∶ ∀𝛼.𝜎

Γ ⊢ 𝑒 ∶ 𝜎[𝛼 ∶= 𝜏]

Γ ⊢ 𝑒 ∶ 𝜎 𝛼 ∉ fv(Γ)

Γ ⊢ 𝑒 ∶ ∀𝛼.𝜎

The generalization of the type of an expression is only allowed at two places:
— at the root of the program,
— for the argument of a let definition.

Indeed, the typing rule for let contains type schemes, while the type of an application
requires both the type of the function and the type of its arguments to be simple types.

The Hindley-Milner type system has two notable properties:
— type checking and type inference are decidable (see next section),
— the system ensures type safety: the evaluation of the well-typed program cannot be

stopped by an inconsistent operation (the proof extends the one already given for
simple types).

2.6 Type inference
Writing a type checker for simple types in FUN was relatively easy, thanks to two properties
of that simple system:

— typing rules were syntax-directed, which means that for any shape of expression there
was only one inference rule that could possibly apply,

— some type annotations were required at the few places where we did not have a simple
way of guessing the right type (namely, the parameter of a function and a recursive
value).

Conversely, the Hindley-Milner system does not satisfy the first property: the two rules for
instantiation and generalization may be applied to any expression. Moreover, we aim at full
inference, that is we do not want any annotation.

Syntax-dorected Hindley-Milner system. As first step, let us define a syntax-directed
variant of the Hindley-Milner system, by restricting the places where generalization and
instantiation may be applied.

— We allow the instantiation of a type variable only when recovering from the envi-
ronment the type scheme associated to a variable. We obtain this by merging the
instantiation rule and the axiom Γ ⊢ 𝑥 ∶ Γ(𝑥), keeping only one rule combining two
effects:

29

1. fetch the type scheme 𝜎 associated to 𝑥 in Γ,
2. instiantiate all universal variables of 𝜎 (thus obtaining a simple type).

— Symmetrically, we allow generalization only for let definitions. We obtain this by
merging the generalization rule and the let rule, keeping only one rule combining
two effects:

1. type the expression 𝑒1 in the environment Γ, and call 𝜏1 the obtained type,
2. generalize all the free variables of 𝜏1 that can possibly be genezalized, to obtain a

type schema 𝜎1,
3. type 𝑒2 in the extended environment where 𝑥 is associated to 𝜎1.

Remark that type schemes are not allowed at any place other than the context anymore.
Here is a type derivation in this system, with Γ1 = { 𝑥 ∶ 𝛼 → 𝛼, 𝑦 ∶ 𝛼 } and Γ2 = { 𝑓 ∶

∀𝛼.(𝛼 → 𝛼) → (𝛼 → 𝛼) }.

Γ1 ⊢ 𝑥 ∶ 𝛼 → 𝛼

Γ1 ⊢ 𝑥 ∶ 𝛼 → 𝛼 Γ1 ⊢ 𝑦 ∶ 𝛼

Γ1 ⊢ 𝑥 𝑦 ∶ 𝛼

𝑥 ∶ 𝛼 → 𝛼, 𝑦 ∶ 𝛼 ⊢ 𝑥 (𝑥 𝑦) ∶ 𝛼

𝑥 ∶ 𝛼 → 𝛼 ⊢ fun 𝑦 -> 𝑥 (𝑥 𝑦) ∶ 𝛼 → 𝛼

⊢ fun 𝑥 -> fun 𝑦 -> 𝑥 (𝑥 𝑦) ∶ (𝛼 → 𝛼) → (𝛼 → 𝛼)

Γ2 ⊢ 𝑓 ∶ (int → int) → (int → int)

Γ2, 𝑧 ∶ int ⊢ 𝑧 ∶ int Γ2, 𝑧 ∶ int ⊢ 1 ∶ int

Γ2, 𝑧 ∶ int ⊢ 𝑧+1 ∶ int

Γ2 ⊢ fun 𝑧 -> 𝑧+1 ∶ int → int

𝑓 ∶ ∀𝛼.(𝛼 → 𝛼) → (𝛼 → 𝛼) ⊢ 𝑓 (fun 𝑧 -> 𝑧+1) ∶ int → int

⊢ let 𝑓 = fun 𝑥 -> fun 𝑦 -> 𝑥 (𝑥 𝑦) in 𝑓 (fun 𝑧 -> 𝑧+1) ∶ int → int

It can be proven that this syntax-directed variant of the Hindley-Milner system is equivalent
to the original version, since it allows the derivation of essentially the same typing judgments.

Constraint generation and unification. The second step consists in performing infer-
ence without any annotation. The algorithm W implements for this the following ideas.

— Each time we need to introduce a new type which cannot be computed in a straight-
forward way, we introduce instead a new type variable. This concerns the type of
the parameter of a function, and also the types used for instantiating the universal
variables of a type scheme Γ(𝑥).

— The actual types represneted by these type variables are computed later, when check-
ing/solving the constraints related to the typing rules (for instance, for application or
addition).

When a typing rule requires an identity between two types 𝜏1 and 𝜏2 containing type variables
𝛼1, ..., 𝛼𝑛, we try to unify these two types, that is we look for an instantiation 𝑓 of the type
variables 𝛼𝑖 such that 𝑓 (𝜏1) = 𝑓 (𝜏2).
Examples of unification:

— If 𝜏1 = 𝛼 → int and 𝜏2 = (int → int) → 𝛽, we can unify the types 𝜏1 and 𝜏2 using the
instantiation [𝛼 ↦ int → int, 𝛽 ↦ int].

— If 𝜏1 = (𝛼 → int) → (𝛼 → int) and 𝜏2 = 𝛽 → 𝛽, we can unify the types 𝜏1 and 𝜏2
using the instantiation [𝛽 ↦ 𝛼 → int].

— The types 𝛼 → int and int cannot be unified.
— The types 𝛼 → int and 𝛼 cannot be unified.

Unification criteria:
— 𝜏 is always unified with itself,
— unification of 𝜏1 → 𝜏 ′1 with 𝜏2 → 𝜏 ′2 requires unifying 𝜏1 with 𝜏2 and 𝜏 ′1 with 𝜏 ′2 ,
— unification of 𝜏 with a variable 𝛼, when 𝛼 does not appears in 𝜏, is done by instantiating

𝛼 by 𝜏 (if 𝛼 appears in 𝜏, unification is not possible),
— in any other case, unification is not possible.

AlgorithmW, example. Let us infer a type for the expression let 𝑓 = fun 𝑥 -> fun 𝑦 -> 𝑥(𝑥𝑦) in 𝑓 (fun 𝑧->𝑧+1).
We first focus on fun 𝑥 -> fun 𝑦 -> 𝑥 (𝑥 𝑦), proceeding as follows.

— The variable 𝑥 is given the type 𝛼, where 𝛼 is a new type variable.
— Similarly, the variable 𝑦 is given the type 𝛽 with 𝛽 a new type variable.
— Then we type the expression 𝑥 (𝑥 𝑦).

— The application 𝑥 𝑦 requires the type 𝛼 of 𝑥 to be a functional type, whose
parameter corresponds to the type 𝛽 of 𝑦. Thus we unify 𝛼 with 𝛽 → 𝛾, for 𝛾 some
new type variable, and define a first element of instantiation: 𝛼 = 𝛽 → 𝛾.

— Therefore, the application 𝑥 𝑦 has the type 𝛾.
— The application 𝑥 (𝑥 𝑦) requires the type 𝛼 = 𝛽 → 𝛾 of 𝑥 to be a functional type,

whose parameter corresponds to the type 𝛾 of 𝑥 𝑦. Thus we unify 𝛽 → 𝛾 with

30

𝛾 → 𝛿, for 𝛿 a new type variable. Then we get new instantiation information:
𝛾 = 𝛿 = 𝛽.

We also deduce that the application 𝑥 (𝑥 𝑦) has the type 𝛽.
— Finally, fun 𝑥 -> fun 𝑦 -> 𝑥 (𝑥 𝑦) get the type 𝛼 → (𝛽 → 𝛽), which is (𝛽 → 𝛽) → (𝛽 →

𝛽), and in the empty typing context this can be generalized as ∀𝛽.(𝛽 → 𝛽) → (𝛽 → 𝛽).
Let us now focus on the expression 𝑓 (fun 𝑧 -> 𝑧+1), in a context where 𝑓 has the gener-
alized type ∀𝛽.(𝛽 → 𝛽) → (𝛽 → 𝛽). This expression is an application: we first type both
subexpressions, and then solve the constraints.

— We type 𝑓 by fetching the type scheme ∀𝛽.(𝛽 → 𝛽) → (𝛽 → 𝛽) from the context, and
instantiating the universal variable 𝛽 with a new type variable 𝜁. We get for 𝑓 the type
(𝜁 → 𝜁) → (𝜁 → 𝜁).

— Typing of fun 𝑧 -> 𝑧+1.
— The variable 𝑧 is given the type 𝜂, where 𝜂 is a new type variable.
— Then we type the addition 𝑧+1.

— 𝑧 has the type 𝜂, that has to be unified with int. Then we define 𝜂 = int.
— 1 has the type int, that has to be unified with int: done already.

Thus 𝑧+1 has the type int.
Thus fun 𝑧 -> 𝑧+1 has the type 𝜂 → int, which is int → int.

— To type the application itself, we have to unify the type (𝜁 → 𝜁) → (𝜁 → 𝜁) of 𝑓 with
the type (int → int) → 𝜃 of a function that takes a parameter of type int → int (the
type of the argument fun 𝑧 -> 𝑧+1), with 𝜃 a new type variable. Thus we complete the
instantiation with 𝜁 = int and 𝜃 = int → int.

Finally, the expression 𝑓 (fun 𝑧 -> 𝑧+1) has the type 𝜃 = int → int, and we conclude that

⊢ let 𝑓 = fun 𝑥 -> fun 𝑦 -> 𝑥 (𝑥 𝑦) in 𝑓 (fun 𝑧 -> 𝑧+1) ∶ int → int

AlgorithmW, in caml. We take the raw abstract syntax of FUN, without type annotations.

type bop = Add | Sub | Mul | Lt | Eq
type expr =

| Int of int
| Bop of bop * expr * expr
| Var of string
| Let of string * expr * expr
| If of expr * expr * expr
| App of expr * expr
| Fun of string * expr
| Fix of string * expr

We extend simple types with a notion of type variable, and define a type scheme as a pair of
a simply type typ and a set vars of universally quantified type variables.

type typ =
| TInt
| TBool
| TFun of typ * typ
| TVar of string

module VSet = Set.Make(String)
type schema = { vars: VSet.t; typ: typ }

A typing environment associate a type scheme to each variable of the program.

module SMap = Map.Make(String)
type env = schema SMap.t

We will build a function type_inference: expr -> typ that computes a type for the
expression given as parameter, trying to get a type that is as general as possible (which
means: that does not instantiate type variables more than what is necessary). This function
uses an auxiliary function new_var: unit -> string for creating new type variables.

let type_inference t =
let new_var =

let cpt = ref 0 in
fun () -> incr cpt; Printf.sprintf ”tvar_%i” !cpt

in

31

These type variables will be associated to concrete types (or at least more precise types)
when new constraints are discovered and analyzed. These associations are recorded in a
hash table subst, that grows as the inference proceeds.

let subst = Hashtbl.create 32 in

Thus, the types used during inference will contain type variables, some of which will have a
definition in subst. To read such a type, we use auxiliary unfolding functions unfold and
unfold_full, which take a type 𝜏 a replace its type variables by their definition in subst

(for those that have one). The function unfold is a “shallow” replacement: it replaces only
what is necessary to see the superficial structure of the type and in particular to distinguish
between the cases TInt, TBool, TFun or TVar. The function unfold_full performs a complete
replacement, in order to know the full type (this one is only used to decode the final result
of the inference).

let rec unfold t = match t with
| TInt | TBool | TFun _ -> t
| TVar a ->

if Hashtbl.mem subst a then
unfold (Hashtbl.find subst a)

else
t

in

let rec unfold_full t = match unfold t with
| TFun(t1, t2) -> TFun(unfold_full t1 , unfold_full t2)
| t -> t

in

Example of the use of unfolding: to check whether a type variable 𝛼 appears in a type 𝜏, we
reason by case on the shape of the type 𝜏. We insert a call to the (shallow) unfolding function
before the match to reveal the actual structure of the type if it is already known.

let rec occur a t = match unfold t with
| TInt | TBool -> false
| TVar b -> a=b
| TFun(t1, t2) -> occur a t1 || occur a t2

in

Algorithm W itself reasons by case on the shape of the analyzed expression. In the case
of an integer constant, we just return the base type TInt. In the case of a binary operation
we infer a type for each operand, and then check that the obtained types t1 and t2 are
consistent with the expected type (for instance: TInt). This consistency check is performed
by an auxiliary function unify, which records on the fly the new associations between type
variables and concrete types.

let rec w e env = match e with
| Int _ ->

TInt

| Bop((Add | Sub | Mul), e1, e2) ->
let t1 = w e1 env in
let t2 = w e2 env in
unify t1 TInt; unify t2 TInt;
TInt

| Bop(Lt, e1, e2) ->
let t1 = w e1 env in
let t2 = w e2 env in
unify t1 TInt; unify t2 TInt;
TBool

| Bop(Eq, e1, e2) ->
let t1 = w e1 env in
let t2 = w e2 env in
unify t1 t2;
TBool

32

| If(c, e1, e2) ->
let tc = w c env in
let t1 = w e1 env in
let t2 = w e2 env in
unify tc TBool;
unify t1 t2;
t1

In the case of a variable, we instantiate the type scheme obtained in the environment using a
dedicated auxiliary function instantiate, which replace each universal variable by a fresh
type variable.

| Var x -> instantiate (SMap.find x env)

Conversely, in the case of a let we generalize the type infered for the expression e1 using a
dedicated auxiliary function generalize, which returns a type scheme in which type variables
are generalized whenever this is possible.

| Let(x, e1, e2) ->
let t1 = w e1 env in
let st1 = generalize t1 env in
let env ’ = SMap.add x st1 env in
w e2 env ’

When typing a function, we introduce a new type variable for the type of the parameter. Since
the type of a parameter cannot be generalized, we fix an empty set of universal variables,
and then we type the body of the function in this extended environment.

| Fun(x, e) ->
let v = new_var () in
let env = SMap.add x {vars = VSet.empty; typ = TVar v} env in
let t = w e env in
TFun(TVar v, t)

When typing an application we first infer types for each subexpression, and then try to
solve the constraints of the application rule: the type t1 of the left member e1 must be a
functional type, and the type t2 of the right member must be the expected parameter type
of the function.

| App(e1, e2) ->
let t1 = w e1 env in
let t2 = w e2 env in
let v = TVar (new_var ()) in
unify t1 (TFun(t2, v));
v

Finally, a recursive value Fix(𝑓, 𝑒) is typed using a new type variable that is used twice: it
is first associated to 𝑓 in the typing environment when analyzing 𝑒, and then it is unified
with the type obtained for 𝑒.

| Fix(f, e) ->
let v = new_var () in
let env = SMap.add f {vars = VSet.empty; typ = TVar v} env in
let t = w e env in
unify t (TVar v);
t

in
unfold_full (w t SMap.empty)

We now give the definitions of the auxiliary functions enumerated above. The type
constraints are solved by a unification algorithm, which takes two type parameters 𝜏1 and
𝜏2 and try to instiantiate the type variables of 𝜏1 and 𝜏2 to make both types identical. In
cases where both types have the same shape, it is enough to propagate unification on the
immediate subexpressions.

33

let rec unify t1 t2 = match unfold t1, unfold t2 with
| TInt , TInt -> ()
| TBool , TBool -> ()
| TFun(t1, t1 ’), TFun(t2, t2 ’) -> unify t1 t2; unify t1’ t2’

When one the type is a variable, there are several possible situations.
— If 𝜏1 and 𝜏2 are the same variable, there is nothing to be done: the types are equal

already.
— If one type is a variable 𝛼, and the other one, written 𝜏, is another variable or a different

shape of type, then we add the association [𝛼 ↦ 𝜏] in the instantiation table subst.
Note there is an exception to this main idea: if the variable 𝛼 appears in 𝜏, then
unification fails, since 𝛼 cannot be a part of its own definition.

| TVar a, TVar b when a=a -> ()
| TVar a, t | t, TVar a ->

if occur a t then
failwith ”unification error”

else
Hashtbl.add subst a t

Unification fails in any other case.

| _, _ -> failwith ”unification error”
in

The instantiation auxiliary function creates a new type variable for each universal variable
of the type scheme given as argument, and replace the quantified variables.

let instantiate s =
let renaming = VSet.fold

(fun v r -> SMap.add v (TVar(new_var ())) r)
s.vars
SMap.empty

in
let rec rename t = match unfold t with

| TVar a as t -> (try SMap.find a renaming with Not_found -> t)
| TInt -> TInt
| TBool -> TBool
| TFun(t1 , t2) -> TFun(rename t1, rename t2)

in
rename s.typ

in

The generalization auxiliary function takes as parameters a type 𝜏 and an environment Γ,
and computes the set of free type variables in 𝜏 which do not appear in the environment Γ.
These variables are then declared “universal”.

let rec fvars t = match unfold t with
| TInt | TBool -> VSet.empty
| TFun(t1, t2) -> VSet.union (fvars t1) (fvars t2)
| TVar x -> VSet.singleton x

in
let rec schema_fvars s =

VSet.diff (fvars s.typ) s.vars
in
let generalize t env =

let fvt = fvars t in
let fvenv = SMap.fold

(fun _ s vs -> VSet.union (schema_fvars s) vs)
env
VSet.empty

in
{vars = VSet.diff fvt fvenv; typ=t}

in

34

	Semantics and interpretation of a functional language
	Concrete syntax and abstract syntax
	Inductive structures
	An interpret for FUN
	Natural semantics
	Small step operational semantics
	Equivalence between small step and big step
	Extensions

	Types and safety
	Types values and operations
	Typing judgment and inference rules
	Type safety
	Type verification for FUN
	Polymorphism
	Type inference

