
Type Synthesis for the Logical Solver: an

Approach based on Query Automata

Louis Jachiet, Pierre Genevès, Nabil Layäıda

July 25, 2013

1 Introduction

The logical solver used in [4] currently looks for a finite tree over which the
logical formula is satisfied. As described in [1], we propose to study how to
compute the set of all satisfying trees. One difficulty is to build a workable
yet succinct representation for the synthesized type from the logical model of
types and paths. In particular, recursion should be captured and backward
axes may need to be rewritten in the forward direction if we stick to the
usual representation of tree grammars, such as the ones used in CDuce.

In this document, we report on a logical based type synthesis, which paves
the way for the research on polymorphism from a logical perspective. Specif-
ically, we present a method and technique to build the set of satisfying trees
for a given formula, and represent it as a forward-only tree-grammar based
description. This technique relies on building query automata extracted from
the XPath expressions given as input.

Outline

We first present basic preliminary definitions concerning formulas and types
in Section 2. We give an automata perspective in Section 3. We prove
the equivalence between the input formula and the obtained automaton in
Section 4. We detail the containment for path formulas in Section 5. Finally
we present the practical algorithm in Section 6 before we discuss experimental
results and conclude in Section 7.

This work was supported by the ANR project TYPEX, ANR-11-BS02-007.

1

2 Preliminary Definitions

We first review the syntax of considered logical formulas, and describe their
formal semantics.

2.1 Syntax

The syntax of the formulas over an alphabet of labels A and a disjointed
alphabet of attributes B used is:

• ϕ = ϕ1 ∨ ϕ2

• ϕ = ϕ1 ∧ ϕ2

• ϕ = ¬ϕ′

• ϕ = 〈a〉ϕ′ where a ∈ {1, 2, 1̄, 2̄}. We have ¯̄a = a.

• ϕ = µXi = ϕ′
i in ψ

• X where X is a variable.

• ϕ = ⊤

• ϕ = σ, σ ∈ A ∪ B

The last two kind of formulas are called context-formulas.

2.2 Semantics

The trees we consider are over the alphabet A, each node n has a label
L(n) ∈ A, it also has a set S(n) ⊂ B of attributes. We use the classic
semantics:

• Jϕ1 ∧ ϕ2KV = Jϕ1KV ∩ Jϕ2KV .

• Jϕ1 ∨ ϕ2KV = Jϕ1KV ∪ Jϕ2KV .

• J¬ϕKV = F \ JϕKV .

• J〈a〉ϕKV = {T 〈ā〉 | T ∈ JϕKV ∧ T 〈ā〉 defined }

• JµXi = ϕi in ψKV = let Ti = {
⋂

Ti⊂F

Ti | JϕiKV {Ti/Xi}
⊂ Ti} in JψKV {Ti/Xi}

• If ϕ = σ where σ ∈ A, JϕKV = {T ∈ F ,L(T) = σ}.

• If ϕ = σ where σ ∈ B, JϕKV = {T ∈ F , σ ∈ S(T)}.

2

2.3 Expanding fixpoints

Definition 1. A fix point can be expanded by exp(µXi = ϕi in ψ) = ψµXi=ϕi in ϕi/Xi
.

The unfolding of a formula is the smallest set verifying:

• unf(ϕ1 ∧ ϕ2) = {u1 ∧ u2 | u1 ∈ unf(ϕ1), u2 ∈ unf(ϕ2)}

• unf(ϕ1 ∨ ϕ2) = {u1 ∨ u2 | u1 ∈ unf(ϕ1), u2 ∈ unf(ϕ2)}

• unf(¬ϕ) = {¬u | u ∈ unf(ϕ)}

• unf(〈a〉ϕ) = {〈a〉 u | u ∈ unf(ϕ)}

• unf(σ) = {σ} for σ context-formula

• unf(µXi = ϕi in ψ) = unf(exp(µXi = ϕi in ψ)) ∪ {µXi = ϕi in ψ}

Remark 1. It has been proved in [3] that exp does not change the semantics
of a formula.

Remark 2. As we always unfold fix points we encounter, we don’t have to
consider variables as a case for induction on formulas.

2.4 Modality-free variables

Definition 2. We defined the set U(ϕ) of modality-free variables in ϕ as the
smallest set verifying:

• U(ϕ1 ∧ ϕ2) = U(ϕ1) ∪ U(ϕ2)

• U(ϕ1 ∨ ϕ2) = U(ϕ1) ∪ U(ϕ2)

• U(¬ϕ) = U(ϕ)

• U(〈a〉ϕ) = ∅

• U(µXi = ϕi in ψ) = {Xi} ⊔ U(ψ)

• U(ϕ) = ∅ if ϕ is a context-formula

In the formulas we consider, for any formula µXi = ϕi in ψ, we have
every occurrence of Xi in ψ guarded by a 〈a〉. That’s why we wrote {Xi} ⊔
U(ψ).

Such a set is well defined because the size of the formulas considered
always decrease in induction calls.

3

2.5 Modality paths

Definition 3. A modality path is a sequence of programs from {1, 2, 1̄, 2̄}.
We can easily extend navigational operations to modality path. If all (T 〈a1〉 . . . 〈an〉)1≤i≤n

are defined then T 〈a1〉 . . . 〈an〉 is defined and is equal to (T 〈a1〉 . . . 〈an−1〉) 〈an〉
(left-associative).

A modality path 〈a1〉 . . . 〈an〉 is called valid on T if T 〈a1〉 . . . 〈an〉 is de-
fined.

Definition 4. A cycle in a modality path is a sub-sequence of the form
〈a〉 〈ā〉.

Remark 3. It has been proved in [3] that for cycle-free formulas the largest
and smallest fix points collapse. Because we only consider cycle-free formulas,
there is no need of a largest fix point.

Definition 5. We define the set P(ϕ) of modality paths of a formula ϕ as
the smallest set verifying:

• P(ϕ1 ∧ ϕ2) = P(ϕ1) ∪ P(ϕ2)

• P(ϕ1 ∨ ϕ2) = P(ϕ1) ∪ P(ϕ2)

• P(¬ϕ) = P(ϕ)

• P(〈a〉ϕ) = {S 〈a〉 |S ∈ P(ϕ)} ∪ {〈a〉}

• P(µXi = ϕi in ψ) = P(exp(µXi = ϕi in ψ))

• P(σ) = {ǫ} for σ a context-formula; ǫ represents the path of size 0.

Definition 6. A formula ϕ is called cycle-free if it exists n such that ∀u ∈
unf(ϕ), ∀p ∈ P(u), p contains less than n cycles.

Lemma 1. For every focused tree T we cannot have a valid cycle-free modal-
ity path of length greater than size(T).

Proof. Let a1, . . . , an be a valid cycle-free modality path, with n ≥ size(T).
Because (T 〈a1〉 . . . 〈ai〉)i is valid, we can think of it as a way in the tree
of T . A way longer than the number of nodes and therefore a way that
contains a cycle (in the sense of a cycle in a graph). A cycle in a tree always
contains a turn back. So, a1, . . . , an necessarily contains a cycle (ie a pattern
〈a〉 〈ā〉).

Corollary 1. For every focused tree T and every formula ϕ, it exists a nϕ,T

such that ∀u ∈ unf(ϕ), ∀p ∈ P(u), |p| > nϕ,T ⇒ p is not valid on T .

4

Proof. Let ϕ be a cycle-free formula and T a focused tree. We already know
there is a n such that any valid path of any unfolding of ϕ contains less than
n cycles.

Let 〈a1〉 . . . 〈am〉 be a valid modality path.
Let i, j be with 1 ≤ i ≤ j ≤ n and 〈ai〉 . . . 〈aj〉 cycle-free. Because

〈a1〉 . . . 〈an〉 is valid we can state T ′ = T 〈a1〉 . . . 〈ai−1〉 and then 1 proves
that j − i ≤ size(T). Any cycle-free subsequence is smaller in size than
size(T).

Now, we can cut the path at each cycle. For example
〈1〉 〈2〉 〈2̄〉 〈1〉 〈1〉 〈1̄〉 〈1̄〉 〈1̄〉 〈1̄〉 become 〈1〉 〈2〉 | 〈2̄〉 〈1〉 〈1〉 | 〈1̄〉 〈1̄〉 〈1̄〉 〈1̄〉. There
are, at most, n + 1 parts because there was at most n cycles. Each part is
smaller than size(T) so m was, at most, of size size(T) × (n + 1). nϕ,T =
size(T)× (n+ 1) works.

Remark 4. The formulas we consider are all cycle-free.

2.6 Focused trees

Definition 7. The lean is the set A ∪ B ∪ {〈a〉ϕ| 〈a〉ϕ ∈ sub(ξ) ∪ {⊤}}. cf
[3].

Definition 8. We define the set S of tree over A as all finite binary trees
whose labels are in A and attributes in B.

Definition 9. A focused tree over A is a tree from S with the additional
information of which node we are looking at. We write F for the set of all
focused trees.

For a focused tree T we can define the following navigational operations:

• if T is centered in n and n has a father p and is a left child then T 〈1̄〉
is the tree of T but centered in p.

• if T is centered in n and n has a father p and is a right child then T 〈2̄〉
is the tree of T but centered in p.

• if T is centered in n and n has a right child p then T 〈2〉 is the tree of
T but centered in p.

• if T is centered in n and n has a left child p then T 〈1〉 is the tree of
T but centered in p.

5

2.7 Types

Definition 10. A formula is called a Lean-formula if it can be rewritten as
a formula depending on formulas in the Lean (in CNF form for instance?)

Definition 11. A set t ⊂ Lean is called a type if t does not contain both
〈1̄〉⊤ and 〈2̄〉⊤ and if it contains exactly one element from A. A type t also
needs to respect the following condition: 〈a〉ϕ ∈ t⇒ 〈a〉⊤ ∈ t.

Definition 12. The constrained formula for a type t is Φc(t) =
∧

ϕ∈t

ϕ ∧
∧

ϕ∈Lean\t

¬ϕ.

Remark 5. Given a type t and a Lean-formula ϕ we have either Φc(t)⇒ ϕ
or Φc(t)⇒ ¬ϕ.

Definition 13. Two types x and y are compatible for a ∈ {1, 2, 1̄, 2̄} if, for
every 〈a〉ϕ ∈ Lean, we have 〈a〉ϕ ∈ x ⇔ (Φc(y) ⇒ ϕ). For a ∈ {1, 2}, we
have ∆a(x, y) iff x is compatible with y for a and y with x for ā

3 An Automata Perspective

3.1 Automata over trees with attributes

Because trees with labels from A and attributes from B, can be seen like
trees with labels in A × 2B; we see automata for trees with attributes like
automata over the alphabet A×2B. It might also be useful to erase some at-
tributes by transforming all rules labels from a, x1, . . . , xi−1, xi, xi+1, . . . , x|B|
to a, x1, . . . , xi−1, xi+1, . . . , x|B| and see the automaton for an alphabet A ×
2B\{xi}.

3.2 Automaton for a formula

We build the automaton (Q,A, δ,S) for the formula ξ with:

• Q the set of types

• For any tuple of types x, y, z, any label c ∈ A and any set of attributes
O ⊂ B we have:

– If Φc(x)⇒ 〈1〉⊤∧〈2〉⊤ then δ contains
c

y z→ x iff ∆1(x, y)∧
∆2(x, z) ∧ L(x) = c ∧ O = S(x)

– If Φc(x)⇒ ¬〈1〉⊤∧〈2〉⊤ then δ contains
c

y → x iff ∆1(x, y)∧
L(x) = c ∧ O = S(x)

6

– If Φc(x)⇒ 〈1〉⊤∧¬ 〈2〉⊤ then δ contains
c
z→ x iff ∆2(x, z)∧

L(x) = c ∧ O = S(x)

– If Φc(x)⇒ ¬〈1〉⊤ ∧¬ 〈2〉⊤ then δ contains
c
→ x iff L(x) =

c ∧ O = S(x)

• Qf = {q ∈ Q / Φc(q) ⇒ µX = ξ ∨ 〈1〉X ∨ 〈2〉X in X ∧ ¬ 〈1̄〉⊤ ∧
¬ 〈2̄〉⊤}.

It’s easy to build an algorithm that, given a formula ξ, builds the above
automaton in single exponential time.

3.3 Consequences

The translation to NDFTA can be done in single exponential time.

4 Proof

4.1 Existence of run

Lemma 2. For any tree T from JξK, it exists a labeling of the nodes of T
with states of Q that is consistent with the transitions built for ξ.

Proof. Let T be a tree. We introduce a labeling and then we show that it is
consistent.

The labeling t → qt is defined like this : for t a node and for ϕ ∈ Lean,
ϕ ∈ qt iff t ∈ JϕK.

There are four cases to consider but they are redundant. So, we will not
consider the cases of trees with one child.

In the case of a node d with no children. The focused tree T focused on
d is in JΦc(qd)K. So, d respects S(qd) and L(qd) and the automaton can jump
to qd.

In the case of a node d, where d has a left child f1 and a right f2. We will
show that if the automaton can jump to qfa when it reads fa for a ∈ {1, 2}
then it can jump to qd when it reads d. As before, d respects S(qd) and L(qd).
We need also to show that ∆a(qd, qfa) for a ∈ {1, 2}. By definition:

∆a(qd, qfa) ⇔

{

〈a〉ϕ ∈ qd ⇔ Φc(qfa)⇒ ϕ for 〈a〉ϕ ∈ Lean
〈ā〉ϕ ∈ qfa ⇔ Φc(qd)⇒ ϕ for 〈ā〉ϕ ∈ Lean

and for 〈a〉ϕ ∈ Lean as we already have fa ∈ JΦc(qfa)K so

〈a〉ϕ ∈ qd ⇔ d ∈ J〈a〉ϕK ⇔ fa ∈ JϕK ⇔ fa ∈ Jϕ ∧ Φc(qfa)K

7

〈a〉ϕ ∈ qd ⇔ Jϕ ∧ Φc(qfa)K 6= ∅ ⇔ ¬(Φc(qfa)⇒ ¬ϕ)⇔ Φc(qfa)⇒ ϕ

At the same time for 〈ā〉ϕ ∈ Lean we already have d ∈ JΦc(qd)K so

〈ā〉ϕ ∈ qfa ⇔ fa ∈ J〈ā〉ϕK ⇔ d ∈ JϕK ⇔ d ∈ Jϕ ∧ Φc(qd)K

〈ā〉ϕ ∈ qfa ⇔ Jϕ ∧ Φc(qd)K 6= ∅ ⇔ ¬(Φc(qd)⇒ ¬ϕ)⇔ Φc(qd)⇒ ϕ

As expected, we got:

∆1(qd, qf1) ∧∆2(qd, qf2) = ⊤

4.2 The verification function V

Now, we consider ϕ, a Lean-formula, and t→ qt a run.
As we want to prove that states define the correct truth assignment, we

build a function V to check, truth assignments by passing through, at most,
k modalities.

Definition 14. We define V like this :

• If k = 0 then V(ϕ,
d

t
a b

, 0) = (Φc(qt)⇒ ϕ)

• If ϕ = ⊤ then V(ϕ, •, •) = ϕ = ⊤

• If ϕ ∈ A ∪ B formula then V(ϕ, T , •) = ϕ ∈ qt

• V(ϕ1 ∨ ϕ2, T , k + 1) = V(ϕ1, T , k + 1) ∨ V(ϕ2, T , k + 1)

• V(ϕ1 ∧ ϕ2, T , k + 1) = V(ϕ1, T , k + 1) ∧ V(ϕ2, T , k + 1)

• V(¬ϕ, T , k + 1) = ¬V(ϕ, T , k + 1)

• V(〈a〉ϕ, T , k + 1) =

{

V(ϕ, T 〈a〉 , k) if T 〈a〉 ∈ qt
⊥ if ¬T 〈a〉 ∈ qt

•
V(µXi = ϕi in ψ, T , k + 1) = V(exp(µXi = ϕi in ϕi), T , k + 1)

= V(ϕ[Xi/µXi=ϕi in ϕi]
, T , k + 1)

.

Remark 6. V is defined by induction on k, next on the set of modality-free
variables, next on the size of the formula.

Because V is defined recursively we can make proofs by induction on it.

8

Lemma 3. At ϕ and T constant, the function k → V(ϕ, T , k) is constant.

Proof. We prove that V(ϕ, T , k) = V(ϕ, T , 0) by induction on k, next on the
set of modality-free variables and finally on the size of the formulas.

The base case k = 0 is immediate.

Consider k, ϕ, T =
d

t
a b

• if ϕ is a context formula then V does not depend on k.

• if ϕ = ϕ1 ∧ ϕ2, ϕ = ϕ1 ∨ ϕ2 or ϕ = ¬ϕ′. Only the size of formulas
changes (and decreases), the result holds by induction.

• if ϕ = 〈a〉ψ, we have

V(〈a〉ψ, T , k + 1) = V(ψ, T 〈a〉 , k) = V(ψ, T 〈a〉 , 0) = V(〈a〉ψ, T , 1)

but by definition of ∆a we have

V(ψ, T 〈a〉 , 0)⇔ 〈a〉ψ ∈ qt

and by definition of V we have

〈a〉ψ ∈ qt ⇔ V(〈a〉ψ, T , 0)

Finally we have

V(〈a〉ψ, T , k + 1) = V(〈a〉ψ, T , 0)

• if ϕ = µXi = ϕi in ξ then Xi cannot appear with modality in ξ so
the set of modality-free variables decrease and we have the result by
induction.

Remark 7. As k does not play a role in the definition of V we can refer to
V(ϕ, T , k) as V(ϕ, T).

9

4.3 Equivalence between V and JϕK

Lemma 4. For every focused tree and every Lean-formula ϕ we have V(ϕ,
T)⇔ T ∈ JϕK.

Proof. Let k be such that k > n(ϕ, T). That means it does not exist any
valid modality paths p from P(u) where u is an unfolding of ϕ and p is of
size k.

We now show that V(ϕ, T) = V(ϕ, T , k) = (T ∈ JϕK) for k ≥ n(ϕ, T) by
induction on the order used to define V .

• if ϕ is a context formula then clearly V(ϕ, T , k) = T ∈ JϕK.

• if ϕ = ϕ1 ∧ ϕ2, because V(ϕ, T , k) = V(ϕ1, T , k) ∧ V(ϕ2, T , k) and
Jϕ1 ∧ ϕ2K = Jϕ1K ∩ Jϕ2K we have by induction V(ϕ, T , k) = (T ∈
JϕK). We have the induction property for k, because any path of any
unfolding of ϕ1 or ϕ2 is a path for an unfolding of ϕ.

• ϕ = ϕ1 ∨ ϕ2 or ϕ = ¬ϕ′ it is the same.

• if ϕ = 〈a〉ψ. If T 〈a〉 then we have V(ϕ, T , k+1) = V(ψ, T 〈a〉 , k) and
V(ψ, 〈a〉 T , k) = T 〈a〉 ∈ JψK = T 〈a〉 〈ā〉 ∈ JϕK = T ∈ JϕK. If ¬T 〈a〉
then V(ϕ, T , k + 1) = ⊥ and T 6∈ J〈a〉ϕK = {T 〈ā〉 /T ∈ JϕK} so we
always have V(ϕ, T , k+1) = T ∈ JϕK. We have the induction property
for k, because any path of any unfolding of ψ of size k is a path for an
unfolding of ϕ of size k + 1.

• if ϕ = µXi = ϕi in ψ then V(ϕ, T , k) = V(exp(µXi = ϕi in ψ), T , k) =
T ∈ Jexp(µXi = ϕi in ψ)K = T ∈ JϕK. We have the induction property
for k, because any path of any unfolding of exp(µXi = ϕi in ψ) is a
path for an unfolding of ϕ.

Lemma 5. A tree is accepted by the automaton made for the formula ψ iff
this tree respect ψ.

Proof. Given a tree T , it exists a run on T , by definition of Qf the run is
accepted iff we have V(µX = ξ∨〈1〉X ∨〈2〉X in X ∧¬ 〈1̄〉⊤∧¬ 〈2̄〉⊤, T , 0)
iff T ∈ JµX = ξ ∨ 〈1〉X ∨ 〈2〉X in X ∧ ¬ 〈1̄〉⊤ ∧ ¬ 〈2̄〉⊤K.

10

5 Containment of Path Formulas

Attributes from B are needed for translating XPath formulas with XML at-
tributes. But, in the context of XPath, they can also be useful to describe
where the context of the evaluation started and stating intersection, contain-
ment, union of path formulas like:

self::a/descendant::b ∩ self::b/descendant::b = ∅. (1)

5.1 Query Automata

The idea of using query automata to recognize the sets of solution for CXpath
formulas was already in [2]. It is easy to adapt the above construction to build
a query automaton. For instance, we could state that the set of accepting
states that would be {s ∈ Q|Φc(s) ⇒ ξ}. Here we will introduce a more
powerful tool: the binary relation automaton.

5.2 Binary relation over binary tree with automata

Definition 15. Let L be a regular tree language over an alphabet A×{0, 1}2,
T a binary tree, l a function labeling T with the alphabet A.

If a is a function labeling T with the alphabet {0, 1}2, we say that a is
an annotation. For an annotation we define a function labeling T with A×
{0, 1}2 by la(n) = (l(n), a(n))

For any annotation a, such that T labeled by la is in L, we ensure that it
exists x and y with either y = x ∧ a(x) = (1, 1) and z 6= x ⇒ a(z) = (0, 0)
or with a(x) = (1, 0), a(y) = (0, 1) and ∀z, z 6= y ∧ z 6= x ⇒ a(z) = (0, 0).
Given a x and a y there is only one annotation satisfying those requirements
so we can write a(x,y).

Because checking that an annotation is of the form a(x,y) - ie the annota-
tion that has on each coordinate one node with a 1 - can be done by a regular
tree language, we can suppose there are only annotation a of this form that
produces la in L.
RT is the binary relation over the nodes of T defined like this by xRTy

iff T labeled by la(x,y) is in L.

Proposition 1. Given a tree T ,and a labeling l, suppose we have L1 defining
a relation RT,1 and L2 defining RT,2 then L1 ∩ L2 define xRTy ⇔ xRT,1y ∧
xRT,2y.

11

Proof. Let x and y be two nodes. We have xRy iff T labeled with la(x,y) is
in L1 ∩ L2 iff T labeled with la(x,y) is in L1 and T labeled with la(x,y) is in L2

iff xR1y and xR2y.

Proposition 2. Given a tree T ,and a labeling l, suppose we have L1 defining
a relation RT,1 and L2 defining RT,2 then L1 ∪ L2 define xRTy ⇔ xRT,1y ∨
xRT,2y.

Proposition 3. Given a tree T ,and a labeling l, suppose we have L defining
a relation R then L̄ define ¬xRTy.

5.3 Nominals

To make use of binary relation with automata it might be useful to have
attributes for which we are sure they are only present once in the tree. The
most easiest way is to add to the formula. To ensure that the attribute c is
present only one in the formula, we write :

¬µX = 〈1〉 (X∨c)∨〈2〉 (X∨c) in X∧¬µX = 〈1̄〉 (X∨c)∨〈2̄〉 (X∨c) in X∧c

An attributes for which we made sure it was unique can be called a
nominal.

5.4 Methodology

We consider ϕ = context∧〈1〉 (µX = (a∧〈2〉 (select∧b))∨〈2〉X in X) where
a and b are labels and context and select are attributes. ϕ selects all trees
where a node with the attribute context has a child a who has a brother
b with an attribute select. If we ensure context and select are nominals
then this correspond to the XPath query child::a/following-sibling::b.
The test the containment of this query into ψ = context ∧ 〈1〉 (µX =
(a ∧ select) ∨ 〈2〉X in X) ∨ 〈1〉 (µX = b ∨ 〈2〉X in X) corresponding to
self::*[child::b]/child::a can be done by building the automata for ϕ
and ¬ψ, make the intersection of the two and then test the emptiness. The
automaton will also permit to give counter-example.

5.5 Translation of XPath to formula with context and

select nominals

In order to define XPath into path automata we need to add the attributes
context and select. Context was already introduced in [3] but it was not a

12

nominal. Once the formula is translated with a context into ϕ then to add
select we just use the formula ϕ ∧ @select. Then we make @context and
@select nominals and plunge the formula.

6 Practical Algorithm

The practical algorithm does not build the exact automaton describe above
but an equivalent one. A state is not a type but a set of type, this leads
to memory efficiency and speed improvement because many types share the
same kind of children. We often perform determinization of the automata
we build because deterministic automata have a minimal form that is, in
general very compact. (In the tests, all minimal deterministic representation
of automata were smaller than the automata that would have been built with
the above description, despite a theoretical exponential blow-up).

Algorithm 1 BUILD

Input: S a set of types
Output: The name of the state created
1: Memoize S
2: name← newname()
3: for all t ∈ S do

4: left← BUILD(SUCCS(j, left))
5: right← BUILD(SUCCS(k, right))
6: rules← rules ∪ { L(i)

left right

→ name}

7: end for

8: return name

7 Results and Conclusion

The implementation of tree automata was first a naive translation of their
pseudo-code in Java. Because it was too slow to be useful some parts of
the code were rewritten to improve speed. As explained in [5], a much bet-
ter representation can be chosen for the automata, leading to great speed
improvements and more memory efficiency. But, even without a complex
representation of automata, rewriting the automata management with a pre-
cise control over the memory used and a simple profiling of the code can lead
to, at least, a gain of a factor 5 in speed and in memory footprint. Because

13

Algorithm 2 SUCCS

Input: t a type, side ∈ {left, right}
Output: S the set of types compatible with t on the side side
1: repr = t ∩ USEFULLFOR(side)
2: Memoize (repr, side)
3: res = Fixpoint
4: for all ϕ ∈ Lean do

5: if ϕ = 〈side〉ψ ∈ t or (ψ = ¯〈side〉ϕ and ϕ ∈ t) then
6: res← {e ∈ res, ψ ∈ e}
7: else

8: res← {e ∈ res, ψ /∈ e}
9: end if

10: end for

11: return BUILD(res)

the other part of the code is very well optimized, in small test cases the old
algorithm is faster, but, in large test cases the algorithm using automata
out-powers the old one.

select("*[not (ancestor::*/descendant::b[ancestor::i])]")

select("*[not (ancestor::*/descendant::img[not (ancestor::body)])]")

select("*[not (ancestor::*/descendant::img[not (parent::p)])]")

select("*[not (ancestor::*/descendant::p[parent::a])]")

select("*[not (ancestor::*/descendant::b[ancestor::i])]")

select("*[not (ancestor::*/descendant::img[parent::p])]")

select("*[not (ancestor::*/descendant::img[*])]")

select("*[not (ancestor::*/descendant::a[ancestor::a])]")

select("*[not (ancestor::*/descendant::div[parent::b])]")

select("*[not (ancestor::*/descendant::h1[ancestor::h2])]")

Figure 1: Sample Formulas.

For these reasons a complete comparison of the two algorithm is not
necessary nor useful. But, for example, with the xhtml DTD, applying all
the XPath expressions of Figure 1 is done by the algorithm in 30s whereas
the old XML logic solver was suspended after several hours of calculation.

14

References

[1] Initial proposal submission of the ANR project TYPEX, ANR-11-BS02-
007., 2012.

[2] Nadime Francis, Claire David, and Leonid Libkin. A Direct Translation
from XPath to Nondeterministic Automata. In 5th Alberto Mendelzon
International Workshop on Foundations of Data Management, 2011.

[3] Pierre Genevès, Nabil Layäıda, and Alan Schmitt. Efficient static analysis
of XML paths and types. SIGPLAN Not., 42:342–351, June 2007.

[4] Nils Gesbert, Pierre Genevès, and Nabil Layäıda. A Logical Approach To
Deciding Semantic Subtyping - Supporting function, intersection, nega-
tion, and polymorphic types. July 2013.

[5] Hendrik Maryns and Universität Tübingen. On the implementation of
tree automata: Limitations of the naive approach. In In Proc. 5th Int.
Treebanks and Linguistic Theories Conference (TLT 2006, pages 235–246,
2006.

15

