
UNIVERSITÀ DEGLI STUDI DI GENOVA
Scuola di scienze matematiche, �siche e naturali
Dipartimento di informatica, bioingegneria, robotica

e ingegneria dei sistemi
Corso di laurea magistrale in informatica

A set-theoretic type system
for polymorphic variants in��

Candidato Tommaso Petrucciani

Relatori Prof. Giuseppe Castagna
Prof. Elena Zucca
Prof. Davide Ancona

Correlatore Prof. Eugenio Moggi

Anno accademico ����–����

Contents

� ������������ �

� ����������� �������� �� ����� �
�.� �e �� language family and OCaml �
�.� Polymorphic variants �
�.� Shortcomings of OCaml and proposed extensions ��

� � �������� ��� �� ���� �������� ��
�.� Syntax ��
�.� Semantics ��
�.� Type system ��
�.� Variants in other models and in OCaml ��

� �������� ���� ���-��������� ����� ��
�.� Types and subtyping ��
�.� Type system ��
�.� Comparison with other systems ��

� �������������� ��� ���-��������� ����� ��
�.� Restriction of the type system ��
�.� Reconstruction without let-polymorphism ��
�.� Adding let-polymorphism ��

� ���������� ��� ���������� ��
�.� Overloaded functions ��
�.� Re�ning the type of a matched expression ��
�.� Applicability to OCaml ��

� ����������� ��

A ������ ��
A.� A calculus for �� with variants ��
A.� Variants with set-theoretic types ��
A.� Reconstruction for set-theoretic types ���

���������� ���

iii

� Introduction

�is thesis investigates the application of the theory of set-theoretic types
and semantic subtyping to the design of a type system for polymorphic
variants – a feature of the OCaml programming language, studied in general
for languages of the �� family. We develop a type system employing set-
theoretic types, and we give new results on type reconstruction for such
systems. We argue the system is well-suited to typing polymorphic variants
and compares favourably to the one currently used in OCaml.

Type systems and semantic subtyping

Static type systems are powerful tools to help ensure the correctness of
programs with respect to their speci�cation. �ey consist in a system of
rules assigning types to constructs in a program; these types are in a sense
abstractions of the concrete data manipulated by the program at run-time
(intuitively, we can see types as sets of concrete values).

In a sound static type system, the rules ensure that a well-typed program –
one we can assign a type to – will satisfy properties that guarantee some kinds
of errors will not occur. �e downside is that a sound system necessarily
rejects some programs which are type-safe – that is, which will not cause
errors in practice – together with all the unsafe ones. An e�ective type system
allows the programmer to encode many correctness properties into types,
making well-typed programs provide stronger guarantees. It must also be
�exible enough, lest programming become overly cumbersome.

�is �exibility partly depends on polymorphism – the possibility of writing
code that can work on data of di�erent types – which allows us to write
reusable code.�ere exist three main forms of polymorphism:

• parametric polymorphism, which allows us to write code generically
and have it work on every type uniformly;

• ad-hoc polymorphism, which allows us to write code that can work on a
few di�erent types, possibly acting di�erently on each (e.g. overloading
in many languages);

�e work reported in this thesis has been done during a six-month traineeship at Labora-
toire Preuves, Programmes et Systèmes of Université Paris Diderot, under the supervision
of Giuseppe Castagna and Kim Nguy�n.�e stay has been funded by an Erasmus+ grant.

�

� Introduction

• subtyping, where expressions may have many types organized in a hier-
archy of more speci�c and more general types.

Another factor which can make programming in statically-typed lan-
guages cumbersome is that the programmer must o�en write annotations to
guide the type-checker.�is can be avoided if a language features type infer-
ence or type reconstruction: the capability of inferring type information that
is not explicitly speci�ed. However, increasing the sophistication of a type
system may make reconstruction undecidable and hence make annotations
necessary, at least to some extent.

�������� ��������� In type systems with subtyping, there exists
a subtyping relation between types that organizes them in hierarchy. We
say this relation is semantic when it is de�ned from a semantic model, as
opposed to being de�ned axiomatically by inductive or co-inductive rules:
a semantic subtyping relation is derived by interpreting types as sets and
seeing subtyping as set containment (Frisch, Castagna, and Benzaken, ����).
Such a semantic de�nition yields subtyping with an intuitive behaviour in
the presence of set-theoretic type connectives, such as union and intersection
types, when it can be di�cult for axiomatic rules to be expressive enough.

Systems with semantic subtyping have �rst been studied in the context of
typing transformations of ��� documents, where they have been applied
in the XDuce language (Hosoya and Pierce, ����). We base our system
on later work which extends semantic subtyping to systems with higher-
order functions and parametric polymorphism (Castagna and Xu, ����).�e
CDuce programming language implements this system (Benzaken, Castagna,
and Frisch, ����); it is particularly optimized for ��� processing, but is in
fact a general-purpose functional language.
Such systems have proven to be extremely �exible and expressive, as re-

quired by their original goal of typing semi-structured data precisely.�ey
have also been applied to the design of type systems for NoSQL query lan-
guages (Benzaken, Castagna, Nguy�n, and Siméon, ����).

Motivations

Polymorphic variants are a useful feature of OCaml that balances static safety
and opportunities for code reuse with a remarkable conciseness.�ey o�er
a more �exible alternative to the ordinary variant types (or algebraic sum
data types) of languages of the �� family. Essentially, polymorphic variants
introduce a sort of subtyping whereby di�erent variant types may share some
cases.

In OCaml, they are typed with a form of parametric polymorphism called
structural polymorphism (Garrigue, ����), which superimposes a system of
kinding constraints over the Hindley-Milner type system.�is is used, in a

�

� Introduction

sense, to simulate subtyping without actually introducing it in the system. In
general, the current system reuses the�� type system – including uni�cation
for type reconstruction – as much as possible.

We argue that using a di�erent system, one that departs more signi�cantly
from ��, can be advantageous. In the current system, while constraints are
somewhat separated from the rest (which is why uni�cation and reconstruc-
tion can be extended to them), they still introduce signi�cant complexity.
Furthermore, structural polymorphism lacks some of the �exibility o�ered
by a system with true subtyping, and it can result in unintuitive behaviour.

Contributions

�e main contribution of this thesis is the de�nition of a type system for a
fragment of �� including polymorphic variants. Our system employs a rich
language of types, including set-theoretic type connectives, and features a
subtyping relation which is de�ned semantically.

�e system is based on earlier work for the polymorphic CDuce language,
with some changes and restrictions. Notably, it does not allow typing over-
loaded functions with intersection types, and hence it removes ad-hoc poly-
morphism (we reintroduce it in an extension). We also disallow type-cases
on functional types, a feature of CDuce which is unnecessary in our setting
and, in general, of signi�cant complexity and dubious utility in practice.
In our opinion, this system compares favourably to that used in OCaml.

Firstly, it is more expressive: not only can it type every program the OCaml
type system can type, but it can also type some useful type-safe programs that
OCaml fails to type. Secondly, it is arguably more intuitive: we can express
muchmore information at the level of types, whichmeans we can do without
the system of kinding constraints.�is is made possible especially by the
presence of set-theoretic type connectives: they allow us to encode bounded
quanti�cation – which is introduced in OCaml by structural polymorphism
– without having to add it to the system.

Our system also models pattern matching precisely and quite intuitively.
We can describe exhaustiveness and non-redundancy checking as subtype
checking, whereas in OCaml they cannot be de�ned at the level of types.

We �rst give a deductive, non-syntax-directed presentation of the system;
we can derive a typing algorithm if we assume functions to be annotated with
their types. We then study type reconstruction with the aim of avoiding the
need for these annotations. We build on earlier work by Castagna, Nguy�n,
Xu, and Abate (����), de�ning sound and complete reconstruction for a
restriction of the system without let-polymorphism.�is is possible because
we have restricted the use of intersection types, as reconstruction would
be undecidable if we admitted their use to type functions. A�erwards, we
extend reconstruction to the full system with let-polymorphism and prove
its soundness (but not its completeness). Our work on type reconstruction

�

� Introduction

is motivated by the practical application of this thesis, but also contributes
to the study of reconstruction for set-theoretic type systems in general.

We discuss three variations on our system at the end of this thesis. Among
them, we describe a re�nement of the typing of pattern matching which is
also applicable to CDuce and has been included in its development version.

Outline

Chapter � introduces the �� language family and OCaml in particular. It de-
scribes polymorphic variants as they are implemented in OCaml, including
their issues and limitations; it presents the motivating examples of our work.

In Chapters � and �, we describe two type systems for polymorphic vari-
ants. Chapter � presents the syntax, semantics, and type system that we take
as our model of OCaml. It is adapted and extended somewhat with respect
to published material; in particular, we formalize full pattern matching for
concreteness, while other treatments use a restricted form.
Chapter � presents the system with set-theoretic types. We compare it

with the system of Chapter � to show it can type any program that system
can type. In this chapter, we give a deductive presentation of the system.

In Chapter �, we study reconstruction for the set-theoretic type system of
the previous chapter. We �rst remove let-polymorphism and de�ne a sound
and complete type reconstruction system for this simpler setting; then, we
extend the system to allow let-polymorphism and prove its soundness.
In Chapter �, we discuss three extensions and variations of the system:

the addition of overloaded function, a re�nement in the typing of pattern
matching, and a restriction which solves a discrepancy between our model
and OCaml (the lack of type tagging at run-time in the implementation).

Finally, in Chapter � we conclude by summarizing our work and pointing
out some directions for future research.

�

� Polymorphic variants in OCaml

�is chapter introduces polymorphic variants, the programming language
feature we will study in the rest of this work. In particular, we consider
their implementation in the OCaml language. We begin by introducing the
language and the �� family in general; then, we describe the purpose of
polymorphic variants and present their semantics and typing in OCaml
informally. In the next chapter, we will formalize these notions, to compare
them later with our work.
At the end of this chapter, we list some aspects of the current system

which can arguably be thought unintuitive or restrictive, and we provide
the motivating examples of our work: functions that are type-safe but are
ill-typed in OCaml or are given overly restrictive types.

� .� ��� �� �������� ������ ��� �����

�� was originally the name of a programming language designed in the
����s at the University of Edinburgh (Gordon, Milner, and Wadsworth,
����). It has proved extremely in�uential, and its name is o�en used to refer
to a family of languages related to it – among which OCaml – and to the
type system they employ. �� uses call-by-value evaluation; it includes �rst-
class functions and other features of functional languages, but also allows
side-e�ects and mutability. It is statically typed and features type inference.

���� ������ �� employs the Hindley-Milner type system (Damas and
Milner, ����), which extends the simply-typed λ-calculus with a form of
parametric polymorphism called let-polymorphism. �is is restricted in
power with respect to the polymorphism of System F (Girard, ����). As
a consequence, type reconstruction for �� is decidable and can be made
e�cient in practice; hence, programmers need not write types explicitly.
Let-polymorphism distinguishes types from polymorphic type schemes,

which represent families of types of a given form. For instance, the scheme∀α. α → α represents all types of the form t → t, like int → int; these are
exactly all the types we can assign to the identity function λx .x (∀α. α → α
is its principal type scheme).

Variables bound by λ-abstractions in a program, like function arguments,
can only be assigned types and not type schemes. �is means that the ar-

�

� Polymorphic variants in OCaml

gument of a function cannot be used with multiple di�erent types in the
function body. Conversely, variables introduced by let declarations can be
given type schemes. For example, the application

(λi . (i true, i �)) (λx .x)
which would yield (true, �), is ill-typed; we can rewrite it as

let i = λx .x in (i true, i �)
which is well-typed: i is introduced by a let, so it can be given the type scheme∀α. α → α and thus be used with both types bool→ bool and int→ int.

����� OCaml (or Objective Caml; Leroy, ����) is a dialect of the�� lan-
guage which addsmany additional features.�ese include objects and classes,
a sophisticated module system including �rst-class modules, polymorphic
variants, generalized algebraic data types (����s), and many others.

�ese features complicate the type system signi�cantly. However, OCaml
still features extensive type inference andminimizes the need for annotations.

Variants and pattern matching

Variant types – elsewhere called algebraic sum data types or discriminated
unions – are a useful feature of ��-derived languages. We use them to de�ne
various data structures, from simple enumerations to inductively-de�ned
data such as lists or trees.

In general, each value of a given variant type falls into one of a �nite num-
ber of di�erent cases, identi�ed by tags or labels, and may carry additional
information beside the tag itself. We must declare variant types explicitly
by giving a set of tags and the type of argument associated to each tag. For
instance, the type

type t = A of bool | B of int

is the discriminated union of bool and int: its values are booleans tagged by
A (A true and A false) or integers tagged by B (e.g. B � or B ��).

Variants where tags have no argument type attached ful�l the role of the
enumerated types of other languages.�ose with arguments correspond to
hierarchies of an interface and several concrete classes in Java-like languages.
Variant types can be recursive, so we can de�ne inductive structures

with them.�ey can also be polymorphic: we can use type variables in the
arguments to de�ne families of types. �e following declaration de�nes
binary trees where the leaves store values of type α.¹

� We do some pretty-printing of OCaml code throughout; for instance, we use Greek
letters for type variables while OCaml uses ’a, ’b, ’c, Wemark with � lines showing
types or error messages printed by the OCaml top-level interpreter.

�

�.� Polymorphic variants

type α tree = Leaf of α | Node of α tree ∗ α tree

Lists in OCaml are de�ned analogously, though there is some syntactic
sugar so we can write literal lists as [] or [�; �; �].
We build expressions of variant types by writing a tag followed by an

expression of the appropriate type for each argument: for example, Int (� + �)
or Node (Leaf �, Leaf �). We deconstruct them by pattern matching, which is a
fundamental feature of languages of the �� family.

We use pattern matching to select di�erent branches of execution depend-
ing on the shape of a value; we can also extract sub-terms of the value and
bind them to variables. For instance, the recursive function

let rec sum tr = match tr with Leaf x→ x | Node (tr�, tr�)→ sum tr� + sum tr�� int tree→ int

is de�ned on binary trees with integer leaves and computes the sum of
all values in the leaves. Patterns can be nested to examine values in depth.
Matching also subsumes the let construct: it allows us to extract polymorphic
values from structures. For example, the following code is well-typed.

match ((fun x→ x), �) with (i, n)→ (i n, i true)

OCaml issues a warning if a de�nition given by pattern matching does not
cover all possible cases (an exhaustiveness check) or contains useless branches
which will never be selected (a non-redundancy check).�e function

let g n = match n with �→ "zero" | �→ "one" | �→ "two" | �→ "One"

triggers both warnings. It is de�ned only on three integers, but this cannot
be expressed in its type (it is given type int→ string), so the type system will
assume it can be applied to any integer: the warning states it will raise an
error if applied to, for instance, �. Furthermore, the last branch is useless:
patterns are checked in order, so the second occurrence of a repeated pattern
is never selected.
Non-exhaustiveness warnings are crucial since they indicate situations

that can lead to run-time exceptions (indeed, it is o�en advised to treat
them as errors); they also aid in updating code to deal with changed data
structures. Redundancy warnings also point out likely errors.

� .� ����������� ��������

Polymorphic variants have been studied as a more �exible alternative to
ordinary variants, giving greater possibilities for code reuse.�ey have been
implemented �rst in the Objective Label compiler and then integrated into
OCaml from version �.�.

Garrigue (����) describes polymorphic variants, though not in their very
�nal implementation; some aspects concerning the reconstruction of pattern

�

� Polymorphic variants in OCaml

matching are discussed in Garrigue (����). Garrigue (����) presents a
detailed example of the possibilities of code reuse they o�er.

Limitations of ordinary variants

Variant types must be declared before they are used by listing the set of
cases, each with its tag and its argument type.�is is in contrast to product
types, for instance: a pair such as (�, �) is given type int ∗ int, without having
to declare this type.
While type declarations are useful for documentation, leaving them out

is more concise and can still be clear as long as the type is only used in a
small portion of the program. For example, two-value enumerations with
meaningful names can be a more readable alternative to booleans (e.g. we
can use Case_sensitive and Case_insensitive for a string comparison function).
If we can omit declarations – as polymorphic variants allow – they can also
be as concise.

A more signi�cant limitation of variants is that di�erent variant tags may
not share cases. Consider the use of variant types to represent the grammar of
expressions of a language. We might need di�erent versions of the grammar,
with more or fewer productions, to represent both the external language
including syntactic sugar and internal ones manipulated during compilation.
Presumably, these grammars will share productions.

Using a version of OCaml earlier than �.��, the programmer would have to
declare multiple types using di�erent tag names, even for the common cases.
Newer versions allow us to reuse the same tag. However, this is just a disam-
biguation performed by the compiler behind the scenes: di�erent variant
types are still distinct. For example, assume we have these two declarations.

type a = A of int | B of bool
type b = A of int | B of bool | C

�e types share two tags: in a sense, we would say that a is a subtype of b,
since every case of a is also a case of b. However, the two types are actually
unrelated. A function like

let f = function A n→ n >= � | B b→b | C→ true� b→bool

cannot be applied to an argument of type a, though it covers both the required
cases.

Polymorphic variants allow a value to be used with multiple types which
share that case (tag and argument type) but not necessarily other cases.�is
introduces a form of subtyping: for example, we can write code that works
on some cases and reuse it for a type that only has a subset of them.
A related issue is that variant tags declared inside a module must be

referred to by qualifying them with the module name. If the declaration of

�

�.� Polymorphic variants

type a above were in a module M, we would have to write M.A � instead of
A �, for instance.�is is done to minimize con�icts caused by sharing tags;
however it makes using variants declared in modules more cumbersome.
With polymorphic variants, we need not qualify tags in this manner.

Syntax and semantics

�e syntax and semantics of polymorphic variants are like those of ordinary
ones. �e only di�erence is that, since tags are not declared beforehand,
we pre�x them with a backquote to distinguish them from identi�ers: for
example, ‵A (� + �). We deconstruct polymorphic variant values by pattern
matching, as for ordinary variants. For instance,

match ‵A (� + �) with ‵A x→ x | ‵B→ �

yields �. As for ordinary variants, polymorphic ones can also be without argu-
ment, like ‵B. Tuples can be used to write variants with multiple arguments,
as in ‵C (�, �).

A �rst look at the type system

Since we do not declare types, OCaml must generate them whenever we
write a polymorphic variant expressions.�e types it generates list the tags
which may appear, together with their argument types.
‵A �� [> ‵A of int]

�e > symbol means this type is compatible with types that have other
tags. If we combine variant expressions with di�erent tags, we get a type with
multiple cases. Conversely, we may not combine in a type variants with the
same tag unless the argument type is the same as well: this ensures the type
of a variant argument can be predicted from its tag.

[‵A �; ‵B true]� [> ‵A of int | ‵B of bool] list
[‵A �; ‵A true]� Error: This expression has type bool but an expression was expected of type int

Variables bound to variant values by let-declarations may also be assigned
di�erent types to combine them with di�erent tags.

let x = ‵A � in (x, [x; ‵B true])� [> ‵A of int] ∗ [> ‵A of int | ‵B of bool] list

Functions de�ned by pattern matching have domain types with the <
symbol, meaning they can be applied to arguments of a type with fewer cases

�

� Polymorphic variants in OCaml

than those listed by pattern matching, not more. For instance,

let f = function ‵A→ true | ‵B→ false� [< ‵A | ‵B]→bool

can be applied to variant types including at most the two cases ‵A and ‵B,
both without arguments. We get types marked by > for functions de�ned on
variants with any tag (e.g. when pattern matching includes a default case _).

let g = function ‵A|‵B→ true | _→ false� [> ‵A | ‵B]→bool

If variant types with < are combined, we only keep the common cases.�is
occurs if we apply multiple functions to the same argument. For example, in

let h� = function ‵A|‵B→ true | ‵C→ false� h� : [< ‵A | ‵B | ‵C]→bool
let h� = function ‵A|‵B→ true | ‵D→ false� h� : [< ‵A | ‵B | ‵D]→bool
let h� x = (h� x, h� x)� h� : [< ‵A | ‵B]→bool ∗bool

we de�ne two functions which cover three tags each; h� can only be applied
to the two tags in common.

Delving deeper

�e variant types we have shown in the examples above are actually type
variables with constraints – called their kinds – attached. Variant expressions
may be assigned multiple types by a mechanism called structural polymorph-
ism, which is like the usual polymorphism of �� except for the addition of
these constraints.

For example, the type of ‵A � is actually some variable α, and [> ‵A of int] is
the kind of α. OCaml omits the variable and just prints the kind unless the
name is relevant (for instance, if the variable appears elsewhere in a type).
We have seen that ‵A � can be assigned di�erent types – more precisely,

type variables with di�erent kinds – like [> ‵A of int] or [> ‵A of int | B of bool].
�is is because there is an entailment relation between kinds, and we can use
any variable whose kind entails [> ‵A of int] to type ‵A �.

�ere are also kinds with < constraints or with both forms.�e latter are
most o�en (but not exclusively) used ‘internally’ to type applications.
If we bind a variable to a variant expression using a let-declaration, we

can then use the variable with any type whose kind entails the kind of the
original expression. In

let x = ‵A � in ([x; ‵B true], [x; ‵B �])� [> ‵A of int | ‵B of bool] list ∗ [> ‵A of int | ‵B of int] list

��

�.� Polymorphic variants

‵A � is given the type ‘[> ‵A of int] as α’; then the type variable α is generalized
and it is instantiated once to a variable of kind [> ‵A of int | ‵B of bool] and
once to one of kind [> ‵A of int | ‵B of int].
Unlike types assigned to variables by let, those assigned to λ-abstracted

variables cannot be generalized to polymorphic type schemes.�erefore, if
we rewrite the code above without using let, it is rejected.

(fun x→ ([x; ‵B true], [x; ‵B �])) (‵A �)� Error: This expression has type int but an expression was expected of type bool

We conclude this overview by discussing two particular points.

������� �������������� �e typing of variants is a formof bounded
quanti�cation: when we quantify type variables we record their kinds, which
then constrain how the variables can be instantiated.

When a type variable appears in both the domain and the codomain of a
function type, the kind on its argument is thus propagated to its result, giving
us precise static information. For example, consider an identity function on‵A and ‵B de�ned as follows.

let id x = match x with ‵A|‵B→ x� ([< ‵A | ‵B] as α)→ α

�e kind [< ‵A | ‵B] bounds the types we can apply id to; intuitively we have
the bounded-polymorphic type scheme ∀α ≤ [‵A | ‵B]. α → α. When we
apply id, this kind is combined with the kind of the argument to determine
that of the result. If we apply id to ‵A, we know statically that the result will
itself be ‵A, which makes the following well-typed.

let f = function ‵A→ true� [< ‵A]→bool
f (id ‵A)� bool

On the contrary, an identity function de�nedwithout this sharing of variables
does not allow the last application.

let id� x = match x with ‵A→ ‵A | ‵B→ ‵B� [< ‵A | ‵B]→ [> ‵A | ‵B]
(function ‵A→ true) (id� ‵A)� Error: This expression has type [> ‵A | ‵B]
but an expression was expected of type [< ‵A]
The second variant type does not allow tag(s) ‵B

�e type of id� corresponds intuitively to the bounded-polymorphic type
scheme ∀α ≤ [‵A | ‵B], β ≥ [‵A | ‵B]. α → β: �xing the instantiation of α does
not give us any information on that of β.

However, the restrictions of let-polymorphism can make functions like id
impractical, as we will see later.

��

� Polymorphic variants in OCaml

����������� ����� Conjunctive types are a somewhat technical fea-
ture introduced to ensure that type inference reconstructs principal types
(as discussed in Garrigue, ����). When we combine kinds with < constraints
and these kinds have a tag in common, but with di�erent argument types,
we get a conjunctive type.

let f� = function ‵A n→ n + � | ‵B→ �� [< ‵A of int | ‵B]→ int
let f� = function ‵A b→ not b | ‵B→ false� [< ‵A of bool | ‵B]→bool
let f� x = (f� x, f� x)� [< ‵A of bool & int | ‵B]→ int ∗bool
�e function f� is given the arguably unintuitive type above, stating it can

be applied to a ‵B or to an ‵Awhose argument is both a boolean and an integer.
Since this is impossible, a more intuitive type would be [< ‵B]→ int ∗bool.
�e types behave alike in practice, but they are considered distinct.

� .� ������������ �� ����� ��� �������� ����������

We point out a few limitations of the type system used in OCaml and a few
areas in which our set-theoretic system will provide greater expressiveness.

���� �� ������������ As we have said, variant polymorphism is
handled via the instantiation of type variables. It is therefore limited by
the restrictions �� imposes on parametric polymorphism in order to have
complete type reconstruction: function arguments must be monomorphic.

In our type system, we use subtyping to describe variant polymorphism.
We no longer lose polymorphism, in the sense that expressions of a variant
type, even if they are function arguments, can always be combined with
variants with tags di�erent from their own.�e following expressions will
both be well-typed in our system, while only the former is in ��.

let x = ‵A � in ([x; ‵B true], [x; ‵B �])
(fun x→ ([x; ‵B true], [x; ‵B �])) (‵A �)

�is makes functions like id, above, more useful. In OCaml, as soon as we
combine constraints we lose polymorphism. For example,

[id ‵A; ‵C]� Error: This expression has type [> ‵C]
but an expression was expected of type [< ‵A | ‵B > ‵A]
The second variant type does not allow tag(s) ‵C

is ill-typed, while [‵A; ‵C] is well-typed (with type [> ‵A | ‵C] list).
We canmake this well-typedwith a subtyping coercion, but wemust specify

explicitly which tags we want to combine the result of id ‵A with.

��

�.� Shortcomings of OCaml and proposed extensions

[(id ‵A :> [‵A | ‵C]); ‵C]� [‵A | ‵C] list

�e result type is [‵A | ‵C] list, which cannot be combined with other tags
unless we use another coercion (it stands for [< ‵A | ‵C > ‵A | ‵C]). We cannot
use coercions to obtain an open type like [> ‵A | ‵C].

We move to a system with subtyping, where subsumption can be applied
to add new cases at any time (essentially making the coercion above implicit).

Another case in which OCaml produces functions whose results are insuf-
�ciently polymorphic is when we include a default case in pattern matching.
For instance, the function

let id� = function ‵A→ ‵A | x→ x� ([> ‵A] as α)→ α

has the type above, meaning it can only be applied to variant expressions
which admit the case ‵A. Its result will always have a type that includes ‵A;
hence the application below is ill-typed, despite being type-safe.

(function ‵B→ �) (id� ‵B)� Error: This expression has type [> ‵A | ‵B]
but an expression was expected of type [< ‵B]
The second variant type does not allow tag(s) ‵A

�e rationale behind this behaviour is explained in Garrigue (����): it is
simpler to describe in the kinding system, and it aids in detecting misspelled
tags in pattern matching. However, it also rejects perfectly valid programs.
We feel that removing this behaviour would be more intuitive; it might delay
the detection of certain errors, but this risk can probably be mitigated by
adding some type annotations.

������ �� ������� �������� Typing pattern matching requires
us to determine the types for the capture variables of each pattern: we need
them to make sense of the corresponding branch. OCaml considers each
pattern separately, whereas our system takes preceding patterns into account
as well to produce more precise types. Additionally, in our system we look
for redundant branches and exclude them from type checking.

As an example of the �rst aspect, consider the following function (annot-
ated with its type for clarity).

let f�: [< ‵A | ‵B]→ int = function ‵A→ � | y→ (function ‵B→ �) y� Error: This expression has type [< ‵A | ‵B > ‵A]
but an expression was expected of type [< ‵B]
The second variant type does not allow tag(s) ‵A

OCaml considers the second branch ill-typed: it assumes y could be ‵A –
because ‵A is in the domain – and concludes that the function function ‵B→ �
cannot be applied safely to y, being de�ned only on ‵B. However, y cannot

��

� Polymorphic variants in OCaml

in fact be ‵A: if it were, the �rst pattern would have been selected and we
would not have reached the second. Hence, it would be sound to consider
the function well-typed. It is indeed well-typed in our system, because we
take the preceding pattern into account to determine that ymust be ‵B.
�is is already possible to some extent in OCaml, but we must write it

explicitly as

let f�: [< ‵A | ‵B]→ int = function ‵A→ � | ‵B as y→ (function ‵B→ �) y� [< ‵A | ‵B]→ int

while in our system it is implicit and more general (it a�ects non-variant
types as well).

We have said we exclude redundant branches, not typing them at all. Since
such branches will never be selected, we do not need to type them to ensure
they are safe. We also exclude them from the output type: a function will
never yield results produced by a branch that is never selected. OCaml,
conversely, considers all branches to determine the result type. We notice
this in the following example.

let g� = function ‵A→ ‵A | ‵B→ ‵B� [< ‵A | ‵B]→ [> ‵A | ‵B]
let g�: [< ‵A]→ [> ‵A] = function ‵A→ ‵A | ‵B→ ‵B� Warning ��: this match case is unused.� [< ‵A]→ [> ‵A | ‵B]

By adding a type annotation, we restrict our function so it only works
on ‵A rather than on both ‵A and ‵B.�is means the result will always be ‵A;
however, this is not recognized by OCaml, which still considers both ‵A and‵B to be possible results. Unused branches should not be considered in the
output type, and a more precise type should be [< ‵A]→ [> ‵A].

�������������� ��� �������������� In OCaml, type recon-
struction for pattern matching expressions may have to determine the type
of the matched expression from the patterns. For instance, in

type t = A of bool | B of int | C
fun x→match x with A x→ x | B y→ y >= �� Warning �: this pattern–matching is not exhaustive.
Here is an example of a value that is not matched: C� t→bool

OCaml determines the type of the function from the two cases mentioned
by pattern matching. However, this type makes matching not exhaustive,
because C is not covered. In OCaml, non-exhaustive pattern-matching con-
structs are not rejected outright because they can be convenient sometimes
(especially with ordinary variants).

With polymorphic variants, type reconstruction can generate new poly-
morphic variant types to make matching exhaustive. Instead of reusing some

��

�.� Shortcomings of OCaml and proposed extensions

type with three tags because two of them are mentioned, we use a new type
with just the two tags that are actually mentioned. However, the interaction
with other type constructors – pairs, in particular – complicates this. We
might be able tomakematching exhaustive only by restricting a polymorphic
variant type so that some branches become useless. For instance, consider
the following function (from Garrigue, ����, which discusses this in detail).

let f = function (‵A, _)→ � | (‵B, _)→ � | (_, ‵A)→ � | (_, ‵B)→ �

OCaml chooses the type [> ‵A | ‵B] ∗ [> ‵A | ‵B]→ int and makes matching
not exhaustive. Choosing [< ‵A | ‵B] ∗ [< ‵A | ‵B]→ intmakes it exhaustive, but
it means the last two branches become redundant. Choosing a di�erent
solution, like [> ‵A | ‵B] ∗ [< ‵A | ‵B]→ int, would break symmetry, which is
unintuitive.
Adding union types solves these problems, because we can avoid the

approximation we have to make in OCaml for pair types. We would need
the input type to be ([< ‵A | ‵B] ∗ [>])∨ ([>] ∗ [< ‵A | ‵B]), where ∨ denotes the
union of two types and [>] a type which admits any polymorphic variant.
�is type would contain the values (‵A, ‵C) and (‵C, ‵A), but not (‵C, ‵C). It is
not expressible in OCaml, where reconstruction approximates it with the
type [> ‵A | ‵B] ∗ [> ‵A | ‵B], which also contains (‵C, ‵C) – making matching
non-exhaustive.
�anks to unions and to singleton types – types containing a single con-

stant – we can always �nd a type that makes matching exhaustive without
being too restrictive and without making branches useless (when they would
be useful with another choice of type).�is means we can reconstruct ‘intu-
itive’ types without having to choose – possibly inconsistently in di�erent
cases – to favour either exhaustiveness or non-redundancy. We forbid non-
exhaustive pattern matching altogether in our system, since this increased
�exibility means it is never convenient.

��

� A calculus for�� with variants

In this chapter, we introduce the�ariants calculus, which we will consider
from now on as our formalization of polymorphic variants in OCaml. It
consists in a λ-calculus with constants, pairs, variants,¹ and patternmatching.
We do not include recursive functions (though we may employ them in
examples) as their addition seems to be orthogonal to that of the features
we are considering. Likewise, we disregard imperative e�ects and mutability,
though they exist in ��-derived languages like OCaml.

We �rst present the syntax and an operational semantics for the untyped
calculus. We then describe�ariantsK, a type system in which polymorphic
variants are typed with type variables and a notion of kind is used to express
constraints on these variables – as is done inOCaml and as we have explained
informally in the previous chapter.

�e design of this type system is motivated by the desire to have a minimal
extension of �� and to keep the same language of types: hence the use of
type variables – rather than types of some new form – for variant expressions.
�ere is no direct notion of subtyping: while it may seem natural to ascribe
variant polymorphism to subtyping, it is handled here through structural
polymorphism, a form of parametric polymorphism. We thus retain the
overall structure of the Hindley-Milner type system, despite the addition of
constraints.�is approach notably means that reconstruction can employ
the standard uni�cation algorithm used in ��, albeit extended to deal with
kinds. Nevertheless, the di�erences from �� are signi�cant, and they give
rise to a much more complex system.

�ariantsK is adapted from the type system presented in Garrigue (����)
and Garrigue (����). We have omitted the abstract framework of constraint
domains for the sake of concreteness and simplicity; we have also added full
pattern matching for ease of comparison with the set-theoretic system. We
only describe the deductive type system, not type reconstruction: we will
tackle that problem directly in our set-theoretic type system.

�e �rst two sections of this chapter present the syntax and semantics of
the �ariants calculus.�e third describes �ariantsK, and the fourth and
last compares it to Garrigue’s system, as well as to OCaml itself, to discuss
the di�erences we have introduced in our model.

� From now on, we use ‘variants’ rather than ‘polymorphic variants’ when referring to
our calculus, and we distinguish the two only when dealing speci�cally with OCaml.

��

� A calculus for �� with variants

� .� ������

We �rst de�ne the syntax of expressions in�ariants. Expressions include a
pattern-matching construct; this depends on the syntax of patterns, which
we present immediately a�erwards.

We assume that there exists a countable set � of expression variables,
ranged over by x, y, z, We also consider a set � of language constants,
ranged over by c, and a set � of tags, ranged over by ‵tag. Tags are used to
label variant expressions.

���������� � .�: Expressions An expression e is a term inductively gen-
erated by the following grammar:

e ∷= x variable
� c constant
� λx .e abstraction
� e e application
� (e , e) pair
� ‵tag(e) variant
� match e with (pi → ei)i∈I pattern matching

where p ranges over the set � of patterns, de�ned below. We write � to
denote the set of all expressions.

As usual, we consider expressions up to α-renaming of the variables bound
by abstractions and by patterns.

We de�ne fv(e) to be the set of expression variables occurring free in the
expression e, and we say that e is closed if and only if fv(e) is empty. �
Expressions include the three forms of the pure λ-calculus: variables,

abstractions (where λx .e is the function of argument x and body e), and
applications. We add constants and pairs; naturally, we include variant ex-
pressions as well. We only consider variants with a single argument since we
can encode multiple arguments with pairs – as OCaml does in the case of
polymorphic variants – and the absence of an argument with a dummy one,
such as a constant () (‘unit’). We include full pattern matching, with an arbit-
rary number of branches, with the match construct, where I = {�, . . . , n} for
some positive n.
�ere is no let construct to bind identi�ers. Its purpose in �� is to in-

troduce polymorphic bindings by generalizing types into type schemes. In
OCaml and other languages, pattern matching serves this role and therefore
subsumes let. We follow the same approach and add let as syntactic sugar:

let x = e� in e� ≡ match e� with x → e� .

��

�.� Syntax

���������� � .�: Patterns A pattern p is a term inductively generated by
the following grammar:

p ∷= _ wildcard
� x variable
� c constant
� (p, p) pair
� ‵tag(p) variant
� p&p intersection
� p�p union

which satis�es the following constraints:

• in a pair pattern (p�, p�) or an intersection pattern p�&p�, the sets of
expression variables appearing in p� and p� are disjoint;

• in a union pattern p��p�, the sets of expression variables appearing in
p� and p� are equal.

We write � to denote the set of all patterns.
We write capt(p) to denote the set of expression variables occurring as

sub-terms in a pattern p, and we say they are the capture variables of p. �
A pattern plays two roles in patternmatching: accepting or refusing values

and introducing bindings. Any value either matches the pattern or not; this
determines whether a certain branch is followed or skipped. Additionally,
when a pattern accepts a value and its corresponding branch is selected, it
binds some sub-terms of that value to its capture variables; these sub-terms
replace the capture variables wherever they occur in the branch.
Intuitively, the semantics of these patterns are as follows. Variable pat-

terns and wildcards accept any value. Constants only accept themselves. Pair
patterns only accept pairs and only if each sub-pattern accepts the corres-
ponding component. Variant patterns only accept variants with the same tag,
if the tag argument matches the inner pattern. Intersection patterns accept
values accepted by both sub-patterns and unions those accepted by one at
least (the �rst sub-pattern is tested �rst).
As for bindings, wildcards and constants do not bind anything, while a

variable pattern x binds the accepted value to x. Pair, variant, and intersection
patterns bind any variable bound by their sub-patterns; unions bind those
bound by the successful one.

Intersection patterns such as we present here do not exist in OCaml.�ey
are a generalization of alias patterns of the form p as x, where we do not
force the second sub-pattern to be a variable.

��

� A calculus for �� with variants

R-Appl (λx .e) v � e[v�x] R-Match
v�p j = � ∀i < j. v�pi = Ω

match v with (pi → ei)i∈I � e j�
j ∈ I

R-Ctx
e � e′

E[e] � E[e′]
������ � .� Small-step reduction relation.

� .� ���������

We de�ne the operational semantics of�ariants in small-step style, with a
call-by-value evaluation strategy. We begin by giving standard de�nitions
for values and evaluation contexts.

���������� � .�: Values A value v is a closed expression inductively
generated by the following grammar.

v ∷= c � λx .e � (v , v) � ‵tag(v) �
We use evaluation contexts to impose call-by-value evaluation in le�-to-

right order. An evaluation context, as de�ned below, is an expression with a
hole placed in it so as to implement this order.

���������� � .�: Evaluation contexts Let the symbol [] denote a hole.
An evaluation context E is a term inductively generated by the following
grammar.

E ∷= []
� E e � v E
� (E , e) � (v , E)
� ‵tag(E) � match E with (pi → ei)i∈I

Wewrite E[e] for the expression obtained by replacing the hole in E with
the expression e. �
We now de�ne the reduction relation of our semantics, as well as the

semantics of pattern matching on which reduction itself depends.

���������� � .�: Expression substitution An expression substitution � is
a partial mapping of expression variables to values. We write [v��x� , . . . , vn�xn]
for the substitution which replaces free occurrences of xi with vi , for each
i ∈ I. We write e� for the application of the substitution to an expression e.
We write �� ∪ �� for the union of disjoint substitutions. �

��

�.� Semantics

v�_ = []
v�x = [v�x]
v�c = �������

[] if v = c
Ω otherwise

v�(p�, p�) =
�������
�� ∪ �� if v = (v�, v�), v��p� = ��, and v��p� = ��
Ω otherwise

v�‵tag(p�) =
�������
�� if v = ‵tag(v�) and v��p� = ��
Ω otherwise

v�p�&p� = �������
�� ∪ �� if v�p� = �� and v�p� = ��
Ω otherwise

v�p��p� = �������
v�p� if v�p� ≠ Ω
v�p� otherwise

������ � .� Semantics of pattern matching.

���������� � .�: Reduction �e reduction relation� between expres-
sions is given by the rules in Figure �.�. �
���������� � .�: Semantics of pattern matching We write v�p for the
result of matching a value v against a pattern p. We have either v�p = �,
where � is a substitution de�ned on the variables in capt(p), or v�p = Ω. In
the former case, we say that v matches p (or that p accepts v); in the latter,
we say that matching fails.

�e de�nition of v�p is given in Figure �.�. �
�ere are three rules: two notions of reduction and the rule for context

closure which allows us to apply reduction to expressions in a context.
�e rule R-Appl is the ordinary rule for call-by-value β-reduction. It states

that the application of an abstraction λx .e to a value v reduces to the body e
of the abstraction, where x is replaced by v.
R-Match depends on the semantics of pattern matching. It states that a

match expression on a value v reduces to the branch e j corresponding to the
�rst pattern p j for which matching is successful.�e obtained substitution
is applied to e j, replacing the capture variables of p j with sub-terms of v. If
no pattern accepts v, the expression is stuck.

�e matching operation implements the intuitive semantics we have just
described. Patterns which bind no variable generate the empty substitution.
Matching against pair or intersection patterns yields the union of two sub-
stitutions: note that the constraints we have imposed require the two to be

��

� A calculus for �� with variants

disjoint. Conversely, in a union pattern both branches must contain the same
variables, so the domain of the resulting substitution is the same regardless
of which pattern is selected.

� .� ���� ������

In this section, we describe the�ariantsK type system for our calculus. It
consists essentially in the core �� type system (the simply-typed λ-calculus
augmented with let-polymorphism) with the addition of a notion of kinding
to distinguish normal type variables from constrained ones.
Unlike the others, these constrained variables may not be instantiated

into any type, but only into other variables with compatible constraints.
�ey are used to type variant expressions: there are no ‘variant types’ per se.
Constraints are recorded in kinds and kinds in a kinding environment which
is included in the typing judgment.
We start by de�ning types for this system. We assume that there exists a

countable set� of type variables, ranged over by α, β, γ, We also consider
a �nite set � of basic types, ranged over by b, and a function b(⋅) from
constants to basic types. For instance, we might take � = {bool, int, unit},
with btrue = bool, b() = unit, and so on.

���������� � .�: Types A type τ is a term inductively generated by the
following grammar.

τ ∷= α type variable
� b basic
� τ� → τ� arrow
� τ� × τ� product �

We de�ne kinds next. In a typing judgment, each type variable must
be assigned a kind: the unconstrained kind for ‘normal’ variables and a
constrained one for variables used to type polymorphic variants.

Kinds describe which tagsmay ormay not appear (a presence information)
and which argument types are associated to each tag (a typing information).
�e presence information is split in two parts, a lower and an upper bound.
�is is necessary to provide an equivalent to both covariant and contravariant
subtyping – without actually having subtyping in the system – that is, to
allow both variant values and functions de�ned on variant values to be
polymorphic.

���������� � .�: Kinds A kind κ is either the unconstrained kind ● or a
constrained kind, that is, a triple (L,U , T) where:
• L is a �nite set of tags {‵tag�, . . . , ‵tagn};

��

�.� Type system

[> ‵A of int | ‵B of bool] as α ≡ α where α ∷ ({‵A, ‵B},�, {‵A: int, ‵B:bool})
[< ‵A of int | ‵B of bool] as β ≡ β where β ∷ (�, {‵A, ‵B}, {‵A: int, ‵B:bool})

[< ‵A of int | ‵B of bool & unit > ‵A] as γ ≡ γ where γ ∷ ({‵A}, {‵A, ‵B}, {‵A: int, ‵B:bool, ‵B: unit})
������ � .� Variant types and kinds in OCaml and�ariantsK.

• U is either a �nite set of tags or the set � of all tags;
• T is a�nite set of pairs of a tag and a type, written {‵tag�: τ�, . . . , ‵tagn: τn}

(its domain dom(T) is the set of tags occurring in it);

and where the following conditions hold:

• L ⊆ U , L ⊆ dom(T), and, if U ≠ �, U ⊆ dom(T);
• tags in L have a single type in T , that is, if ‵tag ∈ L, whenever both‵tag: τ� ∈ T and ‵tag: τ� ∈ T , we have τ� = τ�.
We de�ne an entailment relation ⋅ � ⋅ between constrained kinds as

(L,U , T) � (L′,U ′, T ′) ⇐⇒ L ⊇ L′ ∧U ⊆ U ′ ∧ T ⊇ T ′ . �
Note that T may associate more than one type to any tag that is not in

L: this corresponds to the conjunctive types we have seen in the previous
chapter. T might also include types for tags that do not appear in U , though
they are not very signi�cant in general; Garrigue (����) explains their relev-
ance and the possibility of discarding them.
In OCaml, kinds are written with the typing information inlined in the

lower and upper bounds.�ese are introduced by > and < respectively and,
if missing, � is assumed for the lower bound and � for the upper. Figure �.�
shows three examples of kinds written in OCaml and in this formalism.
We next de�ne kinding environments, which associate kinds to type

variables. A�er them we introduce type schemes: schemes include a kinding
environment to record the kinds of all variables they quantify.

���������� � .��: Kinding environments A kinding environment K is a
partialmapping from type variables to kinds.Wewrite kinding environments
as K = {α� ∷ κ�, . . . , αn ∷ κn}.
We write K ,K′ for the updating of the kinding environment K with the

new bindings in K′. It is de�ned as follows.

(K ,K′)(α) = �������
K′(α) if α ∈ dom(K′)
K(α) otherwise

We say that a kinding environment is closed if all the type variables that
appear in the types in its range also appear in its domain.We say it is canonical
if it is in�nite and contains in�nitely many variables of every kind. �

��

� A calculus for �� with variants

Kinding environments e�ectively introduce recursive types into this sys-
tem: while types are de�ned inductively, kinds may be recursive (possibly
mutually so).

���������� � .��: Type schemes A type scheme σ is of the form∀A.K▹τ,
where:

• A is a �nite set {α�, . . . , αn} of type variables;
• K is a kinding environment such that dom(K) = A.
We identify a type scheme ∀�.� ▹ τ, which quanti�es no variable, with

the type τ itself; thus, we view types as a subset of type schemes. Furthermore,
we consider type schemes up to renaming of the variables they bind, and
we disregard useless quanti�cation (i.e. quantifying variables which do not
occur in the type). �

We de�ne the set of variables occurring in a type, and of variables occur-
ring free in a type scheme, by taking into account a kinding environment.
�us, if a constrained variable α appears in a type, the free variables of this
type will also include the variables that appear in the typing component of
the kind of α.

���������� � .��: Free variables �e set of free variables varK(σ) of a
type scheme σ with respect to a kinding environment K is the minimum set
satisfying the following equations.

varK(∀A.K′ ▹ τ) = varK ,K′(τ) � A
varK(α) =

�������
{α} ∪�‵tag:τ∈T varK(τ) if α ∷ (L,U , T) ∈ K
{α} otherwise

varK(b) = b
varK(τ� → τ�) = varK(τ�) ∪ varK(τ�)
varK(τ� × τ�) = varK(τ�) ∪ varK(τ�)

We say that a type τ is ground or closed if and only if var�(τ) is empty. We
say that a type or a type scheme is closed in a kinding environment K if all its
free variables are in the domain of K. �
�� uses type substitutions to allow the instantiation of type schemes; a

type substitution may replace the quanti�ed variables of the scheme with any
type.�e addition of kinds changes this: variables with constrained kinds
may only be instantiated into other variables with ‘stronger’ constraints (i.e.
with a kind which entails the former one) and not with any other type. To
express this, we add a notion of admissibility to the standard de�nition of
type substitutions.

��

�.� Type system

���������� � .��: Type substitutions A type substitution θ is a �nite
mapping of type variables to types. We write [τ i�α i � i ∈ I] for the type
substitution which simultaneously replaces αi with τi , for each i ∈ I. We
write τθ for the application of a substitution to a type τ, which is de�ned as
follows.

αθ = �������
τ′ if τ′�α ∈ θ
α otherwise

bθ = b
(τ� → τ�)θ = (τ�θ)→ (τ�θ)(τ� × τ�)θ = (τ�θ) × (τ�θ)

We extend the var(⋅)(⋅) operation to substitutions as

varK(θ) = �
α∈dom(θ) varK(αθ) .

We extend application of substitutions to the typing component of a
constrained kind (L,U , T): Tθ is given by the pointwise application of
θ to all types in T . We extend it to kinding environments: Kθ is given
by the pointwise application of θ to the typing component of every kind
in the range of K. We extend it to type schemes ∀A.K ▹ τ: by renaming
quanti�ed variables, we assume A∩ (dom(θ) ∪ var�(θ)) = �, and we have(∀A.K ▹ τ)θ = ∀A.Kθ ▹ τθ.

We write θ� ∪ θ� for the union of disjoint substitutions and θ� ○ θ� for the
composition of substitutions. �
���������� � .��: Admissibility of a type substitution We say that a
substitution θ is admissible between two kinding environments K and K′,
and write K � θ:K′, when it preserves kinds:

∀α ∷ (L,U , T) ∈ K .�αθ ∷ (L′,U ′, T ′) ∈ K′ ∧ (L′,U ′, T ′) � (L,U , Tθ)�
that is, whenever α is constrained in K, αθ must be a type variable, it must
be constrained in K′, and its kind must entail the substitution instance of
the kind of α in K. �

We now introduce type environments, which map expression variables to
type schemes.�en, we de�ne the operation of generalization with respect
to a kinding environment and a type environment; generalization produces
type schemes by quantifying all variables which do not appear free in the
type environment. In the typing rules, we combine generalization with the
typing rule for pattern-matching expressions rather than having a separate
rule for it.
We also introduce instantiation of type schemes by de�ning the set of

types that are instances of a given scheme.

��

� A calculus for �� with variants

���������� � .��: Type environments A type environment Γ is a partial
mapping from expression variables to type schemes. We write type environ-
ments as Γ = {x�: σ�, . . . , xn: σn}.
We write Γ , Γ′ for the updating of the type environment Γ with the new

bindings in Γ′. It is de�ned as follows.

(Γ , Γ′)(x) = �������
Γ′(x) if x ∈ dom(Γ′)
Γ(x) otherwise

We extend the var⋅(⋅) operation to type environments as

varK(Γ) = �
σ∈range(Γ) varK(σ) . �

���������� � .��: Generalization We de�ne the generalization of a type
τ with respect to a kinding environment K and a type environment Γ as the
type scheme

genK; Γ(τ) = ∀A.K′ ▹ τ
where A = varK(τ) � varK(Γ) and K′ = { α ∷ κ ∈ K � α ∈ A}.

We extend this de�nition to type environments which only contain types
(i.e. trivial type schemes) as

genK; Γ({x�: τ�, . . . , xn: τn}) ={x�: genK; Γ(τ�), . . . , xn: genK; Γ(τn)} . �
���������� � .��: Instances of a type scheme We de�ne the instances of
a type scheme ∀A.K′ ▹ τ in a kinding environment K as the set of types

instK(∀A.K′ ▹ τ) = { τθ � dom(θ) ⊆ A ∧ K ,K′ � θ:K } .
We say that a type scheme σ� ismore general than a type scheme σ� in K,

and we write σ� �K σ�, if instK(σ�) ⊇ instK(σ�).
We extend this notion to type environments as

Γ� �K Γ� ⇐⇒
dom(Γ�) = dom(Γ�) ∧ ∀x ∈ dom(Γ�). Γ�(x) �K Γ�(x) . �

Note the condition of admissibility of the substitution, which is added
with respect to a standard de�nition of instantiation in ��.

Finally, we de�ne the typing relation itself.

���������� � .��: Typing relation �e typing relation K; Γ �� e: τ (e is
given type τ in the kinding environment K and the type environment Γ) is
de�ned by the rules in Figure �.�, where we require K to be closed and Γ and
τ to be closed with respect to K. We also assume that K is canonical. �

��

�.� Type system

Tk-Var
τ ∈ instK(Γ(x))
K; Γ �� x: τ Tk-Const

K; Γ �� c: bc
Tk-Abstr

K; Γ , {x: τ�} �� e: τ�
K; Γ �� λx .e: τ� → τ�

Tk-Appl
K; Γ �� e�: τ′ → τ K; Γ �� e�: τ′

K; Γ �� e� e�: τ
Tk-Pair

K; Γ �� e�: τ� K; Γ �� e�: τ�
K; Γ �� (e�, e�): τ� × τ�

Tk-Tag
K; Γ �� e: τ K ∋ α ∷ κα κα � ({‵tag},�, {‵tag: τ})

K; Γ �� ‵tag(e): α

Tk-Match

K; Γ �� e�: τ� τ� �K { pi � i ∈ I }∀i ∈ I K � pi : τ� ⇒ Γi K; Γ , genK; Γ(Γi) �� ei : τ
K; Γ �� match e� with (pi → ei)i∈I : τ

������ � .� Typing relation.

We use the � subscript in the turnstile symbol to distinguish this relation
from the one for the set-theoretic type system of the next chapter.

�e rules are mostly straightforward, with the exception of that for pattern
matching, which relies on two other relations that we de�ne and explain
below. Here we brie�y discuss the other rules.
We embed instantiation and generalization into the rules for variables

and pattern matching so that all rules derive types and not type schemes.
Hence, Tk-Var allows the derivation of any instance of the scheme which Γ
binds x to.

�e rules for constants, abstractions, applications, and pairs are standard.
Typing variant expressions requires us to consider the kinding environ-

ment. Rule Tk-Tag states that ‵tag(e) can be typed by any variable α such
that α has a constrained kind in K which entails the ‘minimal’ kind for this
expression. Speci�cally – if α ∷ (L,U , T) ∈ K – we require ‵tag ∈ L and‵tag: τ ∈ T , where τ is a type for e. Note that T may not assign more than one
type to ‵tag, since ‵tag ∈ L.

Typing pattern matching

Typing a pattern-matching expressionmatch e� with (pi → ei)i∈I with a type
τ should consist of a few di�erent steps:

��

� A calculus for �� with variants

TPk-Wildcard
K � _: τ⇒ � TPk-Var

K � x: τ⇒ {x: τ} TPk-Const
K � c: bc ⇒ �

TPk-Pair
K � p�: τ� ⇒ Γ� K � p�: τ� ⇒ Γ�

K � (p�, p�): τ� × τ� ⇒ Γ� ∪ Γ�
TPk-Tag

K � p: τ⇒ Γ K ∋ α ∷ (L,U , T) ‵tag ∈ U ⇒ ‵tag: τ ∈ T
K � ‵tag(p): α⇒ Γ

TPk-And
K � p�: τ⇒ Γ� K � p�: τ⇒ Γ�

K � p�&p�: τ⇒ Γ� ∪ Γ� TPk-Or
K � p�: τ⇒ Γ K � p�: τ⇒ Γ

K � p��p�: τ⇒ Γ

������ � .� Pattern environment generation.

• typing the expression e� to be matched with some type τ�;
• generating a type environment for the capture variables of each pattern;
• typing each branch ei with type τ, in a type environment updated with

that generated by the corresponding pattern and generalized;
• optionally, checking that the patterns are exhaustive, that is, that each

possible value of type τ� matches at least one pattern;
• optionally, checking non-redundancy, that is, that there are no branches

which will never be selected regardless of which value e� produces.

�e rule Tk-Match includes all but the last step as premises. In particular,
K � pi : τ� ⇒ Γi states that the pattern pi generates the environment Γi
when matching the type τ� in K.�is means that the substitution produced
by matching a value of type τ� with pi will replace each capture variable x
of pi with a value of type Γi(x).�e environment is then generalized.
We write the exhaustiveness condition as τ� �K { pi � i ∈ I }. We do not

check non-redundancy, though a partial check is implicit in the de�nition
of K � pi : τ� ⇒ Γi since only certain combinations of K, τ�, and pi allow
us to derive an environment.

�e relation for environment generation is de�ned as follows.

���������� � .��: Pattern environment generation �e environment
generated by pattern matching is given by the relation K � p: τ ⇒ Γ (the
pattern p may match type τ in K, producing the bindings in Γ), de�ned by
the rules in Figure �.�. �
We have remarked that some combinations of type and pattern do not

allow us to derive any environment. For example, the constant pattern �may
be used only if τ� is int and not if it is bool. Here, this serves as a weak form
of non-redundancy checking (if τ� = bool, � would never be selected); in

��

�.� Type system

OCaml, it is actually necessary for soundness since – due to type erasure –
integers and booleans cannot be distinguished at run-time, so comparing
them is unsafe. Obviously, we are not eliminating all redundancy: repeated
patterns are allowed, and expressions with variant types allow any variant
pattern, even those for tags not in their upper bound (this is necessary to
prove the stability of typing under type substitutions).
Indeed, it is worth noting how environment generation considers each

pattern independently. To construct the environment for a pattern, we might
actually take the previous, skipped patterns into consideration to have a
more precise result (we will do so in the set-theoretic type system).

We remark also that the environment is uniquely determined by the other
arguments in every case except TPk-Tag. In that rule, we can make di�erent
choices of τ� and generate di�erent environments.�is means that, if ‵tag has
a conjunctive type (i.e. if it has multiple types in T), we can pick any of its
types. In a system with intersection types, we might select the intersection
itself and not have to project one factor.
We have said that we also require exhaustiveness. OCaml does not – it

signals non-exhaustiveness with a warning – but we do so in order to have a
simpler statement for soundness and to facilitate the comparison with the
system of the next chapter. We give the following de�nition.

���������� � .��: Exhaustiveness We say that a set of patterns P is ex-
haustive with respect to a type τ in a kinding environment K, and we write
τ �K P, when any value that can be typed with any admissible substitutions
of τ is accepted by at least one pattern, that is, when

∀K′, θ , v . (K � θ:K′ ∧ K′;� �� v: τθ)⇒ ∃p ∈ P, �. v�p = � . �
We consider any admissible instantiation of τ (i.e. τθ for any admissible

θ) to account for generalization. For example, consider a parametrically-
polymorphic abstraction λx .e, where x has type α and α is unconstrained
in K. Any pattern-matching expression on x which appears in e must be
exhaustive with respect to any possible instantiation of α.
We do not discuss how exhaustiveness can be e�ectively computed. For

more information onhowOCaml checks it, seeGarrigue (����) andMaranget
(����). Likewise, we do not discuss checking for redundancy. Here these
notions cannot be expressed directly at the level of types, which instead
becomes becomes possible once we enrich our language of types su�ciently.

Type soundness

We conclude this section by stating the type soundness property of the
�ariantsK type system. It is derived as a corollary of the two properties of
progress and subject reduction.�eir proofs, as all others, are in Appendix A.

��

� A calculus for �� with variants

We say that an expression e is well-typed if there exist a K, a Γ, and a τ
such that K; Γ �� e: τ. If e is closed (e.g. if it is a value), we can always take
Γ = �.
������� � .�: Progress Let e be a well-typed, closed expression. �en,
either e is a value or there exists an expression e′ such that e � e′.
������� � .�: Subject reduction Let e be an expression and τ a type such
that K; Γ �� e: τ. If e � e′, then K; Γ �� e′: τ.
��������� � .�: Type soundness Let e be a well-typed, closed expression,
that is, such that K;� �� e: τ holds for some τ. �en, either e diverges or it
reduces to a value v such that K;� �� v: τ.

� .� �������� �� ����� ������ ��� �� �����

We discuss here the di�erences between our system and other calculi and
type systems for variants in�� and the reasons for the choices we have made.
We also compare our formalization with OCaml itself.

Other formalizations of variants in ��

�ariantsK is based on structural polymorphism, which is distinct from para-
metric polymorphism – the usual form of polymorphism in �� – because
there are type schemes whose possible instances are restricted by constraints.
Type systems which extend the Hindley-Milner type system with structural
polymorphism have long been studied with the practical application of de-
scribing polymorphic typing for both variants and records – the two being
the dual of one another. Such systems have also been described as instances
of constraint-based frameworks such as HM(X) (Odersky, Sulzmann, and
Wehr, ����; Pottier and Rémy, ����).

Our presentation is closely based on the system in Garrigue (����, ����).
�ose works supersede the earlier description in Garrigue (����) and corres-
pond most closely to the current implementation of OCaml.
�e di�erences in our presentation are mainly three. First, we omit the

abstract framework of constraint domains and introduce kinds directly in
the form we need for polymorphic variants. Garrigue’s system is much more
general, since it also covers record typing and, by using di�erent constraint
domains, it can describe other systems, such as the simpler form of poly-
morphism in Ohori (����) as well as a sort of dependent typing of pattern
matching (which is not used in OCaml).
Second, we include full pattern matching, while Garrigue’s calculi only

include a ‘shallow’ form of case analysis. Indeed, pattern matching is rarely

��

�.� Variants in other models and in OCaml

formalized in ��-like calculi, though there are exceptions (for instance, see
Pottier andRémy, ����).�e only work on patternmatching on polymorphic
variants, to our knowledge, is Garrigue (����), and it only concerns some as-
pects of type reconstruction. We have chosen to formalize it for concreteness
and to compare the formalization with that based on set-theoretic types; we
argue that one of the advantages of the latter system is that it allows a much
cleaner formalization and a much more precise typing of matching.

�ird, we do not treat type inference. ExtendingGarrigue’s type reconstruc-
tion to include full pattern matching in a way that corresponds reasonably
well to its implementation in OCaml is quite complex and it is not the goal
of our work. Rather, we prefer to study the problem of reconstruction in the
context of our set-theoretic type system: since that system will be capable of
typing all programs�ariantsK can type, reconstruction for it should also
serve for�ariantsK. More information on how reconstruction of pattern
matching on variants works in OCaml can be found in Garrigue (����).

�ariants,�ariantsK, and OCaml

We consider only a very small fragment of OCaml in our formalization and
do not deal with type reconstruction at all. However, the proper description
of pattern matching has already proven to be somewhat cumbersome, and
there are a few aspects in which it does not match the actual implementation
in OCaml.
Most notably, we require exhaustiveness. We have already said that it

makes soundness easier to state: a non-exhaustive pattern matching can be
stuck. In OCaml, an exception is raised in this case; indeed, if we added a
notion of dynamic error to our calculus, we might add an unsafe version of
match with the same behaviour as that of OCaml. We feel that it is not so
necessary in this calculus: though it might be convenient in practice to allow
non-exhaustive matching on ordinary variants, for polymorphic ones it is
seldom of any use.
�ere is another di�erence in the formalization, which concerns a quite

technical point in the handling of conjunctive types. We li� a restriction
which is not needed for soundness but is imposed in OCaml because it
makes reconstruction generate more intuitive types and allows the earlier
detection of some errors (as motivated in Garrigue, ����). Here we avoid it
for simplicity.�e following function illustrates the di�erence.

fun (x: [< ‵A of int & bool | ‵B of int])→
match x with ‵A n→ n >= � | ‵A b→ not b | ‵B _→ true� Error: This expression has type int
but an expression was expected of type bool

OCaml rejects it, while it accepts it if we remove either the �rst or the second
branch: even though the argument of ‵A has both type int and type bool

��

� A calculus for �� with variants

(which, incidentally, means it can never reduce to a value) we must use it
with the same type in both branches. We allow di�erent branches to choose
di�erent types, which seems to be the simplest choice as we do not study
reconstruction.
Yet another di�erence is that we do not model the feature of pattern

matching which allows variant types to be re�ned by listing some tags in an
alias pattern, as in the following code.

let f: [< ‵A | ‵B]→ int = function ‵A→ � | ‵B as y→ (function ‵B→ �) y� [< ‵A | ‵B]→ int

�e precise typing of pattern matching in the set-theoretic system will sub-
sume it. Garrigue (����) models it as a split construct separate from normal
case-analysis.

Finally, we remark that the untyped semantics we have given is not faithful
to the implementation of OCaml, though the discrepancies only arise when
we consider expression that are ill-typed in OCaml and in�ariantsK.�is
is because OCaml performs type erasure and uses the same representation
at run-time for values of di�erent types (for instance, false and true are
represented as � and �). As a result, matching is only de�ned when the
pattern and the type are ‘compatible’, while in�ariants we say matching fails
whenever they are not compatible: for example, we have ��true = Ω, while in
OCaml it would be successful were it not blocked by the type system. We
address this point in Section �.�, where we introduce a new semantics in
which matching may be unde�ned.

��

� Variants with set-theoretic types

We now present�ariantsS, an alternative type system for the�ariants cal-
culus introduced in the previous chapter. In this system, we expand the
language of types considerably: we add singleton types for constants, types
for variants, and the set-theoretic connectives of union, intersection, and
negation. Additionally, we employ a subtyping relation, which is semantic in
that it is de�ned starting from an interpretation of types as sets. We treat the
‘lower-level’ details of subtyping only cursorily, since we can readily reuse a
system that has been studied elsewhere.
�e approach we take is drastically di�erent from that followed in�ari-

antsK. �ere, we add a kinding system to record information that types
cannot express: we do so in order to keep the same types as in �� and not
to add subtyping, so we can still rely on uni�cation for type reconstruction.
Here, conversely, we move all information to the types themselves: the rich
language of types and the �exibility of semantic subtypingmake this possible.
In particular, the representation of variant types employs unions and their
subtyping, and it relies on the possibility of encoding bounded quanti�cation
in terms of set-theoretic union and intersection.
We argue that�ariantsS has several advantages with respect to the pre-

vious system. It is more expressive: it is able to type some programs that
�ariantsK rejects – while they are actually type-safe – and it can derive more
precise types for some programs that�ariantsK can type too. It is arguably
more intuitive as well: apart from the presence of subtyping, typing works
much like in ��. Explicit types for variants simplify their typing; handling
variant polymorphism with subtyping – instead of instantiation – avoids
the loss of polymorphism of variant types bound to λ-abstracted variables
rather than let-bound ones.
�ese advantages are counterbalanced by complications introduced by

subtyping, which we mostly ignore in the description of the deductive type
system as they are studied elsewhere.�e derivation of a typing algorithm
and of a type reconstruction system both pose challenges; for the former we
refer to previous work, while we study the latter in the next chapter.

�e system lends itself particularly well to the typing of pattern matching,
which is central to the use of variants in concrete programming. Singleton
types and connectives allow us to describe exhaustiveness and irredundancy
checking at the level of types, yielding a simpler description.�ey also allow
us to generate more precise environments from patterns.

��

� Variants with set-theoretic types

We have already introduced intuitively the idea of semantic subtyping
and the type systems which employ it.�ariantsS is based on the system in
Castagna et al. (����) and Castagna, Nguy�n, Xu, and Abate (����), which
is the foundation of the polymorphic extension of CDuce. However, there
are signi�cant di�erences, motivated by the concrete application and by the
desire to conform the presentation to standard descriptions of the Hindley-
Milner type system. Most signi�cantly, our calculus does not permit type-
cases on arrow types, and this allows many simpli�cations throughout.
�is chapter describes the deductive type system. In the last section, we

compare it with�ariantsK – to show it is more expressive – and we discuss
the di�erences we have introduced with respect to the aforementioned type
system used in CDuce.

� .� ����� ��� ���������

In this section, we de�ne the types of the�ariantsS system and introduce
the properties of its subtyping relation.
We assume that there exists a countable set� of type variables, ranged

over by α, β, γ, We consider the set � of language constants, ranged over
by c, and the set � of tags, ranged over by ‵tag. We also assume that there
exists a �nite set� of basic types, ranged over by b.

���������� � .�: Types A type t is a term co-inductively produced by
the following grammar:

t ∷= α type variable
� b basic
� c constant singleton
� t → t arrow
� t × t product
� ‵tag(t) variant
� t ∨ t union
� ¬t negation
� 0 empty

which satis�es two additional constraints:

• (regularity) the term must have a �nite number of di�erent sub-terms;
• (contractivity) every in�nite branch must contain an in�nite number of

occurrences of atoms (i.e. a type variable or the immediate application
of a type constructor: constant, arrow, product, or variant). �

��

�.� Types and subtyping

We introduce the following abbreviations.

t� ∧ t� = ¬(¬t� ∨ ¬t�) intersection
t� � t� = t� ∧ (¬t�) di�erence

1 = ¬0 any

We enrich the language of types from that given in De�nition �.� in mul-
tiple ways. First, we introduce set-theoretic type connectives: union, intersec-
tion, and complementation, as well as a top and a bottom type. We also add
recursive types by interpreting the grammar co-inductively. Contractivity is
imposed to bar out ill-formed types such as t = t ∨ t (which does not give
any information on the set of values it represents) or t = ¬t (which cannot
represent any set of values).�ese are the essential elements of set-theoretic
types as studied in the theory of semantic subtyping in Frisch, Castagna, and
Benzaken (����); Castagna and Xu (����) then add type variables to provide
parametric polymorphism.

Second, we add singleton types for constants: for example, we have a type
true for the constant true, which is more precise than the corresponding basic
type bool.�ese are necessary for the precise typing of pattern matching.
Finally, we add explicit types for variants, rather than employing type

variables (which we use only for parametric polymorphism).�ese types
have the form ‵tag(t): the type of variant expressions with tag ‵tag and an
argument of type t. Type connectives allow us to represent all variant types
of�ariantsK by combining types of this form, as we describe in detail below.

������� ����� ��� ������� �������������� �ariantsK uses
variables to type variants, but these variables have kinds attached to them
and, when we quantify them in a type scheme, these kinds constrain the
possible instantiations of the scheme.�is is conceptually a form of bounded
quanti�cation: a variable of kind (L,U , T)may only be instantiated by other
variables which fall into the bounds – the lower bound being determined by
L and T , the upper one by U and T .

�ese bounds can be represented in our system as unions of variant types‵tag(t). For instance, consider in�ariantsK a constrained variable α of kind({‵A}, {‵A, ‵B}, {‵A:bool, ‵B: int}). If we quantify α, we can then instantiate
it with variables whose kinds entail that of α. Using our variant types and
unions, we write the lower bound as tL = ‵A(bool) and the upper one as
tU = ‵A(bool) ∨ ‵B(int). In our system, α should be a variable with bounded
quanti�cation, which can only be instantiated by types t such that tL ≤ t ≤ tU.

However, we do not need to introduce bounded quanti�cation as a feature
of our language: we can use type connectives to encode it. �e possible
instantiations of α (with the bounds above) and the possible instantiations
of (tL ∨ β) ∧ tU, with no bound on β, are equivalent. We use the latter form:
we internalize the bounds in the type itself by union and intersection. In this
way, we need no system of constraints extraneous to types.

��

� Variants with set-theoretic types

��� ����� Note that we can de�ne top types for each ‘family’ of types:
constants, arrows, products, and variants.�ey are disjoint and each value
belongs to exactly one of these.�e top types are de�ned as follows.

1� = �b∈� b constants
1� = 0→ 1 arrows
1� = 1 × 1 pairs
1� = ¬(1� ∨ 1� ∨ 1�) variants

�e type t� → t� is that of functions which, if they are given an argument
in t� and they do not diverge, yield a result in t�. Hence, 0 → t is actually
equivalent to 0→ 1 for any t, as any of them is the type of all functions: no
value is in 0, hence we never have any constraint on the result.

Conversely, 1 → 0 is the type of functions that (provably) diverge on
all inputs: a function of this type should yield a value in the empty type
whenever it terminates, and that is impossible.

�������� �� ������� ����� Variant types are the only addition
we make to the types used in previous work on semantic subtyping with
parametric polymorphism (Castagna and Xu, ����) and on a calculus and
type system for polymorphic functions with set-theoretic types (Castagna
et al., ����; Castagna, Nguy�n, Xu, and Abate, ����).
Indeed, we could choose to treat variants as syntactic sugar, by adding

singleton types for tags and encoding a variant type ‵tag(t) as the pair type‵tag × t. In the design of a language we might actually represent variants as
pairs in this way, in the semantics and not just for typing.�is would allow
us, for instance, to match any variant value with the pattern (t, a) to capture
its tag in t and its argument in a.¹
We could adopt this encoding explicitly here and have ‵tag(t) be just

an abbreviation. However, our syntax and semantics (and indeed those of
OCaml) treat pairs and variants as distinct sorts of expressions: notably, a
variant value does not match (x , y). For consistency with this semantics,
we have chosen to treat their types as distinct families too. Otherwise, we
would have to distinguish between ‘ordinary’ product types and those which
encode variants in some cases, complicating a few de�nitions.
�us we introduce a new constructor for variant types. However, we

still use this encoding at a lower level: we derive from it the properties of
subtyping for variant types. An analogous solution is adopted in CDuce for
��� types: there is a distinct constructor whose subtyping is de�ned by an
encoding into product types.

� In fact, this encoding is used in the interface between CDuce and OCaml and in
general to emulate variants in CDuce.

��

�.� Type system

Subtyping

�ere exists a subtyping relation between types. We write t� ≤ t� when t� is a
subtype of t�. We write t� � t� when t� and t� are equivalent with respect to
subtyping, that is, when t� ≤ t� and t� ≤ t�.�e de�nition and properties of
this relation are studied in Castagna and Xu (����) – except for variant types,
which can be added by encoding them – and we do not report them here.
We only give a brief account of such properties as we will use later on.

Subtyping has a semantic de�nition, in the sense that t� ≤ t� holds if and
only if �t�� ⊆ �t��, where �⋅� is an interpretation function mapping types to
sets of elements from some domain�. We can think of� as the set of all
values in the language, so that types are interpreted as sets of values.

�e properties of connectives with respect to subtyping are given by a
few conditions on the interpretation, which make it ‘set-theoretic’. Union
types must be interpreted into unions and negation into complementation
with respect to �. �e bottom type is interpreted as the empty set. Basic
types are interpreted as sets of constants, products as Cartesian products.
An arrow type t� → t� is interpreted equivalently – as far as subtyping is
concerned – to the set of relations f where, for each pair (x , y) ∈ f , if x is in
the interpretation of t� then y is in the interpretation of t�.
�e main contribution of Castagna and Xu (����) is the de�nition of

semantic subtyping for types containing variables. Intuitively, a variable is
only a subtype of itself and of 1.�us, if it occurs in covariant position in a
type, it can only be subsumed to 1 or to unions where it appears explicitly.
Conversely, if it occurs in contravariant position, it can be subsumed to 0 or
to intersections where it appears explicitly. Subtyping is preserved by type
substitutions, that is, t� ≤ t� implies t�θ ≤ t�θ for any type substitution θ.

A consequence of this semantic de�nition is that pairs and variants with
the empty type as sub-terms are themselves empty. For example, int × 0 is
equivalent to 0, because the Cartesian product A×� is empty for any A: we
cannot build a pair value whose second component is in the empty type.

� .� ���� ������

Wemove to the description of typing in�ariantsS. As mentioned earlier, we
strive to keep the presentation as similar to�ariantsK as possible. Kinds and
kinding environments are no longer needed because all their information
can be represented by the types themselves: this shortens many de�nitions.

We begin by introducing type schemes, de�ned as in ��.

���������� � .�: Type schemes A type scheme s is of the form ∀A. t,
where A is a �nite set {α�, . . . , αn} of type variables.

We identify a type scheme ∀�. t, which quanti�es no variable, with the
type t itself: thus, we view types as a subset of type schemes. Furthermore,

��

� Variants with set-theoretic types

αθ = �������
t′ if t′�α ∈ θ
α otherwise

bθ = b
cθ = c

(t� → t�)θ = (t�θ)→ (t�θ)(t� × t�)θ = (t�θ) × (t�θ)‵tag(t)θ = ‵tag(tθ)
(t� ∨ t�)θ = (t�θ) ∨ (t�θ)(¬t)θ = ¬(tθ)

0θ = 0

������ � .� Application of a type substitution to a type.

we consider type schemes up to renaming of the variables they bind, and
we disregard useless quanti�cation (i.e. quantifying variables which do not
occur in the type). �

We introduce the set of free variables occurring in a type or type scheme,
without giving the complete de�nition. As types are co-inductive, it can
given by memoization (see Castagna et al., ����, De�nition �.�).

���������� � .�: Free variables We de�ne var(t) to be the set of type
variables occurring in a type t. We say they are the free variables of t, and we
say that t is ground or closed if and only if var(t) is empty.

We extend the de�nition to type schemes as var(∀A. t) = var(t) � A. �
We de�ne type substitutions and their application to types. To account

for types being recursive, we give the de�nition by co-induction.

���������� � .�: Type substitutions A type substitution θ is a �nite map-
ping of type variables to types. We write [t i�α i � i ∈ I] for the type substitu-
tion which simultaneously replaces αi with ti , for each i ∈ I. We write tθ for
the application of the substitution to a type t; application is co-inductively
de�ned by the equations in Figure �.�.

We extend the var(⋅) operation to substitutions as

var(θ) = �
α∈dom(θ) var(αθ) .

We extend application of substitutions to type schemes∀A. t. By renaming
quanti�ed variables, we assume A ∩ (dom(θ) ∪ var(θ)) = �, and we have(∀A. t)θ = ∀A. tθ. �

��

�.� Type system

We de�ne type environments and the operations of generalization of
types and instantiation of type schemes. �e order of generality between
type schemes must now account for subtyping.

���������� � .�: Type environments A type environment Γ is a partial
mapping from expression variables to type schemes. We write type environ-
ments as Γ = {x�: s�, . . . , xn: sn}.
We write Γ , Γ′ for the updating of the type environment Γ with the new

bindings in Γ′. It is de�ned as follows.

(Γ , Γ′)(x) = �������
Γ′(x) if x ∈ dom(Γ′)
Γ(x) otherwise

We extend the var(⋅) operation to type environments as

var(Γ) = �
s∈range(Γ) var(s) . �

���������� � .�: Generalization We de�ne the generalization genΓ(t)
of a type t with respect to a type environment Γ as the type scheme

genΓ(t) = ∀A. t
where A = var(t) � var(Γ).

We extend this de�nition to type environments which only contain types
(i.e. trivial type schemes) as

genΓ({x�: t�, . . . , xn: tn}) = {x�: genΓ(t�), . . . , xn: genΓ(tn)} . �
���������� � .�: Instances of a type scheme We de�ne the instances of a
type scheme ∀A. t as the following set of types:

inst(∀A. t) = { tθ � dom(θ) ⊆ A} .
We say that a type scheme s� ismore general than a type scheme s�, and

we write s� � s�, if for every t� ∈ inst(s�) there exists a t� ∈ inst(s�) such that
t� ≤ t�.
We extend this notion to type environments as

Γ� � Γ� ⇐⇒
dom(Γ�) = dom(Γ�) ∧ ∀x ∈ dom(Γ�). Γ�(x) � Γ�(x) . �

We now de�ne the typing relation itself. As before, we present the de�ni-
tions related to pattern matching a�erwards.

���������� � .�: Typing relation �e typing relation Γ �� e: t (e is given
type t in the type environment Γ) is de�ned by the rules in Figure �.�. �

��

� Variants with set-theoretic types

Ts-Var
t ∈ inst(Γ(x))

Γ �� x: t Ts-Const
Γ �� c: c

Ts-Abstr
Γ , {x: t�} �� e: t�
Γ �� λx .e: t� → t�

Ts-Appl
Γ �� e�: t′ → t Γ �� e�: t′

Γ �� e� e�: t
Ts-Pair

Γ �� e�: t� Γ �� e�: t�
Γ �� (e�, e�): t� × t� Ts-Tag

Γ �� e: t
Γ �� ‵tag(e): ‵tag(t)

Ts-Match

Γ �� e�: t� t� ≤ �i∈I *pi+ ti = (t� �� j<i *p j+) ∧ *pi+

∀i ∈ I �������
t′i = 0 if ti ≤ 0
Γ , genΓ(ti��pi) �� ei : t′i otherwise

Γ �� match e� with (pi → ei)i∈I : �
i∈I t
′
i

Ts-Subsum
Γ �� e: t′ t′ ≤ t

Γ �� e: t
������ � .� Typing relation.

We use the � subscript in the turnstile symbol to distinguish this typing
relation from that of�ariantsK.
We set aside the rule for pattern-matching expressions for the moment

and present the others.�ey are all straightforward and very close to those
of�ariantsK. Variables, abstractions, applications, and pairs are typed as
in ��. Constants are typed with their singleton type.�e rule for variant
expression is simpli�ed since we have explicit types for them.
�e signi�cant di�erence, of course, is the presence of the subsumption

rule Ts-Subsum, by which we can assign to an expression a supertype of any
type it has. It is the only rule that is not syntax-directed.

Typing pattern matching

Let us examine the rule Ts-Match. As in �ariantsK, we require the ex-
pression e� to be matched to have some type t�.�e subtyping condition
t� ≤ �i∈I *pi+ formalizes exhaustiveness, as we will see shortly. Unlike the
previous system, we do not require every branch to be well-typed. Rather, we
disregard those branches which we know will never be selected: we compute
an input type ti for each branch which is empty if the branch is useless.
We then de�ne an output type t′i for each branch, which is 0 for useless

branches (as they will never produce a result) and the type assigned to ei for

��

�.� Type system

*_+ = 1
*x+ = 1
*c+ = c

*(p�, p�)+ = *p� + × * p�+
*‵tag(p)+ = ‵tag(*p+)
*p�&p�+ = *p� + ∧ * p�+
*p��p�+ = *p� + ∨ * p�+

������ � .� Accepted type of a pattern.

the others. To type each branch, we generate an environment ti��pi , which
is then generalized.�e �nal type for the expression is the union of all t′i :
union types are useful here, as di�erent branches can have di�erent types.

Set-theoretic types are bene�cial most of all because of the following prop-
erty: the set of values accepted by a pattern is always described precisely by
a type. Clearly, the existence of constant patterns means we need singleton
types for this to be true: no type of�ariantsK corresponds exactly to the
set of values matched by true, for instance. Since we have union and inter-
section patterns, we also need the corresponding connectives. Wildcards
and variables require a top type. Having all these, we can give the following
de�nition.

���������� � .�: Accepted type of a pattern �e accepted type *p+ of a
pattern p is de�ned inductively by the equations in Figure �.�. �
�is de�nition is given by induction on the type, but it is equivalent to

the semantic de�nition which de�nes the accepted type of a pattern p as the
set of values accepted by p.�us we know that a value matches a pattern if
and only if it can be typed with the accepted type of that pattern.
�is allows us to represent exhaustiveness with our types. �e union�i∈I *pi+ is the set of values which will be accepted by one pattern at least.

We require t� ≤ �i∈I *pi+, that is, that any value which can be produced by
e� be accepted by a pattern.
Non-redundancy of a pattern can also be expressed in terms of accepted

types.�e type ti we de�ne for each branch corresponds exactly to the values
that will be matched by the pattern pi : t� � � j<i *p j+ is the subtype of t�
corresponding to the values that are not accepted by the previous patterns;
by intersecting it with *pi+, we only consider those that pi will accept.
If ti ≤ 0, we know the branch will never be selected: any value t� can

produce will either be matched by one of the preceding patterns or fall
through to the following ones. Here, we choose to ignore the corresponding

��

� Variants with set-theoretic types

branch: we do not consider it in the �nal type, and we do not type it at all.
Even if it were ill-typed, it could never be reached: hence it is sound to accept
it. Alternatively, we might require ti � 0 to hold and thus forbid redundant
patterns altogether.

Environment generation uses ti as well, making the resulting environment
more precise. For instance, the environment we generate for the pattern x is
not {x: t�} but rather {x: ti}where ti is a subtype of t�. We bind the variable
not to the type of all values the matched expression may produce, but to the
type of the values which can actually reach and match that pattern.

For environment generation, type connectives also introduce a complica-
tion. It is no longer true that every product type (a type t such that t ≤ 1×1)
is of the form t�× t�: for example, it might be (int× int)∨(bool×bool). Being
able to distinguish this type from (int∨bool)×(int∨bool) is useful; however,
it means it is no longer trivial to compute the �rst or second component of a
product type.
We introduce two operators for this purpose below, though we do not

give their de�nition – we only state those of their properties which we need
in our proofs. See Castagna et al. (����, Appendix �.�.�) for the full details.
Variant types are analogous to products in this, so we introduce an operator
for them as well (it is just π� with the aforementioned encoding of variants
as pairs).

�������� � .��: Projections of product types �ere exist two functions
π�(⋅) and π�(⋅) which, given a type t ≤ 1 × 1, yield types π�(t) and π�(t)
such that:

• t ≤ π�(t) × π�(t);
• if t ≤ t� × t�, then π i(t) ≤ ti ;
• if t ≤ t′ ≤ 1 × 1, then π i(t) ≤ π i(t′);
• for all type substitutions θ, π i(tθ) ≤ π i(t)θ. �

�������� � .��: Projections of variant arguments For every tag ‵tag there
exists a function π‵tag(⋅) which, given a type t ≤ ‵tag(1), yields a type π‵tag(t)
such that:

• t ≤ ‵tag(π‵tag(t));
• if t ≤ ‵tag(t′), then π‵tag(t) ≤ t′;
• if t ≤ t′ ≤ ‵tag(1), then π‵tag(t) ≤ π‵tag(t′);
• for all type substitutions θ, π‵tag(tθ) ≤ π‵tag(t)θ. �
Wenowde�ne the generation of an environment from a type and a pattern,

using projections to extract product components and variant arguments.

���������� � .��: Pattern environment generation Given a pattern p
and a type t ≤ *p+, the type environment t��p generated by patternmatching
is de�ned inductively by the equations in Figure �.�. �

��

�.� Type system

t��_ = �
t��x = {x: t}
t��c = �
t��(p�, p�) = π�(t)��p� ∪ π�(t)��p�
t��‵tag(p) = π‵tag(t)��p
t��p�&p� = t��p� ∪ t��p�
t��p��p� = (t ∧ *p�+)��p� � (t � *p�+)��p�

where (Γ � Γ′)(x) = Γ(x) ∨ Γ′(x)
������ � .� Pattern environment generation.

Intersection patterns allow us to de�ne this as a function, while it had to
be a relation in�ariantsK because of conjunctive types in variant arguments
(here, conjunctive types are just intersections in the argument of the variant).

Type soundness

We state here the soundness property of the�ariantsS type system. As usual,
we express it as a corollary of the two properties of progress and subject
reduction.

In the following, we say that an expression e is well-typed if there exists a
Γ and a t such that Γ �� e: t. If e is closed (e.g. if it is a value), then we can
always take Γ = �.
������� � .�: Progress Let e be a well-typed, closed expression. �en,
either e is a value or there exists an expression e′ such that e � e′.
������� � .�: Subject reduction Let e be an expression and t a type such
that Γ �� e: t. If e � e′, then Γ �� e′: t.
��������� � .�: Type soundness Let e be a well-typed, closed expression,
that is, such that� �� e: t holds for some t.�en, either e diverges or it reduces
to a value v such that � �� v: t.

In the proofs we use the following de�nition of freshness of type variables.

���������� � .��: Freshness We say that a type variable α is fresh with
respect to a set of type variables A, and write α ♯A, if α ∉ A. We extend this
de�nition to types, type environments, and substitutions, by de�ning α ♯ t
as α ♯ var(t), α ♯ Γ as α ♯ var(Γ), and α ♯ θ as α ♯(dom(θ) ∪ var(θ)).

��

� Variants with set-theoretic types

We extend this de�nition to speak of the freshness of a set of variables,
where A ♯A′ means ∀α ∈ A. α ♯A′. �

Algorithmic typing

We have described a deductive type system for�ariantsS, which includes
a subsumption rule that is not syntax-directed. A corresponding typing
algorithm can be derived as shown in Castagna et al. (����) and Castagna,
Nguy�n, Xu, and Abate (����), assuming that all abstractions are annotated
with their arrow type.

�e �rst of those articles discusses the typing algorithm for a calculus with
explicit type substitutions – one wherein, to apply a polymorphic function
to an argument, we must write the instantiation explicitly, as in

(λα→αx .x)[int�α] � .
�e second article covers the inference of these instantiations. Inference of

type substitution is not proven to be complete in the presence of overloaded
functions (typed with intersections of arrow types), but it is here since we
do not allow them. It relies on the algorithm to solve the tallying problem,
which we discuss in the next chapter.

�e appendices of those articles extend the system to add product types.
�ey present an algorithm which is complete and another which renounces
completeness for the sake of e�ciency (it does not infer type substitutions
inside pair projections) but should still be powerful enough in practice.

� .� ���������� ���� ����� �������

We discuss here the relationship between the two type systems we have
presented. We wish to show that�ariantsS is complete with respect to�ari-
antsK: any program that is well-typed in the latter is also well-typed in the
former. �is would imply that, by adopting the new type system for our
calculus, we extend our language conservatively in the sense that we do not
refuse any of the programs we accepted before. Proving this is our �rst goal
here, though we present the proof only for a somewhat restricted case.
�e opposite property – that any well-typed program in �ariantsS be

well-typed in �ariantsK as well – clearly should not hold, since the new
type system is more expressive. We give below some examples of this greater
expressiveness.

Finally, we also compare�ariantsS with the type system used in CDuce,
which we have taken as our starting point, to discuss the reasons for the
changes we have made.
From now on, when comparing �ariantsK and �ariantsS, we use the

pre�xes k- and s- to distinguish types, environments, and other notions
which exist in both systems. In the de�nitions, we have also used di�erent

��

�.� Comparison with other systems

metavariables for types and type schemes: τ and σ for k-types and k-type
schemes, t and s for s-types and s-type schemes.

Completeness with respect to�ariantsK

To show that �ariantsS is complete with respect to �ariantsK, we de�ne
a translation of k-types to s-types; this translation naturally depends on a
kinding environment to make sense of type variables. We then prove that,
whenever an expressionmay be assigned some type in�ariantsK (in a certain
environment), it may be given the translation of that type in�ariantsS (in
the translated environment).

We work under an assumption which restricts�ariantsK to simplify the
proof: we require kinding environments to be non-recursive. Under this
restriction, our system can no longer express recursive variant types (nor any
other recursive type); for example, it cannot express the type of integer lists
as α where α has kind ({‵Nil, ‵Cons}, {‵Nil, ‵Cons}, {‵Nil: unit, ‵Cons: int × α}).
We impose this restriction in order to use induction – with a particular
measure of a type in a kinding environment – in the proof of completeness.

Note that recursive types can be expressed in�ariantsS, since the grammar
of types is interpreted co-inductively. If we write these types using a µ binder
for recursion variables, the type above is µX .‵Nil(unit) ∨ ‵Cons(int × X). We
conjecture that completeness holds also in the presence of recursive kinds,
but the proof would require us to use co-inductive techniques and enter into
much more detail about the de�nition of subtyping.

We �rst de�ne this restriction and our measure.�en we de�ne the trans-
lation of types, by induction on the measure.

���������� � .��: Non-recursive kinding environments We say that a
kinding environment K is non-recursive if, for all α ∷ (L,U , T) ∈ K, we have
α ∉ �‵tag:τ∈T varK(τ). �
���������� � .�� We de�ne a function w which, given a k-type τ in a
non-recursive kinding environment K, yields themeasure w(τ,K) of τ in
K. It is de�ned by the following equations.

w(α,K) = �������
� +∑‵tag:τ∈T w(τ,K) if α ∷ (L,U , T) ∈ K
� otherwise

w(b,K) = �
w(τ� → τ�,K) = w(τ�,K) +w(τ�,K) + �
w(τ� × τ�,K) = w(τ�,K) +w(τ�,K) + � �

���������� � .��: Translation of types Let �⋅�(⋅) be a type translation
function which, given a k-type τ in a non-recursive kinding environment K,
yields an s-type �τ�K . It is de�ned inductively by the rules in Figure �.�.

��

� Variants with set-theoretic types

�α�K =
�������
α if α ∷ ● ∈ K
(lowK(L, T) ∨ α) ∧ uppK(U , T) if α ∷ (L,U , T) ∈ K

where lowK(L, T) = �‵tag ∈ L
‵tag(�‵tag:τ ∈T �τ�K)

uppK(U , T) =
�����������������

�‵tag ∈U
‵tag(�‵tag:τ ∈T �τ�K) if U ≠ �

�‵tag ∈ dom(T)
‵tag(�‵tag:τ ∈T �τ�K) if U = �

∨ (1� ��‵tag ∈ dom(T) ‵tag(1))�b�K = b
�τ� → τ��K = �τ��K → �τ��K�τ� × τ��K = �τ��K × �τ��K

������ � .� Translation of k-types to s-types.

We extend the translation to type schemes as �∀A.K′▹τ�K = ∀A. �τ�K ,K′
and to type environments by translating each type scheme pointwise. �
�e only complex case in the de�nition of the translation is that of con-

strained variables, where we encode the bounded quanti�cation as we have
described at the beginning of this chapter. When α ∷ (L,U , T) ∈ K, we
produce the type that corresponds to a variable bounded by a lower and an
upper bound. Both bounds are essentially unions of variant types (where
empty unions are de�ned to be 0).�e lower one is just a union of this form:
the argument of each variant is the translation of the type associated to its
tag in T .�e inner intersection handles conjunctive types, but these do not
actually occur for tags in L. �e upper bound is analogous when U ≠ �;
here intersections may have multiple factors.
Finally, when U = �, the upper bound should include any possible tag;

we cannot express it as a union of all tags because only �nite unions are ex-
pressible with our types.�us, we split into a union of two summands: a part
corresponding to the tags mentioned in T – a �nite amount – and another
part for the others.�e former is built normally.�e latter is intuitively the
in�nite union of the types ‵tag(1) for each ‵tag ∉ dom(T): it is the top type of
variants, which is ‘equivalent’ to the in�nite union of all types ‵tag(1), minus
the types for the tags which appear in T .

�e equations de�ning this translation could be interpreted co-inductively
to account for recursion; then, they would generate recursive types like
µX . ‵Nil(unit) ∨ ‵Cons(int × X) in the example above.
Given this translation, the completeness of �ariantsS with respect to

�ariantsK is expressed by the following property.

��

�.� Comparison with other systems

������� � .�: Preservation of typing Let e be an expression, K a non-
recursive kinding environment, Γ a k-type environment, and τ a k-type. If
K; Γ �� e: τ, then �Γ�K �� e: �τ�K .
In addition to assuming kinding environments to be non-recursive, we

alsomake amodi�cation to the systemwe use in the proofs: we add recursive
functions to the language. We do so by adding a �xed-point combinator to
the expressions, together with a reduction rule and typing rules for both
systems (we give standard de�nitions in appendix).�is is not very restrictive
since, in practice, we would want to extend these systems with recursive
functions anyway. In this extended system, all arrow types are inhabited by
the never-terminating function, which simpli�es the proof.

����������� ������� ����� While the translation of constrained
variables given above is the general one, the resulting types can be simpli-
�ed in many cases – just like OCaml does by omitting the variable and
printing its kind alone.�e simpli�cation, in our case, consists in replacing(lowK(L, T) ∨ α) ∧ uppK(U , T) with lowK(L, T) if it appears in covariant
position in a type (e.g. in the codomain of an arrow type) or with uppK(U , T)
if it appears in contravariant position (e.g. in its domain).�is can be done
only if the variable always appears with the same variance in the types of
the program (in particular, it can be done if it appears only once) and not
otherwise.

�e justi�cation for this simpli�cation is the following. Assume the vari-
able appears only once.�en, we can choose its instantiation freely, a�ecting
only the type it appears in and no other. If its only occurrence is in covariant
position, its instantiation with 0 can be seen as the ‘canonical’ choice because
any other instantiation can be obtained by subsumption: we can pick that
instantiation because it is more general (in the sense of subtyping) than all
others.�e resulting type (lowK(L, T) ∨ 0) ∧ uppK(U , T) is equivalent to
lowK(L, T) because lowK(L, T) ≤ uppK(U , T).�e opposite reasoning leads
to choosing 1 to instantiate variables that appear in contravariant position.
We follow the same idea if a variable appears multiple times, as long as it
always has the same variance: the instantiations with 0 or 1 can reach any
other by subsumption.

Increased expressiveness

With respect to �ariantsK, �ariantsS is more expressive mainly in three
respects: i) the use of subsumption rather than instantiation for variant poly-
morphism avoids the loss of polymorphism for λ-abstracted variables; ii) we
type patternmatchingmore precisely, generatingmore precise environments
from patterns and excluding redundant branches; iii) we can express more

��

� Variants with set-theoretic types

types and thus describe function behaviour more precisely without losing
�exibility (thanks to subtyping). In particular, this system allows us to type
all problematic examples given at the end of Section �.�.

Using subtyping, we can type expression like

(fun x→ ([x; ‵B true], [x; ‵B �])) (‵A �)

because we give the type ‵A(�) to x and then use subsumption to type the
two lists.�is also avoids the issues with the function

let id x = match x with ‵A|‵B→ x� ([< ‵A | ‵B] as α)→ α

which accumulates too many constraints on its result, making it lose poly-
morphism. In�ariantsS, id can be given type

α ∧ (‵A(unit) ∨ ‵B(unit))→ α ∧ (‵A(unit) ∨ ‵B(unit))
that is, ∀α ≤ (‵A(unit) ∨ ‵B(unit)). α → α with the syntax of bounded quan-
ti�cation. It gives us the same static information as the type in�ariantsK
(i.e. we can still give type ‵A(unit) to id ‵A), but we can combine id ‵A with
any other variant type by subsumption.
Our typing of pattern matching is more precise than that of�ariantsK

and allows us to type the examples we have described on page ��.�e im-
provement relies on being able to represent exactly the set of values which
will be matched by a pattern as a type: we use this both to generate more
precise environments and to express non-redundancy as a subtyping check
(which determines whether we consider a branch or not).

Finally, we can give more precise types to functions de�ned by pattern
matching, which avoids the di�culties in type reconstruction mentioned on
page �� and similar ones. For example, consider the following function.

let f = function (true, ‵A)→ � | (true, ‵B)→ � | (false, _)→ �� bool ∗ [< ‵A | ‵B]→ int

In OCaml, to avoid non-exhaustiveness we must select the type above. How-
ever, the last pattern can actually accept other variants as well. Here, we can
give a more precise type for the domain, such as

�true × ‵A(unit)� ∨ �true × ‵B(unit)� ∨ �false × 1� .
�is is also useful when we deal with non-variant types; in general it allows
us to give types that ensure matching will be exhaustive without having to
make too many patterns redundant or unduly restricting the values they can
accept.
Introducing intersections and using semantic subtyping also avoids the

unintuitive conjunctive types introduced by �ariantsK. For example, the
type [< ‵A of bool & int | ‵B]→ int ∗bool of page �� and its more intuitive coun-
terpart [< ‵B]→ int ∗bool are translated into equivalent types because of the
equivalences ‵A(bool ∧ int) � ‵A(0) � 0.

��

�.� Comparison with other systems

�ariantsS and the CDuce calculus

�ariantsS di�ers in several respects from the system in Castagna et al. (����)
and Castagna, Nguy�n, Xu, and Abate (����) – which we refer to as CDuce
since it is the core of the polymorphic version of the language. We impose
two main restrictions to simplify the system; there are also a few di�erences
introduced to bring the presentation closer to�ariantsK.

����-���� �� ����� ����� CDuce allows us to discriminate between
di�erent arrow types with a type-case construct. In the full language, this is
integrated in pattern matching. For instance,

λx .match x with (int→ int)→ x � � _→ �

if applied to a function f from integers to integers, yields the result of f
applied to �; if applied to anything else, it yields �.

�is feature does not seem to be of much practical use; Castagna,Nguy�n,
Xu, and Abate (����) report it has never been used in their programming
experience with CDuce. Probably, omitting it altogether or only allowing
patterns to distinguish functions from non-functions (and not functions of
di�erent types from each other) would not be restrictive in concrete use. It
has been included for continuity with monomorphic CDuce. However, in
the polymorphic extension it results in a more complex system, as regards
both typing and implementation.
In particular, the complexities arise because the type of a polymorphic

function changes if it is instantiated to apply it to some value. For example,
a function of type α → (α → α), applied to a value of type int, does not
yield a function of type α → α: the polymorphic type is instantiated to apply
it, so the result has type int → int. On the one hand, this means we must
keep information on the type of polymorphic functions and update it at
run-time with the appropriate instantiation (this is a source of complexity,
though the implementation can be made e�cient in practice). On the other,
the semantics is theoretically non-deterministic, and in practice will be
implementation-dependent, if the instantiation of polymorphic functions
is inferred. For example, if a function of type α → (α → α) is applied to
�, the result might have type int → int or � → � (or yet another) depending
on which instantiation is inferred. Neither of these types is a subtype of the
other, so there might not be a meaningful canonical choice.
We remove this feature since it is not present in OCaml. Only catch-

all patterns accepts functions, so they may not be distinguished among
themselves or from other values by pattern matching.�us, the type system
is simpli�ed and this issue disappears; the implementation can discard types
at run-time. While our choice depends on the practical goal of our study,
the greater simplicity and the removal of this source of non-determinism
would make this a reasonable choice also to design a new language with
set-theoretic types.

��

� Variants with set-theoretic types

For a new language, an intermediate solution might be adding patterns
for non-arrow types and a special pattern which accepts all functions and no
other value.�is does not complicate the system and it can prove useful in
practice. For instance, a pretty-printing function like the one in the OCaml
top-level interpreter might use it to render functions as <fun> while it prints
other values according to their types. In their work on typing untyped lan-
guages, Tobin-Hochstadt and Felleisen (����) include a procedure? predicate
to distinguish functions from other values; this is an indication that such a
pattern might be in use in untyped programming.

���������� ��������� �e second main di�erence is that we only
allow abstractions to be typed with a single arrow type and not with an
intersection of them.�is is a major restriction, in that it means we cannot
type overloaded functions precisely and thus we lose precision in the typing
of pattern matching. For instance, we cannot type

λx .match x with ‵A(_)→ true � ‵B(_)→ false

with the type

(‵A(1)→ true) ∧ (‵B(1)→ false)
which would describe the function exactly. Rather, we must choose the less
precise type

(‵A(1) ∨ ‵B(1))→ bool

which is a supertype.We have imposed this restriction to have a less powerful
system for which to study reconstruction (which would be undecidable
otherwise). We discuss in Section �.� the extension of �ariantsS which
allows overloaded functions.

����� ����������� As for the di�erences in presentation, for con-
creteness we directly study the system with many-branch pattern matching
and let-polymorphism. Conversely, the CDuce calculus is described with
type-case and without let; both aspects are discussed a�erwards and the
typing of pattern matching is presented in the appendices.
We use type schemes to handle let-polymorphism, for consistency with

��. In CDuce, conversely, a set ∆ of type variables is used to record the
variables which cannot be instantiated.�is ∆ is an argument of the typing
judgment.
�is is not just a cosmetic change, as the system in CDuce allows the

instantiation of fewer type variables than ours. However, the di�erence is
immaterial in practice: it only concerns variables which appear in the codo-
main of an arrow type but not anywhere else, and these can be replaced by 0
in practice. InCDuce, while typing the body of an abstraction of type t� → t�,
all variables occurring in t� and t� are considered monomorphic and may
not be instantiated. In�ariantsS, the variables in t� become monomorphic

��

�.� Comparison with other systems

because they are added to the environment, but this is not the case for those
in t�. Our system is sound because, if a variable β ∈ var(t�) does not occur
in the environment nor in t�, the only expressions that have type β are those
that have type 0 and thus, by subsumption, they also have any other type; it
is then sound to instantiate β with any other type.

��

� Reconstruction for set-theoretic types

We turn to the study of type reconstruction for the�ariantsS type system.
While reconstruction is undecidable in general in the presence of intersection
types, such types have a limited role in our typing rules: abstractions must be
typed with a single arrow type and not an intersection. Indeed, we describe
here sound and complete reconstruction for a restriction of�ariantsS where
we remove let-polymorphism. While removing let-polymorphism is quite
limiting, the typing of variants does not rely on it directly, so this system is
still interesting for our study.

Later, we extend reconstruction to encompass let-polymorphism.We keep
a less signi�cant restriction: we do not exclude useless branches in the typing
of patternmatching, since during reconstructionwe do not know yet whether
a branch will be useless.�is is not very limiting as it only matters if we have
redundant patterns. We prove soundness, but not completeness (though
we conjecture it holds).�ere are signi�cant complications in dealing with
let-polymorphism in our system as opposed to ��.
Type reconstruction for a type system with set-theoretic types and se-

mantic subtyping has been studied in Castagna, Nguy�n, Xu, and Abate
(����). We reuse their results related to the resolution of the tallying problem
(the problemof�nding substitutions satisfying a set of subtyping constraints),
which is also used to de�ne a typing algorithm for the explicitly-typed lan-
guage. Our contribution is threefold. First, we show that our restriction on
the use of intersection types allows us to give a reconstruction system that is
complete with respect to the deductive type system. Second, we outline the
extension to let-polymorphism, though we do not show completeness; we
suggest some possibilities for future work.�ird, we describe reconstruction
for full pattern matching.

We divide type reconstruction in two phases: the generation of constraints
from expressions and the resolution of these constraints.�ese two phases
can be distinguished straightforwardly in the simply-typed λ-calculus, where
resolution is uni�cation (Wand, ����; Pierce, ����, Chapter ��). With let-
polymorphism, reconstruction is o�en described intertwining the twophases
(see, for instance, Leroy, ����). We keep them separated, following the ap-
proach of Pottier and Rémy (����) and the simpler formulation for the
Hindley-Milner type system in Rémy (����); we describe a simple strategy
for constraint resolution.�is approach requires us to use a structured form
of constraints, which we introduce from the start for consistency.

��

� Reconstruction for set-theoretic types

Ts-Match′
Γ �� e�: t� t� ≤ �i∈I *pi+ ti = (t� �� j<i *p j+) ∧ *pi+∀i ∈ I Γ , genΓ(ti��pi) �� ei : t′i

Γ �� match e� with (pi → ei)i∈I : �
i∈I t
′
i

Ts-MatchM

Γ �� e�: t� t� ≤ �i∈I *pi+ ti = (t� �� j<i *p j+) ∧ *pi+∀i ∈ I Γ , ti��pi �� ei : t′i
Γ �� match e� with (pi → ei)i∈I : �

i∈I t
′
i

������ � .� Restricted typing rules for pattern-matching expressions.

� .� ����������� �� ��� ���� ������

As mentioned above, we restrict�ariantsS in order to study type reconstruc-
tion for it. A minor restriction, which we enforce throughout this chapter, is
obtained by replacing the rule Ts-Match (in Figure �.� on page ��) with the
rule Ts-Match′ in Figure �.�.
�e restricted rule requires every branch to be typed, even if the corres-

ponding ti is empty. During reconstruction, we do not know t� until the
end, and we generate constraints by using some variable α in its place. We
cannot know whether some ti will be empty or not, since that depends on
the instantiation of α. For instance, if the �rst pattern is the constant true,
having α = truemakes any subsequent pattern redundant, while it is not so
if α = bool. We could surely detect some redundancy during reconstruction
(repeated patterns, for example), but we do not do so for simplicity.

Note that ti��pi may now produce empty types, which did not happen
before because we only generated the pattern environment when ti � 0.
Introducing these empty types in the type environment to type a branch is
sound, since it is more restrictive than not typing that branch at all, as Ts-
Match does (i.e. the system is necessarily sound since it types fewer programs
than�ariantsS, which is itself sound).

As mentioned above, this restriction is not so signi�cant as it only makes
a di�erence when there are redundant patterns: if there is no redundancy,
the two systems are equivalent. Realistically, a type reconstruction algorithm
should signal redundancy with a warning. It does not seem too limiting to
also allow it to fail occasionally when it is present.

�e other restriction is much stronger. We consider a variant of the type
system without let-polymorphism. In it, we assume that type environments
only contain types (i.e. trivial type schemes), so that type instantiation for
variables e�ectively does not occur. We change the typing rule for pattern
matching so it does not performgeneralization; themodi�ed ruleTs-MatchM
is in Figure �.�. It also includes the �rst restriction.

��

�.� Reconstruction without let-polymorphism

� .� �������������� ������� ���-������������

In this section, we consider the problem of type reconstruction for�ariantsS
without let-polymorphism. We consider the typing relation Γ �� e: t given
by the rules in Figure �.� on page ��, except Ts-Match, plus Ts-MatchM. We
assume Γ not to contain type schemes with quanti�ed variables.
Type reconstruction for a program (a closed expression) e consists in

�nding a type t such that � �� e: t can be derived; we see it as �nding a type
substitution θ such that � �� e: αθ holds. We generalize this formulation
to non-closed expressions and to reconstruction where we partially know
the type to be reconstructed.�us we say that type reconstruction consists –
given an expression e, a type environment Γ, and a type t – in computing a
type substitution θ such that Γθ �� e: tθ holds, if any such θ exists.

Reconstruction in our system comprises two phases. In the �rst, constraint
generation, we build a set of constraints to record the conditions under which
an expression e may be given type t. Constraints are built from e and t alone,
without using Γ: the free variables of e appear directly in the constraints
rather than being replaced by their types.

In the second phase, constraint solving, we compute the substitution. We
break solving into two steps. Constraint rewriting converts our constraints to
a simpler form, that we call a type-constraint set: a set of subtyping constraints
between types. In doing so, we replace expression variables with their types,
looking them up in Γ. Finally, type-constraint solving computes the solution
to the type-constraint set, using the existing algorithm to solve the tallying
problem described in Castagna, Nguy�n, Xu, and Abate (����).

�e decision to use constraints with expression variables and then convert
them to a simpler form is irrelevant at this point – we might just use the
simpler form, since rewriting is uninteresting. We introduce the two forms
because they allow us to keep constraint generation and solving separate
also in the presence of let-polymorphism.�is may make the system clearer
and aid in studying �exible strategies for resolution; we do not take much
advantage of it currently since we reuse the existing algorithm for tallying,
but it should be more suitable for future work. For consistency, we use both
forms from the beginning.

Constraint generation

We begin by de�ning the language of constraints we will consider. Constraint
generation yields a set of constraints of the form de�ned below.

���������� � .�: Constraints A constraint c is a term inductively gener-
ated by the following grammar:

c ∷= t ≤̇ t � x ≤̇ t � def Γ in {c, . . . , c}

��

� Reconstruction for set-theoretic types

TRs-Var
x: t⇒ {x ≤̇ t} TRs-Const

c: t⇒ {c ≤̇ t}
TRs-Abstr

e: β⇒ C
λx .e: t⇒ {def {x: α} in C , α → β ≤̇ t} TRs-Appl

e�: α → β⇒ C� e�: α⇒ C�

e� e�: t⇒ C� ∪ C� ∪ {β ≤̇ t}
TRs-Pair

e�: α� ⇒ C� e�: α� ⇒ C�

(e�, e�): t⇒ C� ∪ C� ∪ {α� × α� ≤̇ t} TRs-Tag
e: α⇒ C

‵tag(e): t⇒ C ∪ {‵tag(α) ≤̇ t}

TRs-MatchM

e�: α⇒ C� ti = (α �� j<i *p j+) ∧ *pi+∀i ∈ I ti���pi ⇒ (Γi ,Ci) ei : β⇒ C′i
C = C� ∪ (�i∈I Ci) ∪ {def Γi in C′i � i ∈ I } ∪ {α ≤̇ �i∈I *pi+, β ≤̇ t}

match e� with (pi → ei)i∈I : t⇒ C

������ � .� Constraint generation rules (without let-polymorphism).

where, in constraints of the form def Γ in {c�, . . . , cn}, the range of Γ only
contains types.

A constraint set C is a �nite set of constraints. �
A constraint of the �rst form, t ≤̇ t′, requires tθ ≤ t′θ to hold for the �nal

substitution θ. One of the form x ≤̇ t constrains the type of x in the same way.
A de�nition constraint def Γ in C introduces new expression variables, as we
do in abstractions and pattern matching; these variables may then occur
in the constraint set quanti�ed by the de�nition. We use these constraints
to introduce monomorphic bindings (environments with types and not
type schemes), while, in the extension to let-polymorphism, we will add a
di�erent form for bindings we intend to generalize.

We now de�ne constraint generation. For pattern-matching expressions,
we use an auxiliary relation to generate an environment and its constraints
for each pattern.

���������� � .�: Constraint generation �e constraint generation rela-
tion e: t⇒ C is de�ned by the rules in Figure �.�. We assume all variables
introduced by the rules to be fresh. �
���������� � .�: Environment generation for pattern matching �e en-
vironment generation relation for patternmatching t���p⇒ (Γ ,C) is de�ned
by the rules in Figure �.�. We assume all variables introduced by the rules to
be fresh. �
We impose a freshness condition on the variables informally, assuming

all variables introduced by the rules to be distinct from each other and from

��

�.� Reconstruction without let-polymorphism

t���_⇒ (�,�) t���x ⇒ ({x: t},�) t���c⇒ (�,�)
α����p� ⇒ (Γ�,C�) α����p� ⇒ (Γ�,C�)

t���(p�, p�)⇒ (Γ� ∪ Γ�,C� ∪ C� ∪ {t ≤̇ α� × α�})
α���p⇒ (Γ ,C)

t���‵tag(p)⇒ (Γ ,C ∪ {t ≤̇ ‵tag(α)})
t���p� ⇒ (Γ�,C�) t���p� ⇒ (Γ�,C�)

t���p�&p� ⇒ (Γ� ∪ Γ�,C� ∪ C�)
(t ∧ *p�+)���p� ⇒ (Γ�,C�) (t � *p�+)���p� ⇒ (Γ�,C�)
t���p��p� ⇒ ({ x: Γ�(x) ∨ Γ�(x) � x ∈ capt(p�) },C� ∪ C�)

������ � .� Constraint generation for pattern environments.

variables that already appear in t. We also assume they do not appear in the
environment Γ we will use for rewriting. In the Appendix, we give another
formulation of these relations which keeps track explicitly of all variables we
introduce, to use when proving completeness.

Constraint generation for variables and constants just yields a subtyping
constraint on the variable or the constant type. For an abstraction λx .e, we
generate constraints for the body and wrap them into a de�nition constraint
which binds x to a fresh type variable α; we also require the type α → β we
are reconstructing to be a subtype of t.�e rules for applications, pairs, and
tags are similar: we introduce fresh variables as types for the sub-expressions
and add a subtyping constraint.�e rule for pattern-matching expressions
is more complicated. We construct an environment (together with a set of
constraints) for each pattern. We generate constraints for the expression
to be matched and for each branch; those for the branches are wrapped in
de�nition constraints which introduce the new environments. We also add
the constraint α ≤ �i∈I *pi+ for exhaustiveness.

Note that each rule includes a constraint to require the type we reconstruct
to be a subtype of t. We do so for simplicity since we aim to prove complete-
ness with respect to a system with subsumption. By changing the de�nition
of completeness we give later, we might avoid the constraints in the cases
of application and pattern matching, as subsumption can be pushed to the
sub-expressions. In practice, the constraint β ≤̇ t can be dropped from the
rules TRs-Appl and TRs-MatchM in an implementation.
�e relation t���p ⇒ (Γ ,C) builds an environment together with a set

of constraints to relate the new variables it introduces with t.�e rules are
mostly straightforward. We need to introduce new variables when patterns
extract types below type constructors; this parallels the use of projection
operators in environment generation for the deductive system. For union
patterns, we just build the pointwise union of the two environments.

��

� Reconstruction for set-theoretic types

∀i ∈ I Γ � ci � Di

Γ � { ci � i ∈ I }� �i∈I Di Γ � t ≤̇ t′ � {t ≤̇ t′}

Γ � x ≤̇ t � {Γ(x) ≤̇ t}
Γ , Γ′ � C � D

Γ � def Γ′ in C � D

������ � .� Constraint rewriting rules (without let-polymorphism).

Constraint rewriting

�e �rst step of constraint solving consists in rewriting constraint sets into
a simpler form. In this system, rewriting is trivial as we only substitute
expression variables with their types. In the extension to let-polymorphism,
this phase will actually perform multiple steps of rewriting and resolution,
one for each pattern-matching expression.

�e simpler form of constraints only includes subtyping constraints.

���������� � .�: Type-constraint set A type-constraint set D is a set of
constraints of the form t ≤̇ t′, where t and t′ are types.

We say that a type substitution θ satis�es a type-constraint set D, and we
write θ � D, if tθ ≤ t′θ holds for each constraint t ≤̇ t′ in D. �

We de�ne constraint rewriting, which operates in a type environment and
produces a type-constraint set from a constraint set.

���������� � .�: Constraint rewriting �e relation Γ � c � D between
type environments, constraints or constraint sets, and type-constraints is
de�ned by the rules in Figure �.�. �

�e relation is actually a function of the environment and the constraints
(let-polymorphismwill introduce non-determinism). A subtyping constraint
is rewritten to itself. A variable type constraint x ≤̇ t is turned into a subtyping
constraint by replacing x with its type in the environment (there is no let-
polymorphism and thus no need for instantiation); rewriting is de�ned only
if x is bound in the environment. An environment de�nition constraint is
rewritten by rewriting the inner constraint set in the expanded environment.
Constraint sets are rewritten pointwise.
�e output of constraint rewriting is thus a set of subtyping constraints

between types, as opposed to a set of equality constraints such as we would
have for the simply-typed λ-calculus. Equality constraints can be solved by
uni�cation; here, we need a di�erent algorithm.

��

�.� Reconstruction without let-polymorphism

Type-constraint solving: the tallying problem

Castagna, Nguy�n, Xu, and Abate (����) de�ne the tallying problem as the
problem – in our terminology – of �nding a substitution that satis�es a
certain type-constraint set. (�eir de�nition also restricts which variables
the substitution can be de�ned on, but we do not need this here.)

���������� � .� Let D be a type-constraint set. A type substitution θ is
a solution to the tallying problem of D if it satis�es D, that is, if θ � D. �
Tallying plays the same role in our system as the uni�cation problem

does in ��. It is used in the typing algorithm we have mentioned – where
abstractions are annotated with their types – to infer the instantiation of
polymorphic functions. Here, we use it to extract a substitution from the
constraints generated from an expression.

�ere is, however, a very signi�cant di�erence from ��. A set of equality
constraints between �� types has a most general solution whenever it can
be solved. Conversely, there is no most general solution to a set of subtyping
constraints in our system. Rather, we can �nd a �nite set of solutions that
are more general than any other if taken together, but each of which is
incomparable to the others.�is means we cannot �nd a type scheme that
represents exactly all types we can reconstruct for an expression; rather, we
need a �nite set of type schemes to do so.
�is di�erence stems from our semantic de�nition of subtyping, in par-

ticular as regards the empty type and its interaction with type constructors.
We consider here the case of pairs; the same reasoning applies to variant
and arrow types. We have remarked before that 0 × t � 0 � t × 0 for any t:
a product type with an empty component is equivalent to the empty type
itself. More generally, t� × t� � 0 holds if either t� � 0 or t� � 0.

�is results in subtyping for pairs which behaves unlike that of a straight-
forward syntactic treatment. In the latter, we might say t� × t� ≤ t′� × t′� holds
if both t� ≤ t′� and t� ≤ t′� hold. In our case, that is a possibility; however,
t� � 0 and t� � 0 are two other conditions either of which is enough to
satisfy subtyping.�us, a type-constraint set has no most general solution.
For instance, the set {α × β ≤̇ γ × δ} can be solved in three incompatible
ways: instantiating α with 0, instantiating β with 0, or instantiating α and β
with subtypes of γ and δ respectively.

We have an algorithm to solve the tallying problem, that is sound and
complete. By completeness we mean that it returns a set of substitutions that
are the most general, if taken together.

�������� � .�: Tallying algorithm �ere exists an algorithm tally(⋅) such
that, for any type-constraint set D, tally(D) is a �nite set of type substitutions,
possibly empty. �

��

� Reconstruction for set-theoretic types

�e algorithm tally(⋅) is Sol∆(⋅) de�ned in Castagna, Nguy�n, Xu, and
Abate (����) – adapted for the presence of variant types – where we always
take ∆ = �. Soundness and completeness are proved there.

������� � .�: Soundness and completeness of tally(⋅) Let D be a type-
constraint set. For any type substitution θ:

• if θ ∈ tally(D), then θ � D;
• if θ � D, then ∃θ′ ∈ tally(D), θ′′. ∀α ∉ var(θ′). αθ � αθ′θ′′.
Hence, given a type-constraint set, we can use tally(⋅) to either �nd a

number of solutions or determine it has no solution: tally(D) = � occurs if
and only if there exists no θ such that θ � D.

�e algorithm produces substitutions whose domain is a subset of the set
of variables in the type-constraint set.�e substitutions only introduce fresh
variables (i.e. we can pick the variables they introduce so as not to overlap
with other sets).�e solutions are all idempotent substitutions because they
replace all variables they are de�ned on with types that only contain fresh
variables (on which they are not de�ned).

Properties of type reconstruction

Our type reconstruction system is both sound and complete with respect to
the type systemwithout let-polymorphismwe are considering in this section.
We state these properties in terms of constraint rewriting.

������� � .�: Soundness of constraint generation and rewriting Let e
be an expression, t a type, and Γ a type environment. If e: t⇒ C, Γ � C � D,
and θ � D, then Γθ �� e: tθ.
������� � .�: Completeness of constraint generation and rewriting Let e
be an expression, t a type, and Γ a type environment. Let θ be a type substitution
such that Γθ �� e: tθ.

Let e: t⇒ C.�ere exist a type-constraint set D and a type substitution θ′,
with dom(θ) ∩ dom(θ′) = �, such that Γ � C � D and(θ ∪ θ′) � D.

In the Appendix we give a slightly di�erent statement for completeness
because we keep track explicitly of the variables introduced by constraint
generation and require θ′ to be de�ned only on those variables.
Together, these properties and the properties of tallying imply that type

reconstruction is sound and complete. Reconstruction for an expression – if
successful – yields a set of substitutions and therefore a set of possible types,
each of which is correct.

��

�.� Adding let-polymorphism

� .� ������ ���-������������

We discuss an extension of our type reconstruction system that handles
the type system with let-polymorphism. In this section, we consider the
typing relation Γ �� e: t de�ned by the rules in Figure �.� on page ��, except
Ts-Match, plus Ts-Match′.

Let-polymorphism comes into play in two rules of our system. Ts-Match′
generalizes the types in each environment it generates from the pattern.
Hence we will have non-trivial type schemes in the environment, and Ts-Var
must perform instantiation. We can handle the latter by changing constraint
rewriting for x ≤̇ t constraints: we do not rewrite them to Γ(x) ≤̇ t – which
makes no sense if Γ(x) = ∀A. tx has quanti�ed variables – but to txθ ≤̇ t,
where θ is an instantiation of the variables in Awith fresh variables.

Turning to pattern matching, we can �rst examine the simpler case of
let-declarations. In ��, type reconstruction for an expression let x = e� in e�
in some environment Γ can be described in three steps:

• reconstruct the type of e� in Γ;
• if reconstruction is successful, let t� be the type obtained and generalize

it with respect to Γ to obtain a type scheme s�;
• reconstruct the type of e� in the environment Γ , {x: s�}.
�e drawback of this approach is that it mixes constraint generation

and constraint solving. We follow other constraint-based approaches (in
particular Pottier and Rémy, ����; Rémy, ����) in continuing to enforce a
separation of the two steps – thanks to constraints with expression variables
and to a new constraint we introduce now. Besides arguably making the
system clearer, this separation allows one to study and compare di�erent
strategies for solving without changing the form of constraints themselves.
Here, we formalize the strategy described above, which allows us to reuse
the tallying algorithm as much as possible.
�e lack of a most general solution to the tallying problem now poses

di�culties that do not exist in ��: in the strategy above, we will not recon-
struct a single type t� for e�, but rather a �nite number of di�erent types. In
this formulation, we describe constraint rewriting as a non-deterministic
algorithm which may pick any of the solutions to proceed.
We prove soundness for this system, that is, we prove that any choice of

solution leading to successful reconstruction yields a valid type. We do not
prove completeness, which in this context would mean that there is always a
choice of solution which will lead to successful reconstruction at the end (if
the expression is well-typed). At the end of this section, we discuss possible
approaches to solve the complication caused by the lack of a general solution.

��

� Reconstruction for set-theoretic types

Constraint generation

We introduce a form of constraint for let-polymorphic constructs. In the
case of let, it should record the constraints generated by e� and e�, separately,
and the type we will introduce before solving the constraints for e� (actually
a type variable, which will be instantiated by the solution we get for e�). For
instance, let x = � in (x , true) generates a constraint

{let [{� ≤̇ α}�������������������
constraints for e�

] {x: α}�
new binding

in {α� × α� ≤̇ β, x ≤̇ α�, true ≤̇ α�}���
constraints for e�

, β ≤̇ t}
where t is the type we want to reconstruct.

Since match expressions have many branches and di�erent environments
for each, we de�ne let constraints in a more general form. We add this new
production to the grammar of constraints presented in De�nition �.�:

c ∷= � � let [C](Γi in Ci)i∈I
where the range of every type environment Γi in a constraint of the form
let [C�](Γi in Ci)i∈I only contains types.

We change constraint generation by replacing the rule TRs-MatchM with
the new rule TRs-Match in Figure �.�; all other rules are unchanged.�is
general rule for pattern matching can be simpli�ed to

e�: α⇒ C� e�: β⇒ C�

let x = e� in e�: t⇒ {let [C�]{x: α} in C�, β ≤̇ t}
in the special case of let-declarations.

Constraint solving

We extend constraint rewriting to handle let constraints. In doing so, we mix
rewriting and type-constraint solving: to rewrite let [C�](Γi in Ci)i∈I , we �rst
rewrite C� to a type-constraint set D�, then we compute tally(D�). If there is
no solution, rewriting fails. If we �nd at least one solution, we choose one
of them non-deterministically and proceed. Let θ� be the chosen solution;
we rewrite each Ci in an environment extended by adding Γiθ�, generalized
with respect to the environment Γθ�.

To have soundness we must ensure that every substitution θ we get as
our �nal result (i.e. by solving the type-constraint set we get by rewriting
the constraints of the whole program) can be obtained as a special case of
θ�. Constraint rewriting for let therefore adds constraints to ensure this will
happen. We de�ne below the generation, from a type substitution θ�, of a
type-constraint set equiv(θ�) such that every substitution θ which solves
equiv(θ�) will be equivalent to θ ○ θ�.

��

�.� Adding let-polymorphism

TRs-Match

e�: α⇒ C� ti = (α �� j<i *p j+) ∧ *pi+∀i ∈ I ti���pi ⇒ (Γi ,Ci) ei : β⇒ C′i
C′� = C� ∪ (�i∈I Ci) ∪ {α ≤̇ �i∈I *pi+}

match e� with (pi → ei)i∈I : t⇒ {let [C′�](Γi in C′i)i∈I , β ≤̇ t}
������ � .� Constraint generation rule for let-polymorphic match.

∀i ∈ I Γ � ci � Di

Γ � { ci � i ∈ I }� �i∈I Di Γ � t ≤̇ t′ � {t ≤̇ t′}
Γ(x) = ∀{α�, . . . , αn}. tx

Γ � x ≤̇ t � {tx[β��α� , . . . , βn�αn] ≤̇ t}

Γ , Γ′ � C � D
Γ � def Γ′ in C � D

Γ � C� � D� θ� ∈ tally(D�)∀i ∈ I Γ , genΓθ�(Γiθ�) � Ci � Di

Γ � let [C�](Γi in Ci)i∈I � equiv(θ�) ∪�i∈I Di

������ � .� Constraint rewriting rules (with let-polymorphism).

���������� � .�: Equivalent type-constraint set Given a type substitution
θ, we de�ne its equivalent type-constraint set equiv(θ) as

equiv(θ) = �
α∈dom(θ){α ≤̇ αθ , αθ ≤̇ α} . �

�e constraint rewriting relation Γ � c � D for the system with let-
polymorphism is de�ned by the rules in Figure �.�. As compared to rewriting
without let-polymorphism, we change the rule for variable constraints and
add the new rule for let constraints. For a constraint x ≤̇ t, we build an
instance of the type scheme Γ(x) by instantiating its quanti�ed variables with{β�, . . . , βn}, which we assume to be fresh. For let constraints we proceed
as described above.�e type-constraint set we produce contains equiv(θ�):
this ensures that each solution θ to that type-constraint set is such that
αθ � αθ�θ for every α, meaning it is an extension of θ�.
�e system we have described is sound, as stated by the following result.

������� � .�: Soundness of constraint generation and rewriting with
let-polymorphism Let e be an expression, t a type, and Γ a type environment.
If e: t⇒ C, Γ � C � D, and θ � D, then Γθ �� e: tθ.

Note that, since Γ � C � D is non-deterministic (we can choose any of
the solutions produced by tallying when we solve a let constraint), soundness
means that no choice of solution may lead to reconstructing invalid types.

��

� Reconstruction for set-theoretic types

Challenges and future work

�e di�culty we have in de�ning type reconstruction for our system is due to
the lack ofmost general solutions to the tallying problem.Our reconstruction
system chooses one of the solutions non-deterministically to proceed. We
have proved that it is sound, but not that it is complete. In this setting,
completeness would mean that – if an expression is well-typed – there exists
a choice of solutions which will lead to successful reconstruction.
We conjecture completeness holds for this system (or some slight modi-

�cation of it). Having to choose one of the solutions (as opposed to keeping
all of them somehow) is not restrictive with respect to our typing rules:
alternative solutions correspond to di�erent type schemes, so the typing
rules also force us to choose a single one. Indeed, we add the constraints
generated by equiv(⋅) during rewriting precisely to force reconstruction to
abide by the choice of solution that has been made.
However, even if the system were complete in this sense, it would still

need to explore all possible choices of solutions. As a matter of fact, some
solutions are redundant and can be discarded because we can obtain them
from the others by subtyping. For instance, if tallying generates for a function
both some type t� → t� (possibly the type we would expect in ��) and the
type 0 → 0, the latter can be obtained from the former by subsumption.
Essentially, 0→ 0 states that the application of the function to a diverging
expression will diverge. It is a supertype of every type of the form t� → t�,
since it is the top type of arrows.¹

It remains to be seen in which cases we produce multiple solutions that are
really signi�cant. In any event, multiple solutions should only arise because
of the behaviour of the empty type with respect to subtyping. It should be
possible to de�ne a canonical choice of solution to tallying – choosing that
which avoids empty types – which is not strictly speaking the ‘most general’
but should be more useful in practice: the other solutions would only be
needed for some situations where we have diverging expressions. By �xing a
canonical solution and discarding the others, we might lose completeness
with respect to our system, but we should keep it with respect to ��.

An alternative to de�ning such a canonical choice could be restricting
let-polymorphism. Vytiniotis, Peyton Jones, Schrijvers, and Sulzmann (����)
propose a system where top-level let-bindings are generalized, but local
ones are not, unless there is an explicit polymorphic type annotation.�eir
approach recovers principal types in systems where they would not exist
with implicit let-generalization (for example, for ����s), at – they argue –
a small practical cost for programmers.

� Every type of the form 0→ t is equivalent to the top type of arrows.

��

� Extensions and variations

In this chapter, we outline three ways to extend or modify the �ariantsS
type system described in Chapter �. In the �rst extension, we allow the
use of intersection types to type abstractions; thanks to this, we can de�ne
overloaded functions and type them precisely. In the second, we improve
the typing of pattern matching: we use the patterns to re�ne the types of
variables in the expression we match. Finally, the third is a restriction of
the type system.�e full system is not directly applicable to a type-erasing
language like OCaml; hence, we study a semantics which re�ects the actual
implementation of OCaml and describe how to modify�ariantsS to make
it sound with respect to that semantics.

We study these variations only in the context of the deductive type system
and do not study type reconstruction. For the last two, modifying recon-
struction as well should be straightforward. Conversely, reconstruction in
the presence of functions typed with intersection types is undecidable in
general; we would need the system to take into account the programmer’s
explicit type annotations.

� .� ���������� ���������

In the calculus for polymorphic CDuce, we can use intersection types to
type abstractions; conversely, our system allows us to derive intersections
only by subsumption.�is means we cannot express the fact that a function
is overloaded in its type. For instance, we can type

λx .match x with true→ false � false→ true

as bool → bool, but not as (true → false) ∧ (false → true), which would be
more precise. Functions de�ned by pattern matching can be typed more
precisely with intersection types: we can give a di�erent type for each branch.

To add this possibility we consider an explicitly-typed system (as done by
Castagna et al., ����, and Castagna,Nguy�n, Xu, and Abate, ����): we assume
all abstractions to be annotated with their type. Annotated abstractions are
treated as un-annotated ones in the semantics.
We de�ne typing in this extension as a relation Γ ��� e: t, given by the

rules de�ning Γ �� e: t (in Figure �.� on page ��), except Ts-Var and Ts-Abstr,
plus the rules in Figure �.�.

��

� Extensions and variations

Tso-Var
∀i ∈ I. ti ∈ inst(Γ(x))

Γ ��� x: �
i∈I ti

Tso-Abstr
∀i ∈ I. Γ , {x: t′i} ��� e: ti

Γ ��� λ�i∈I t′i→t i x .e: �
i∈I t
′
i → ti

Tso-Inst
Γ ��� e: t ∀i ∈ I. ti ∈ inst(genΓ(t))

Γ ��� e: �
i∈I ti

������ � .� Modi�ed typing rules for overloaded abstractions.

�e three new rules ful�l two di�erent purposes.�e rule Tso-Abstr allows
us to type an abstraction λx .e with an intersection of arrow types, as long
as it is explicitly annotated with that intersection and we can derive each of
those types.�us, we type the body e once for each arrow, each time with a
di�erent assumption for the type of x.�is introduces ad-hoc polymorphism
in an explicitly-typed way.

�e rule Tso-Var plays a di�erent role. It states that a variable can be typed
with an intersection of multiple instantiations rather than with a single one.
In practice, this means we can treat a parametrically-polymorphic function
as if it were overloaded. For example, we can instantiate the type scheme∀α. α → α into (bool→ bool) ∧ (int→ int), a type which expresses ad-hoc
polymorphism.
Finally, the third rule is necessary because we use explicit annotations.

In�ariantsS, instantiation is only used in Tso-Var. Now we need it for ab-
stractions as well: we need it, for instance, to derive the type bool→ bool for
the function λα→αx .x. For clarity, we use a separate rule and do not com-
bine it with Tso-Abstr. We keep instantiation in Tso-Var – though it is made
redundant by Tso-Inst – so typing still derives types and not type schemes.
Tso-Abstr in�uences the typing of pattern matching, though Ts-Match

is unchanged, because we now type the body of overloaded abstractions
multiple times under di�erent assumptions. Consider the negation function
at the beginning of this section. Its body will be typed twice, assuming{x: true} the �rst time and {x: false} the second; each time, one branch
will never be selected, so we exclude it from the output type. In�ariantsS,
branches with ti ≤ 0 are useless, here they are not: they are never selected
under the assumptions we are considering, but they may be under di�erent
ones. A branch is redundant only if it has ti ≤ 0 every time we type it.

Algorithmic typing

We can derive a typing algorithm for this system as described in Castagna
et al. (����) and Castagna, Nguy�n, Xu, and Abate (����). However, there

��

�.� Re�ning the type of a matched expression

is a signi�cant di�erence with respect to�ariantsS: the algorithmic system
is not shown to be complete.�e di�culty is that we can instantiate type
schemes multiple times and take the intersection. Consider the application

(λ(bool→bool)∧(int→int) i . (i true, i �)) (λα→αx .x) .
�e typing algorithmmust compute whether this application can be made

well-typed by instantiating the generalization of α → α somehow. No single
instantiation will work; however, we can intersect two instantiations to get(bool→ bool)∧(int→ int), whichmakes the applicationwell-typed. Another
application might require more than two instantiations; there is no upper
bound on how many we can take, and it is an open problem whether we can
predict how many will be required.

�us, the algorithm proposed forCDuce continues to increase the number
of substitution instances it intersects, using heuristics to decide when to stop
if no solution is found.�ough completeness is not proven, the heuristics
seem to be su�cient for practical programming.

Note that this problem concerns the rules for variables and instantiations,
not the possibility of having explicitly-overloaded abstractions.�e latter
might also be used in a system which does not have the former: we would
have both parametric and ad-hoc polymorphism, but wewould not be able to
instantiate parametrically-polymorphic functions into ad-hoc-polymorphic
ones.

� .� �������� ��� ���� �� � ������� ����������

When we type a pattern-matching expression in �ariantsS, we compute
precise types for the capture variables of each pattern by considering the
pattern itself and all preceding ones. In the same way, we can also re�ne the
types of variables which appear in the expression we are matching.

Consider the map function in OCaml de�ned as

let rec map f ls = match ls with
| []→ ls
| hd : : tl→ f hd : : map f tl� (α→ α)→ α list→ α list

which is semantically equivalent to the usual way of writing it (returning []
rather than ls from the �rst branch). Since we return ls – of type α list – from
a branch, f is constrained to have type α→ α rather than the more general
type α→ β. However, we only return ls if it is [], and then it has type α list
but also β list for any β. By considering this during typing, we are able to
derive the general type for this version of map as well.

Situations like this occur o�en while programming in CDuce – as well as
in OCaml – where we use pattern matching to perform general type-cases.
For instance, wemight take x, which is only known to be of type 1, andmatch

��

� Extensions and variations

it against a pattern like bool (true�false in�ariantsS): in the corresponding
branch, we should be able to use x with type bool and not just 1. But unless
pattern matching implements a strategy such as that described here, the
type of x will not be re�ned in the branch unless we rebind it explicitly, by
changing the pattern to bool&x.

A solution to this issue is described in Castagna et al. (����, Appendix �),
only for type-case on type variables. We outline here an extension to gen-
eral pattern matching, not only on variables but also on pairs or variants
containing them.¹
When the matched expression is a variable, the solution is quite simple:

we use the type ti = (t� �� j<i *p j+) ∧ *pi+ for the variable when it appears
in the branch (with let-polymorphism, we also need to generalize it). It is
more precise than its type in the environment: it is exactly the type of the
values which will match the pattern.

�e extension to pairs and variants seems relatively straightforward too:
for instance, if (x , y)matches (true, ���), we know that x has type true and
y has type � ∨ �. We de�ne this by translating the matched expression to a
pattern and then reusing the relation ⋅��⋅ for pattern environment generation.

A complication arises when thematched expression has repeated variables;
for example, if it is (x , x) – admittedly quite unlikely. In that case, we cannot
translate it directly to a pattern because pair patterns may not have repeated
variables; hence we introduce a di�erent form of pattern. Furthermore, we
intersect the types we obtain for the two occurrences of the variable. If (x , x)
matches (true, ���), we know x must have type true∧ (�∨ �) � 0. Incidentally,
this tells us the branch will never be selected. �us, we have also re�ned
our criterion to detect redundancy, though it will seldom be noticeable
in practice as it matters only if the matched expression contains repeated
variables.

�e extension

We modify the typing rule Ts-Match to update the environment with the
re�ned types for the variables in the matched expression, before it is updated
with types for the capture variables. Before we do so, we de�ne the translation
from expressions to patterns we will use in the typing rule.

We introduce a new production to patterns, only for internal use of these
typing rules (this new form of pattern should not appear in programs).

p ∷= � � �p, p�
While pair patterns cannot have repeated variables, a pattern �p�, p�� can:
we add this form to handle repeated variables in expressions. We give no
dynamic semantics to these patterns – as they will not appear in programs –

� �is extension has now been implemented in the development version of CDuce.

��

�.� Re�ning the type of a matched expression

Tsm-Match

Γ �� e�: t� t� ≤ �i∈I *pi+ ∧ *Le�M+ ti = (t� �� j<i *p j+) ∧ *pi+

∀i ∈ I �������
t′i = 0 if ti ≤ 0 or ∃t ∈ range(ti��Le�M). t ≤ 0
Γ , genΓ(ti��Le�M), genΓ(ti��pi) �� ei : t′i otherwise

Γ �� match e� with (pi → ei)i∈I : �
i∈I t
′
i

������ � .� Modi�ed typing rule for pattern-matching expressions.

but we de�ne their accepted type as

*�p�, p��+ = *p� + × * p�+

and environment generation for them as

t���p�, p�� = π�(t)��p� � π�(t)��p�
where�, de�ned as

(Γ � Γ′)(x) =
�����������
Γ(x) if x ∈ dom(Γ) � dom(Γ′)
Γ′(x) if x ∈ dom(Γ′) � dom(Γ)
Γ(x) ∧ Γ′(x) if x ∈ dom(Γ) ∩ dom(Γ′)

is the pointwise intersection of type environments.
We de�ne a translation of expressions into patterns. It preserves variables

and variants, converts pairs to the new form, and turns everything else into
a wildcard.

LeM =
�����������������

x if e = x
�Le�M, Le�M� if e = (e�, e�)‵tag(Le′M) if e = ‵tag(e′)
_ otherwise

�us, variables below abstractions, applications, or pattern-matching con-
structs are ignored, and we only keep those for which we can extract a type.

�e modi�ed typing rule, which replaces Ts-Match, is shown in Figure �.�.
�e main di�erence is the addition of the new environment genΓ(ti��Le�M)
to type each branch. We add it before the other; in this way, the capture
variables in the patterns take precedence over those in Le�M.

Another di�erence is that we exclude more branches because we are more
precise in identifying redundancy. We ignore branches where environment
generation for Le�M produces empty types.
Finally, we require t� ≤ *Le�M+ to ensure ti��Le�M is well-de�ned. �is

requirement is not restrictive because any well-typed e can be typed with a
subtype of *LeM+.

��

� Extensions and variations

� .� ������������� �� �����

Until now we have used�ariants as our syntax and semantics. However, we
intended to describe a type system for polymorphic variants which could
be applied to OCaml directly, that is, which might replace the current type
system without requiring changes in the rest of the implementation. �e
semantics of �ariants does not re�ect that of OCaml closely enough for
this: indeed �ariantsS – as we will see – is unsound with respect to the
actual implementation of OCaml. We introduce here a restriction of the type
system which recovers soundness.
Naturally, our work is still limited to the fragment of OCaml we are

considering. To make this type system usable for the whole language, we
need to study its interaction with many other advanced features of OCaml,
from objects to ����s. In some cases at least, signi�cant future work might
be required.²However, with the changes presented in this section, our type
system is sound with respect to this fragment of the language.
We have remarked in Section �.� that �ariants di�ers from OCaml in

the behaviour of pattern matching because OCaml uses the same run-time
representation for some values of di�erent types (for instance, � and true),
so they cannot be distinguished at run-time.�us, a comparison between
constants such as ��truemight actually succeed in the implementation, even
though the constants are di�erent.
In OCaml, such cases never arise because they are blocked by the type

system, so we can observe them only by circumventing it.³ However, in
�ariantsS we can give more precise types, and we can type programs that
were ill-typed before. Now we can observe this behaviour in well-typed
programs. For example, a function f de�ned as

λx .match x with true→ true �_→ false

can be given the type 1→ bool in�ariantsS.�is type is sound with respect
to�ariants (the application of f to any valuewill reduce to either true or false).
However, the semantics of �ariants di�ers from that of OCaml, because
applying f to � results in false in the former and true in the latter.

�ese discrepancies can also lead to unsoundness.�e similar function

λx .match x with (true, true)→ true �_→ false

can be safely applied to any value in�ariants, but provokes a crash if it is
applied to an integer in OCaml.

�e problem is that the matching operation in OCaml is not always well-

� For example, OCaml allows recursive de�nitions of cyclic values, such as the in�nite
list de�ned by let rec x = � : : x. Subtyping in �ariantsS is based on a model which
only considers �nite values and is unsound when in�nite ones are allowed.�e study
of models with co-inductive values might give means to solve this issue.

� �e Obj.magic function can be used to perform arbitrary type conversions by rein-
terpreting the underlying representation, like a cast in C.

��

�.� Applicability to OCaml

v�I_ = []
v�Ix = [v�x]
v�I c =

�����������
[] if v = c
Ω if v ∈ �, bv = bc , and v ≠ c
Ω otherwise

v�I(p�, p�) =
�����������
�� ∪ �� if v = (v�, v�), v��I p� = ��, and v��I p� = ��
Ω if v = (v�, v�), ∃i . vi�I pi = Ω, and ∀i . vi�I pi ≠ ΩΩ otherwise

v�I ‵tag(p�) =
�����������
� if v = ‵tag(v�) and v��I p� = �
Ω if v = ‵tag(v�) and v��I p� = Ω or if v = ‵tag�(v�) and ‵tag� ≠ ‵tagΩ otherwise

v�I p�&p� =
�����������
�� ∪ �� if v�I p� = �� and v�I p� = ��
Ω if ∃i . vi�I pi = Ω and ∀i . vi�I pi ≠ ΩΩ otherwise

v�I p��p� = �������
v�I p� if v�I p� ≠ Ω
v�I p� otherwise

������ � .� Semantics of pattern matching in�ariantsI.

de�ned: when we compare constants of di�erent types, constants with pairs,
and so on, the outcome is implementation-dependent.�ariants just models
it as ordinary failure. �e di�erence, of course, is that when matching is
unde�ned, it could actually result in success or in a crash; conversely, failure
is dealt with by checking the next pattern in the match construct.

We introduce a semantics – an ‘implementation’ semantics�ariantsI – to
model matching accurately; then, we discuss how to adapt�ariantsS to it.

Semantics

�e semantics of�ariantsI di�ers from that of�ariants only in the de�nition
of the pattern-matching operation.We introduce the possibility of unde�ned
results (written Ω), distinct from failure (Ω).
In the semantics, we use the function b(⋅) which assigns each constant c

its basic type bc .

���������� � .�: Semantics of pattern matching We write v�I p for the
result of matching a value v against a pattern p. We have either v�I p = � –

��

� Extensions and variations

�_� = 1
�x� = 1
�c� = bc�(p�, p�)� = �p�� × �p���‵tag(p�)� = ‵tag(�p��) ∨ (1� � ‵tag(1))�p�&p�� = �p�� ∧ �p���p��p�� = �p�� ∨ �p��

������ � .� Compatible type of a pattern.

where � is a substitution de�ned on the variables in capt(p) – v�I p = Ω, or
v�I p = Ω. In the �rst case, we say that v matches p (or that p accepts v); in
the second, we say matching fails; in the third, we say it is unde�ned.

�e de�nition of v�I p is given in Figure �.�. �
We use the same reduction rules – de�ned in Figure �.� on page �� –

replacing the ⋅�⋅ operation with ⋅�I ⋅. Note that the meaning of the rule

R-Match
v�I p j = � ∀i < j. v�I pi = Ω
match v with (pi → ei)i∈I � e j�

j ∈ I
is changed signi�cantly. In�ariants, a pattern-matching construct reduces
whenever matching succeeds for one branch at least (it reduces to the �rst
successful branch). In�ariantsI it reduces only if matching succeeds for a
branch and is never unde�ned for previous branches.

Typing

�ariantsK is already soundwith respect to�ariantsI: whenever we have both
K � p: τ ⇒ Γ and K;� �� v: τ, we have v�I p ≠ Ω as well. Since we require
K � pi : τ� ⇒ Γi to hold for all patterns in a match expression, well-typed
programs never produce unde�ned matching results.

�is is not the case for�ariantsS, where we only require exhaustiveness.
Now, we should also require the type of the matched expression to be such
that it cannot generate Ω with any pattern. To this end, we de�ne the type of
the values each pattern is compatible with, that is, those for which matching
is de�ned.

���������� � .�: Compatible type of a pattern �e compatible type �p�
of a pattern p is de�ned inductively by the equations in Figure �.�. �

��

�.� Applicability to OCaml

Tsi-Match

Γ �� e�: t� t� ≤ �i∈I *pi+ ∧�i∈I�pi� ti = (t� �� j<i *p j+) ∧ *pi+

∀i ∈ I �������
t′i = 0 if ti ≤ 0
Γ , genΓ(ti��pi) �� ei : t′i otherwise

Γ �� match e� with (pi → ei)i∈I : �
i∈I t
′
i

������ � .� Modi�ed typing rule for�ariantsI.

Like the de�nition of accepted type, this is equivalent to a semantic de�n-
ition: having �p� be the set of all values v such that v�I p ≠ Ω.
In rule Ts-Match, we expressed exhaustiveness as t� ≤ �i∈I *pi+: that is,

each v of type t� must be accepted by one pattern at least. Here, we also
require compatibility. For v to be accepted by p j, it must have type *p j+ and
each type �pi�, for i < j. We ask that t� be a subtype of each �pi�.
We modify the typing relation Γ �� e: t to make it sound with respect to

�ariantsI: we replace Ts-Match with the rule Tsi-Match in Figure �.�.
We have been slightly more restrictive than necessary since we require

the input type to be compatible with all patterns. Actually, patterns which
are useless because any value is already covered by previous cases (e.g. any
pattern that follows a catch-all pattern) need not be considered. A �ner
condition such as

t� ≤ �i∈I �*pi+ ∧ � j<i �p j��
would only make a di�erence if there is redundancy, so we have chosen this
one for simplicity.

Explicit type tags

�is restrictionmakes it impossible to distinguish types in a union by pattern
matching, unless they are discriminated by tags: this is necessary because
there is no implicit type tagging in OCaml. Hence, to program in the re-
stricted system we need to use variants to build union types, as we already
do in OCaml; nevertheless we still retain much of the �exibility introduced
in our system by the use of semantic subtyping. We can also use type con-
nectives to de�ne more precise types, especially to avoid the need to write
non-exhaustive pattern matching.

In the extreme, a ‘boxing’ conversion can be applied to the whole program
to wrap every expression with an explicit type tag: everything that is typable
in�ariantsS can be made typable in our restriction by such a conversion. In
practice, tags will only be needed in a few situations rather than everywhere.

��

� Conclusions

We have investigated the use of set-theoretic type connectives and semantic
subtyping to design a type system for languages of the �� family featuring
polymorphic variants – a useful feature of OCaml that we attempt to make
yet more �exible with this work. Our goal has been to show that such a type
system is applicable in this setting and can provide expressive and intuitive
typing for variants.
Indeed, the set-theoretic system�ariantsS we have described is strictly

more expressive than the current one used in OCaml, which we have form-
alized as �ariantsK. It can type some type-safe programs that �ariantsK
cannot type, and it can give more precise types to programs both can type. In
particular, using subtyping rather than structural polymorphism for variants
means we do not lose polymorphism when variants are used as function
arguments.�ariantsS also allows pattern matching to be typed much more
precisely; moreover, we can de�ne exhaustiveness and non-redundancy
checking at the level of types, making the formalism arguably more intuitive.
Besides its direct application to OCaml and other languages of the ��

family, this work also continues the ongoing study of languages with set-
theoretic types and semantic subtyping, such as CDuce. We make three
contributions.�e �rst is the study of a simpler setting than that of CDuce,
without type-case on arrow types (a restriction which seems hardly limiting
in practice) and overloaded functions; we show how these restrictions give
rise to a far less complex system.
�e second contribution is the advancement in the study of type recon-

struction with set-theoretic types. We �rst take a restriction of�ariantsS
without let-polymorphism and give a sound and complete type reconstruc-
tion system for it. We then extend the system to deal with let-polymorphism
and prove soundness – but not completeness – for the extension. We point
out the di�culties and suggest directions for future work.

A third contribution is the re�nement of pattern matching we present in
Section �.�, which has been integrated in CDuce.

Future work

�is work can be further developed in two main directions: the integration
of our system in OCaml and a more in-depth study of type reconstruction.

��

� Conclusions

To implement our type system as an alternative to the current system of
OCaml, we need to study the interaction between it and all the features of
the language we have not studied here.�ese include, for instance, the object
system, the module system, cyclic terms, and ����s. As an intermediate
step along the way to a full implementation, we can work on a prototype
limited to the fragment we have studied.
An application of this type system is representing ��� trees as poly-

morphic variants and typing them precisely, as CDuce does. Currently, pre-
cise typing of ��� with semantic subtyping is available in OCaml using
OCamlDuce (Frisch, ����), which is also supported by the Ocsigen web
programming framework (Balat, Vouillon, and Yakobowski, ����). How-
ever, OCamlDuce juxtaposes the type systems of OCaml and XDuce without
combining them; our system would combine them, and hence would allow
writing polymorphic transformations of ��� documents.

�e integration involveswork of theoretical interest aswell as of immediate
application. We intend to study the relationship between set-theoretic types
and typing features such as ����s, as we have studied here their relationship
with structural polymorphism.

Research on type reconstruction for systems with set-theoretic types can
be furthered in several directions. Such research is also important to the
integration of our system in OCaml, as reconstruction is an essential feature
of ��-derived languages. Here, we have done a �rst step by tailoring the
work of Castagna, Nguy�n, Xu, and Abate (����) to our setting, and we have
obtained promising results in our restricted system.

At the end of Section �.� we have already discussed some ideas for future
work.�ese mostly concern the problem we have encountered: the lack of
most general solutions to the tallying problem. We have allowed reconstruc-
tion to choose any of the solutions generated by the tallying algorithm. We
intend to study the relationship between these solutions to see if a canonical
choice can be de�ned to avoid having to try out all of them.�e goal would
be to ensure reconstruction is complete with respect to a restriction of the
system that is still expressive enough (hopefully, more than ��). An altern-
ative approach can be restricting the implicit generalization of let-bindings,
as suggested by Vytiniotis, Peyton Jones, Schrijvers, and Sulzmann (����).
We will also work on extending reconstruction to the system with over-

loaded functions. Full reconstruction is undecidable in this case; hence, we
must require the programmer to write explicit type annotations and exploit
them during reconstruction.

Additionally, constraint solvingmight bene�t frommore �exible strategies.
Constraint-based systems such as HM(X) enforce a separation between the
generation and the solving of constraints; this simpli�es the study and com-
parison of various solving strategies. We have already followed the approach
of Pottier and Rémy (����) to some extent, but so far we have described a
single strategy.

��

� Proofs

� .� � �������� ��� �� ���� ��������

����� � .�: Generation for values Let v be a value.�en:

• if K; Γ �� v: b, then v = c for some constant c such that bc = b;
• if K; Γ �� v: τ′ → τ , then v is of the form λx .e and K; Γ , {x: τ′} �� e: τ;
• if K; Γ �� v: τ� × τ� , then v is of the form (v�, v�), K; Γ �� v�: τ�, and K; Γ �� v�: τ�;
• if K; Γ �� v: α, then v is of the form ‵tag(v�), α ∷ (L,U , T) ∈ K, ‵tag ∈ L, and K; Γ �� v�: τ� for the

only type τ� such that ‵tag: τ� ∈ T .
Proof �e typing rules are syntax-directed, so the last rule applied to type a value is �xed by its
form. All these rules derive types of di�erent forms, thus the form of the type assigned to a value
determines the last rule used. In each case the premises of the rule entail the consequences above. �

Patterns and environment generation

����� � .�: Correctness of environment generation Let p be a pattern and v a value such that
v�p = �. If K; Γ �� v: τ and K � p: τ⇒ Γ′, then, for all x ∈ capt(p), K; Γ �� x�: Γ′(x).
Proof By induction on the derivation of K � p: τ⇒ Γ′. We reason by cases on the last applied rule.

Cases TPk-Wildcard and TPk-Const �ere is nothing to prove since capt(p) = �.
Case TPk-Var We have

v�x = [v�x] K � x: τ⇒ {x: τ}
and must prove K; Γ �� x[v�x]: {x: τ}(x), which we know by hypothesis.

Case TPk-Pair We have

K � (p�, p�): τ� × τ� ⇒ Γ′� ∪ Γ′� K � p�: τ� ⇒ Γ′� K � p�: τ� ⇒ Γ′� .
By LemmaA.�, K; Γ �� v: τ�×τ� implies v = (v�, v�) and K; Γ �� vi : τi for both i. Furthermore,(v�, v�)�(p�, p�) = � = �� ∪ ��, and vi�pi = �i for both i. For each capture variable x, we can

apply the induction hypothesis to the sub-pattern which contains x and conclude.

��

A Proofs

Case TPk-Tag We have

K � ‵tag(p�): α⇒ Γ′ K � p�: τ� ⇒ Γ′
K ∋ α ∷ (L,U , T) ‵tag ∈ U ⇒ ‵tag: τ� ∈ T .

Since v�‵tag(p�) = �, we know v = ‵tag(v�). Hence, by Lemma A.�, we have ‵tag ∈ L and
K; Γ �� v�: τ′� with ‵tag: τ′� ∈ T . Since ‵tag ∈ U , we also have ‵tag: τ� ∈ T and hence τ� = τ′� (as ‵tag
is also in L and can only have a single type in T).

We therefore know K � p�: τ� ⇒ Γ′ and K; Γ �� v�: τ�, as well as v��p� = �. We can apply the
induction hypothesis to conclude.

Cases TPk-And and TPk-Or Straightforward application of the induction hypothesis, to both
sub-patterns for intersections and to the one that is actually selected for unions. �

����� � .�: Stability of environment generation under type substitutions If K � p: τ⇒ Γ, then
K′ � p: τθ ⇒ Γθ for every type substitution θ such that K � θ:K′.
Proof By induction on the derivation of K � p: τ⇒ Γ. We reason by cases on the last applied rule.

Cases TPk-Wildcard, TPk-Var, and TPk-Const Straightforward.

Case TPk-Pair We have

K � (p�, p�): τ� × τ� ⇒ Γ� ∪ Γ� K � p�: τ� ⇒ Γ� K � p�: τ� ⇒ Γ� .

By the induction hypothesis we derive both K′ � p�: τ�θ ⇒ Γ�θ and K′ � p�: τ�θ ⇒ Γ�θ,
then we apply TPk-Pair again to conclude.

Case TPk-Tag We have

K � ‵tag(p�): α⇒ Γ K � p�: τ� ⇒ Γ K ∋ α∷(L,U , T) ‵tag ∈ U ⇒ ‵tag: τ� ∈ T .

By the induction hypothesis we derive K′ � p�: τ�θ ⇒ Γθ. Since K � θ:K′, αθ must be a
variable β such that β ∷ (L′,U ′, T ′) ∈ K′. To apply TPk-Tag and conclude, we must establish
that, if ‵tag ∈ U ′, then ‵tag: τ�θ ∈ T ′. Since admissibility also implies (L′,U ′, T ′) � (L,U , Tθ),
we have U ′ ⊆ U and Tθ ⊆ T ′. Hence, if ‵tag ∈ U ′, then ‵tag ∈ U , in which case ‵tag: τ� ∈ T and
therefore ‵tag: τ�θ ∈ Tθ and hence ‵tag: τ�θ ∈ T ′.

Cases TPk-And and TPk-Or Straightforward application of the induction hypothesis, analog-
ously to the case of pair patterns. �

����� � .�: Stability of exhaustiveness under type substitutions If τ �K P, then τθ �K′ P for any
type substitution θ such that K � θ:K′.
Proof Wemust prove, for every K′′, θ′ such that K′ � θ′:K′′ and every v such that K′′;� �� v: τθθ′,
that there exists a p ∈ P which accepts v.�is holds because θ′ ○ θ is such that K � θ′ ○ θ:K′′: for
any α ∷ (L,U , T) ∈ K, we have αθ ∷ (L′,U ′, T ′) ∈ K′ and hence αθθ′ ∷ (L′′,U ′′, T ′′) ∈ K′′; we
have (L′,U ′, T ′) � (L,U , Tθ) and (L′′,U ′′, T ′′) � (L′,U ′, T ′θ′) and therefore (L′′,U ′′, T ′′) �(L,U , Tθθ′).�e conclusion follows by the de�nition of τ �K P. �

��

A.� A calculus for �� with variants

Generalization

����� � .� If varK(Γ�) ⊆ varK(Γ�), then, for every type τ, genK; Γ�(τ) �K genK; Γ�(τ).
Proof An instance of genK; Γ�(τ) is a type τθ such that dom(θ) ⊆ varK(τ)�varK(Γ�) and K � θ:K. It
is also an instance of genK; Γ�(τ), with the same θ, since varK(τ)� varK(Γ�) ⊆ varK(τ)� varK(Γ�). �

Properties of typing

����� � .�: Weakening Let K be a kinding environment and Γ�, Γ� two type environments such
that Γ� �K Γ� and varK(Γ�) ⊆ varK(Γ�). If K; Γ� �� e: τ, then K; Γ� �� e: τ.
Proof By induction on the derivation of K; Γ� �� e: τ. We reason by cases on the last applied rule.

Case Tk-Var We have:

K; Γ� �� x: τ τ ∈ instK(Γ�(x))
and hence, since Γ� �K Γ�, we have τ ∈ instK(Γ�(x)) and apply Tk-Var to conclude.

Case Tk-Const Straightforward.

Case Tk-Abstr We have:

K; Γ� �� λx .e�: τ� → τ� K; Γ�, {x: τ�} �� e�: τ� .
Since Γ� �K Γ�, we have Γ�, {x: τ�} �K Γ�, {x: τ�}, and, since varK(Γ�) ⊆ varK(Γ�), we have

varK(Γ�, {x: τ�}) ⊆ varK(Γ�, {x: τ�}).�us wemay derive K; Γ�, {x: τ�} �� e�: τ� by the induction
hypothesis and apply Tk-Abstr to conclude.

Cases Tk-Appl, Tk-Pair, and Tk-Tag Straightforward application of the induction hypothesis.

Case Tk-Match We have

K; Γ� �� match e� with (pi → ei)i∈I : τ
K; Γ� �� e�: τ� τ� �K { pi � i ∈ I }∀i ∈ I. K � pi : τ� ⇒ Γi K; Γ�, genK; Γ�(Γi) �� ei : τ .

By the induction hypothesis, we derive K; Γ� �� e�: τ�.
For every branch, note that by Lemma A.� varK(Γ�) ⊆ varK(Γ�) implies genK; Γ�(τ) �K

genK; Γ�(τ) for any τ. Hence, we have Γ�, genK; Γ�(Γi) �K Γ�, genK; Γ�(Γi). Additionally, since
varK(genK; Γ�(Γi)) ⊆ varK(Γ�), we have varK(Γ�, genK; Γ�(Γi)) ⊆ varK(Γ�, genK; Γ�(Γi)).

Hence we may apply the induction hypothesis for all i to derive K; Γ�, genK; Γ�(Γi) �� ei : τ and
then apply Tk-Match to conclude. �

����� � .�: Stability of typing under type substitutions Let K, K′ be two closed, canonical kinding
environments and θ a type substitution such that K � θ:K′. If K; Γ �� e: τ, then K′; Γθ �� e: τθ.
Proof By induction on the derivation of K; Γ �� e: τ. We reason by cases on the last applied rule.

��

A Proofs

Case Tk-Var We have

K; Γ �� x: τ τ ∈ instK(Γ(x))
Γ(x) = ∀A.Kx ▹ τx τ = τxθx dom(θx) ⊆ A K ,Kx � θx :K

and must show

K′; Γθ �� x: τθ .

By α-renaming we can assume that θ does not involve A, that is, A ∩ dom(θ) = � and
A∩ var�(θ) = �, and also that A∩ (dom(K′) ∪ var�(K′)) = �, that is, that the variables in A
are not assigned a kind in K′ nor do they appear in the types in the typing component of the
kinds in K′.
Under these assumptions, (Γθ)(x) = ∀A.Kxθ ▹ τxθ. We must show that τθ = τxθθ′x for a

substitution θ′x such that dom(θ′x) ⊆ A and K′,Kxθ � θ′x :K′.
Let θ′x = [αθxθ�α � α ∈ A]. First, we show that τxθθ′x = τxθxθ = τθ, by showing that, for any

α, αθθ′x = αθxθ. If α ∈ A, then αθθ′x = αθ′x = αθxθ (θ is not de�ned on the variables in A). If
α ∉ A, then αθθ′x = αθ (θ never produces any variable in A) and αθxθ = αθ as α ∉ dom(θx).
Since dom(θ′x) ⊆ A holds, we only need to establish that K′,Kxθ � θ′x :K′. �is requires

proving, for each α∷(L,U , T) ∈ K′,Kxθ, that αθ′x is a type variable such that αθ′x∷(L′,U ′, T ′) ∈
K′ and (L′,U ′, T ′) � (L,U , Tθ′x).
Such an α can either be in the domain of Kxθ (if and only if it is in A) or in the domain of

K′. In the latter case, we have αθ′x = α, since α ∉ A, and hence its kind in K′ is the same as in
K′,Kxθ. We must prove (L,U , T) � (L,U , Tθ′x), which holds because the variables in A do
not appear in T since (L,U , T) ∈ K′.

In the former case, we have α∷(L,U , T) ∈ Kxθ and hence α∷(L,U , T�) ∈ Kx , with T = T�θ.
Also, αθ′x = αθxθ. Since K ,Kx � θx :K, αθx ∷ (L�,U�, T�) ∈ K.�en, since K � θ:K′, αθxθ ∷(L′,U ′, T ′) ∈ K′. We know (L�,U�, T�) � (L,U , T�θx) and (L′,U ′, T ′) � (L�,U�, T�θ). Both
L′ ⊇ L and U ′ ⊆ U hold by transitivity. We show T ′ ⊇ Tθ′x holds as well. If ‵tag: τ ∈ Tθ′x , since
T = T�θ, then ‵tag: τ� ∈ T� and τ = τ�θθ′x = τ�θxθ. We thus have ‵tag: τ�θx ∈ T�θx and therefore‵tag: τ�θx ∈ T� and ‵tag: τ�θxθ ∈ T ′.

Case Tk-Const Straightforward.

Case Tk-Abstr We have:

K; Γ �� λx .e�: τ� → τ� K; Γ , {x: τ�} �� e�: τ� .
By the induction hypothesis we have K′; Γθ , {x: τ�θ} �� e�: τ�θ.�en by Tk-Abstr we derive

K′; Γθ �� λx .e�: (τ� → τ�)θ, since (τ� → τ�)θ = (τ�θ)→ (τ�θ).
Cases Tk-Appl and Tk-Pair Straightforward application of the induction hypothesis.

Case Tk-Match For the sake of clarity, we �rst prove the simpler case corresponding to (the
encoding of) let, where – simplifying environment generation – we have

K; Γ �� match e� with x → e�: τ K; Γ �� e�: τ� K; Γ , genK; Γ({x: τ�}) �� e�: τ
and must show

K′; Γθ �� match e� with x → e�: τθ

��

A.� A calculus for �� with variants

which we prove by establishing, for some type τ̂�, that

K′; Γθ �� e�: τ̂� K′; Γθ , genK′; Γθ({x: τ̂�}) �� e�: τθ .

LetA = {α�, . . . , αn} = varK(τ�)�varK(Γ).We assume that the variables inAdo not appear in
the kinds of variables not in A, that is, that if α∷(L,U , T) ∈ K and α ∉ A, then var�(T)∩A = �.
�is assumption is justi�ed by the following observations.�e variables in A only appear

quanti�ed in the environment used for the typing derivation for e�.�erefore we may assume
that they do not appear in τ: if they do, it is because they have been chosen when instantiating
some type scheme and, since K is canonical, we might have chosen some other variable of
the same kind. As for the occurrences of the variables in A in the derivation for e�, a similar
reasoning applies.�ese variables do not appear free in the environment (neither directly in a
type in Γ, nor in the kinds of variables which appear free in Γ).�erefore, if they occur in τ� it
is because they have been chosen either during instantiation of a type scheme or when typing
an abstraction, and in both cases we might have chosen a di�erent variable.

Now we rename these variables so that θ will not have e�ect on them. Let B = {β�, . . . , βn}
be a set of type variables such that B ∩ (dom(θ) ∪ var�(θ)) = � and B ∩ var�(Γ) = �. Let
θ� = [β��α� , . . . , βn�αn] and θ′ = θ ○ θ�. Since K′ is canonical, we can choose each βi so that, if
αi ∷ ● ∈ K, then βi ∷ ● ∈ K′, and if αi ∷ (L,U , T) ∈ K, then βi ∷ (L,U , Tθ′) ∈ K. As for A, we
choose B so that the kinds in K′ for variables not in B do not contain variables of B.
We show K � θ′:K′. For each α ∷ (L,U , T) ∈ K, if α ∈ A then α = αi for some i, αθ′ = βi

and kind entailment holds straightforwardly by our choice of βi . If α ∉ A, then αθ′ = αθ and
the admissibility of θ implies αθ ∷ (L′,U ′, T ′) ∈ K′ and (L′,U ′, T ′) � (L,U , Tθ). We have
Tθ = Tθ′ because of our assumption on A.

Since θ′ is admissibile, by the induction hypothesis applied to θ′, we derive K; Γθ′ �� e�: τ�θ′.
Since the variables in A do not appear in Γ, we have Γθ′ = Γθ. We choose τ̂� to be τ�θ′.

We apply the induction hypothesis to the derivation for e�, this time using θ as the substitution.
Now we have:

K′; Γθ �� e�: τ�θ′ K′; Γθ , (genK; Γ({x: τ�}))θ �� e�: τθ .

We apply weakening (Lemma A.�) to derive from the latter the typing we need, that is,

K′; Γθ , genK′; Γθ({x: τ�θ′}) �� e�: τθ .

To do so we must show

Γθ , genK′; Γθ({x: τ�θ′}) �K′ Γθ , (genK; Γ({x: τ�)})θ
varK′(Γθ , genK′; Γθ({x: τ�θ′})) ⊆ varK′(Γθ , (genK; Γ({x: τ�)})θ) .

�e latter holds because varK′(Γθ , genK′; Γθ({x: τ�θ′})) ⊆ varK′(Γθ).
As for the former, we prove genK′; Γθ({x: τ�θ′}) �K′ (genK; Γ({x: τ�)})θ. We have

genK; Γ({x: τ�}) = ∀A.Kx ▹ τ� Kx = { α ∷ κ ∈ K � α ∈ A} .
By α-renaming of the quanti�ed variables we can write

genK; Γ({x: τ�}) = ∀B.K∗x ▹ τ�θ�
K∗x = { βi ∷ ● � αi ∷ ● ∈ Kx } ∪ { βi ∷ (L,U , Tθ�) � αi ∷ (L,U , T) ∈ A}

��

A Proofs

and, since θ does not involve B,

(genK; Γ({x: τ�}))θ = ∀B.K∗x θ ▹ τ�θ�θ = ∀B.K′x ▹ τ�θ′
K′x = { β ∷ κ ∈ K′ � β ∈ B } .

�e other type scheme is

genK′; Γθ(τ�θ′) = ∀C .K′C ▹ τ�θ′
C = varK′(τ�θ′) � varK′(Γθ) K′C = { β ∷ κ ∈ K′ � β ∈ C } .

We show B ⊆ C, which concludes the proof (because the kinding environments are both
restrictions of K′). Consider βi ∈ B. We have αi ∈ varK(τ�) � varK(Γ). �en βi = αiθ′ ∈
varK′(τ�θ′). Furthermore βi ∉ varK′(Γθ) holds because Γθ does not contain variables in B (Γ
does not contain them and θ does not introduce them) and variables in B do not appear in the
kinds of other variables which are not themselves in B.

We now consider the rule Tk-Match in its generality. We have

K; Γ �� match e� with (pi → ei)i∈I : τ
K; Γ �� e�: τ� τ� �K { pi � i ∈ I }∀i ∈ I. K � pi : τ� ⇒ Γi K; Γ , genK; Γ(Γi) �� ei : τ

and must show

K′; Γθ �� match e� with (pi → ei)i∈I : τθ
which we prove by establishing, for some τ̂� and { Γ̂i � i ∈ I }, that

K′; Γθ �� e�: τ̂� τ̂� �K′ { pi � i ∈ I }
∀i ∈ I. K′ � pi : τ̂� ⇒ Γ̂i K′; Γθ , genK′; Γθ(Γ̂i) �� ei : τθ .

For the derivation for e� we proceed as above and have τ̂� = τ�θ′. By Lemma A.� we have
τ�θ′ �K′ { pi � i ∈ I }. By Lemma A.�, we have K′ � pi : τ�θ′ ⇒ Γiθ′ and thus take Γ̂i = Γiθ′.

We proceed as before also for the derivations for each branch.�e di�erence is that, to apply
weakening, we must prove the two premises for the environments and not for τ� alone.�e
condition on variables is straightforward, as before. For the other we prove, for each x ∈ capt(pi)
and assuming Γi(x) = τx ,

Γθ , genK′; Γθ(τxθ′) �K′ Γθ , (genK; Γ(τx))θ .

We show it as for τ� above: varK(τx) is always a subset of varK(τ�) because environment
generation does not introduce new variables. �

����� � .�: Expression substitution Let x�, . . . , xn be distinct variables and v�, . . . , vn values. Let
Γ′ = {x�: σ�, . . . , xn: σn} and � = [v��x� , . . . , vn�xn].
If K; Γ , Γ′ �� e: τ and, for all k ∈ {�, . . . , n} and for all τk ∈ instK(σk), K; Γ �� vk : τk , then K; Γ ��

e�: τ.

Proof By induction on the derivation of K; Γ , Γ′ �� e: τ. We reason by cases on the last applied rule.

��

A.� A calculus for �� with variants

Case Tk-Var We have

K; Γ , Γ′ �� x: τ τ ∈ instK((Γ , Γ′)(x)) .
Either x = xk for some k or not. In the latter case, x� = x, x ∉ dom(Γ′) and hence (Γ , Γ′)(x) =

Γ(x).�en, since τ ∈ instK((Γ , Γ′)(x)), τ ∈ instK(Γ(x)) and Tk-Var can be applied.
If x = xk , then (Γ , Γ′)(x) = Γ′(x) = σk . We must then prove K; Γ �� vk : τ, which we know

by hypothesis since τ ∈ instK(σk).
Case Tk-Const Straightforward.

Case Tk-Abstr We have

K; Γ , Γ′ �� λx .e�: τ� → τ� K; Γ , Γ′, {x: τ�} �� e�: τ� .
By α-renaming we can assume x ∉ dom(Γ′); then (λx .e�)� = λx .(e��) and Γ , Γ′, {x: τ�} =

Γ , {x: τ�}, Γ′. �erefore we have K; Γ , {x: τ�}, Γ′ �� e�: τ� and, by the induction hypothesis,
K; Γ , {x: τ�} �� e�: τ�. We apply Tk-Abstr to conclude.

Cases Tk-Appl, Tk-Pair, and Tk-Tag Straightforward application of the induction hypothesis.

Case Tk-Match We have

K; Γ , Γ′ �� match e� with (pi → ei)i∈I : τ
K; Γ , Γ′ �� e�: τ� τ� �K { pi � i ∈ I }∀i ∈ I. K � pi : τ� ⇒ Γi K; Γ , Γ′, genK; Γ,Γ′(Γi) �� ei : τ .

We assume by α-renaming that no capture variable of any pattern is in the domain of Γ′.
�en, (match e� with (pi → ei)i∈I)� = match e�� with (pi → ei�)i∈I and Γ , Γ′, genK; Γ,Γ′(Γi) =
Γ , genK; Γ,Γ′(Γi), Γ′ for any i.
By the induction hypothesis, we derive K; Γ �� e��: τ� and K; Γ , genK; Γ,Γ′(Γi) �� ei : τ for

all i. From the latter, we prove K; Γ , genK; Γ(Γi) �� ei : τ by weakening (Lemma A.�): we have
genK; Γ(Γi) �K genK; Γ,Γ′(Γi) by Lemma A.� – since varK(Γ) ⊆ varK(Γ , Γ′) – and clearly we have
varK(Γ , genK; Γ(Γi)) ⊆ varK(Γ , genK; Γ,Γ′(Γi)) since varK(genK; Γ(Γi)) ⊆ varK(Γ). �

Type soundness

������� � .�: Progress Let e be a well-typed, closed expression.�en, either e is a value or there
exists an expression e′ such that e � e′.
Proof By hypothesis we have K;� �� e: τ.�e proof is by induction on its derivation; we reason by
cases on the last applied rule.

Case Tk-Var �is case does not occur because variables are not closed.

Case Tk-Const In this case e is a constant c and therefore a value.

Case Tk-Abstr In this case e is an abstraction λx .e�. Since it is also closed, it is a value.

��

A Proofs

Case Tk-Appl We have

K;� �� e� e�: τ K;� �� e�: τ′ → τ K;� �� e�: τ′ .
By the induction hypothesis, each of e� and e� either is a value or may reduce. If e� � e′�, then

e� e� � e′� e�. If e� is a value and e� � e′�, then e� e� � e� e′�.
If both are values then, by Lemma A.�, e� has the form λx .e� for some e�.�en, we can apply

R-Appl and e� e� � e�[e��x].
Case Tk-Pair We have

K;� �� (e�, e�): τ� × τ� K;� �� e�: τ� K;� �� e�: τ� .
By the induction hypothesis, each of e� and e� either is a value or may reduce. If e� � e′�, then(e�, e�)� (e′� , e�). If e� is a value and e� � e′�, then (e�, e�)� (e�, e′�). If both are values, then(e�, e�) is also a value.

Case Tk-Tag We have

K;� �� ‵tag(e�): α K;� �� e�: τ� .
Analogously to the previous case, by the induction hypothesis we have that either e� is a value

or e� � e′�. In the former case, ‵tag(e�) is a value as well. In the latter, we have ‵tag(e�)� ‵tag(e′�).
Case Tk-Match We have

K;� �� match e� with (pi → ei)i∈I : τ K;� �� e�: τ� τ� �K { pi � i ∈ I } .
By the inductive hypothesis, either e� is a value or it may reduce. In the latter case, if e� � e′�,

then match e� with (pi → ei)i∈I � match e′� with (pi → ei)i∈I .
If e� is a value, on the other hand, the expression may reduce by application of R-Match.

Since τ� �K { pi � i ∈ I } and e� is a value of type τ� (and therefore satis�es the premises of
the de�nition of exhaustiveness, with θ = [] and K = K′), there exists at least an i ∈ I such
that e��pi = � for some substitution �. Let j be the least of these i and � j the corresponding
substitution; then match e� with (pi → ei)i∈I � e j� j. �

������� � .��: Subject reduction Let e be an expression and τ a type such that K; Γ �� e: τ. If
e � e′, then K; Γ �� e′: τ.
Proof By induction on the derivation of K; Γ �� e: τ. We reason by cases on the last applied rule.

Cases Tk-Var, Tk-Const, and Tk-Abstr �ese cases may not occur: variables, constants, and ab-
stractions never reduce.

Case Tk-Appl We have

K; Γ �� e� e�: τ K; Γ �� e�: τ′ → τ K; Γ �� e�: τ′ .
e� e� � e′ occurs in any of three ways: i) e� � e′� and e′ = e′� e�; ii) e� is a value, e� � e′� and

e′ = e� e′�; iii) both e� and e� are values, e� is of the form λx .e�, and e′ = e�[e��x].
In the �rst case, we derive by the induction hypothesis that K; Γ �� e′�: τ′ → τ and conclude

by applying Tk-Appl again.�e second case is analogous.
In the third case, we know by Lemma A.� that K; Γ , {x: τ′} �� e�: τ. We also know that e� is a

value such that K; Γ �� e�: τ′.�en, by Lemma A.�, K; Γ �� e�[e��x]: τ.
��

A.� Variants with set-theoretic types

Case Tk-Pair We have

K; Γ �� (e�, e�): τ� × τ� K; Γ �� e�: τ� K; Γ �� e�: τ� .
(e�, e�)� e′ occurs either because e� � e′� and e′ = (e′� , e�), or because e� is a value, e� � e′�,

and e′ = (e�, e′�). In either case, the induction hypothesis allows us to derive that the type of the
component that reduces is preserved; therefore, we can apply Tk-Pair again to conclude.

Case Tk-Tag Analogously to the previous case, a variant expression only reduces if its argument
does, so we apply the induction hypothesis and Tk-Tag to conclude.

Case Tk-Match We have

K; Γ �� match e� with (pi → ei)i∈I : τ
K; Γ �� e�: τ� ∀i ∈ I. K � pi : τ� ⇒ Γi K; Γ , genK; Γ(Γi) �� ei : τ .

match e� with (pi → ei)i∈I � e′ occurs either because e� � e′� and e′ = match e′� with (pi →
ei)i∈I or because e� is a value and e′ = e j�, where e��p j = � and, for all i < j, e��pi = Ω. In the
former case, we apply the induction hypothesis and conclude by Tk-Match.
In the latter case, � is a substitution from the capture variables of p j to values, and we

know by Lemma A.� that, for all x ∈ capt(p j), K; Γ �� x�: Γj(x). We show that, additionally,
K; Γ �� x�: τx holds for every τx ∈ instK(genK; Γ(Γj(x))). Every such τx is equal to Γj(x)θ for a
θ such that dom(θ) ⊆ varK(Γj(x)) � varK(Γ) and K � θ:K (the kinding environment captured
by generalization is just a subset of K).�en, K; Γ �� x�: Γj(x)θ holds by Lemma A.�, since
Γθ = Γ (the substitution does not change any free variable of Γ).

FromK; Γ , genK; Γ(Γj) �� e j: τ and from the fact that we haveK; Γ �� x�: τx for all x ∈ dom(Γj)
and all τx ∈ instK(genK; Γ(Γj(x))), we derive K; Γ �� e j�: τ by Lemma A.�. �

��������� � .��: Type soundness Let e be a well-typed, closed expression, that is, such that
K;� �� e: τ holds for some τ.�en, either e diverges or it reduces to a value v such that K;� �� v: τ.
Proof Consequence of�eorem A.� and�eorem A.��. �

� .� �������� ���� ���-��������� �����

����� � .��: Generation for values Let v be a value.�en:

• if Γ �� v: c, then v = c;
• if Γ �� v: b, then v = c for some constant c such that bc ≤ b;
• if Γ �� v: t� → t� , then v is of the form λx .e and Γ , {x: t�} �� e: t�;
• if Γ �� v: t� × t�, then v is of the form (v�, v�), Γ �� v�: t�, and Γ �� v�: t�;
• if Γ �� v: ‵tag(t�), then v is of the form ‵tag(v�) and Γ �� v�: t�.

Proof By induction on the typing derivation: values must be typed by an application of the rule
corresponding to their form, to appropriate premises, possibly followed by applications of Ts-Subsum.

�e base cases are straightforward. In the inductive step, we just apply the induction hypothesis;
for abstractions, the result follows from the behaviour of subtyping on arrow types. �

��

A Proofs

Patterns and environment generation

We state the three lemmas below without proof, as they rely on the model of types which we have
not discussed. Details can be found in Frisch, Castagna, and Benzaken (����), Frisch (����), and
Castagna and Xu (����).

����� � .�� For each i ∈ I, let pi be a pattern. If Γ �� v: �i∈I *pi+, then there exists an i ∈ I such
that Γ �� v: *pi+.
����� � .�� Let t be a type. Let t′ be a type such that either t′ = *p+ or t′ = ¬* p+, for some pattern
p. If Γ �� v: t and Γ �� v: t′, then Γ �� v: t ∧ t′.
����� � .�� Let v be a well-typed value (i.e. � �� v: t holds for some t) and p a pattern.�en:

• � �� v: *p+ holds if and only if v�p = � for some substitution �;
• � �� v: ¬*p+ holds if and only if v�p = Ω.

����� � .�� Let p be a pattern and t, t′ two types. If t ≤ t′ ≤ *p+, then, for all x ∈ capt(p),(t��p)(x) ≤ (t′��p)(x).
Proof By structural induction on p.

Cases p = _ and p = c �ere is nothing to prove since capt(p) = �.
Case p = x We must prove (t��x)(x) ≤ (t′��x)(x), that is, t ≤ t′, which we know by hypothesis.

Case p = (p�, p�) Each x ∈ capt(p) is either in capt(p�) or in capt(p�). Assume x ∈ capt(pi);
then, (t��p)(x) = (π i(t)��pi)(x) and (t′��p)(x) = (π i(t′)��pi)(x). Since t ≤ t′ implies
π i(t) ≤ π i(t′) by Property �.��, we can apply the induction hypothesis to conclude.

Case p = ‵tag(p) Analogous to the previous case, because t ≤ t′ implies π‵tag(t) ≤ π‵tag(t′) by
Property �.��.

Case p = p�&p� Each x ∈ capt(p) is either in capt(p�) or in capt(p�). Assume x ∈ capt(pi); then,(t��p)(x) = (t��pi)(x) and (t′��p)(x) = (t′��pi)(x). We apply the induction hypothesis to
conclude.

Case p = p��p� Every x ∈ capt(p) is both in capt(p�) and in capt(p�). We have that (t��p)(x) =(t ∧ *p� + ��p�)(x) ∨ (t � *p� + ��p�)(x) and likewise for t′. Since t ∧ *p�+ ≤ t′ ∧ *p�+ and
t � *p�+ ≤ t′ � *p�+, we can apply the induction hypothesis to both sub-patterns to derive(t∧ *p� + ��p�)(x) ≤ (t′ ∧ *p� + ��p�)(x) and (t� *p� + ��p�)(x) ≤ (t′ � *p� + ��p�)(x).�en we
have (t ∧ *p� + ��p�)(x) ∨ (t � *p� + ��p�)(x) ≤ (t′ ∧ *p� + ��p�)(x) ∨ (t′ � *p� + ��p�)(x) �

����� � .��: Correctness of environment generation Let p be a pattern and v a value such that
Γ �� v: t for some t ≤ *p+.�en, for all x ∈ capt(p), Γ �� x(v�p): (t��p)(x).
Proof By structural induction on p.

Cases p = _ and p = c �ere is nothing to prove since capt(p) = �.

��

A.� Variants with set-theoretic types

Case p = x Wemust prove Γ �� x[v�x]: (t��x)(x), which is the hypothesis Γ �� v: t.
Case p = (p�, p�) We have t ≤ 1 × 1, hence t ≤ π�(t) × π�(t); then, since Γ �� v: π�(t) × π�(t)
by subsumption, we have by Lemma A.�� that v = (v�, v�) and that Γ �� vi : π�(t) for both i.
Furthermore, t ≤ *(p�, p�)+ = *p� + × * p�+. Hence, by Property �.��, π i(t) ≤ *pi+ for both i.
Each x ∈ capt(p) is either in capt(p�) or in capt(p�). Assume x ∈ capt(pi); then, x(v�p) =

x(vi�pi) and (t��p)(x) = (π i(t)��pi)(x). We apply the induction hypothesis to conclude.

Case p = ‵tag(p) Analogous to the previous case.

Case p = p�&p� Each x ∈ capt(p) is either in capt(p�) or in capt(p�). Assume x ∈ capt(pi); then,
we can directly apply the induction hypothesis since t ≤ *p�&p�+ implies t ≤ *p�+ and t ≤ *p�+.

Case p = p��p� Either v�p = v�p� or v�p = v�p� (in which case v�p� = Ω).

Case v�p = v�p� By Lemma A.�� we have Γ �� v: *p�+; by Lemma A.�� we have Γ ��
v: t∧*p�+. Since t∧*p�+ ≤ *p�+, by the induction hypothesis we have, for all x ∈ capt(p�) =
capt(p), Γ �� x(v�p): (t∧*p�+��p�)(x) and, by subsumption, Γ �� x(v�p): (t ∧ *p�+��p�)(x)∨(t � *p�+��p�)(x).

Case v�p = v�p� By Lemma A.�� and Lemma A.��, we have Γ �� v: t � *p�+. Additionally,
t�*p�+ ≤ *p�+ holds because it is equivalent to t ≤ *p� +∨* p�+.�erefore by the induction
hypothesis we have, for all x ∈ capt(p�) = capt(p), Γ �� x(v�p): (t � *p�+��p�)(x) and, by
subsumption, Γ �� x(v�p): (t ∧ *p�+��p�)(x) ∨ (t � *p�+��p�)(x). �

����� � .�� Let p be a pattern, t a type such that t ≤ *p+, and θ a type substitution.�en, for all
x ∈ capt(p), (tθ��p)(x) ≤ ((t��p)(x))θ.
Proof By structural induction on p.

Cases p = _ and p = c �ere is nothing to prove since capt(p) = �.
Case p = x Wemust prove (tθ��x)(x) ≤ (t��x)(x)θ, which is tθ ≤ tθ.
Case p = (p�, p�) Each x ∈ capt(p) is either in capt(p�) or in capt(p�). Assume x ∈ capt(pi);

then, (tθ��p)(x) = (π i(tθ)��pi)(x) and (t��p)(x)θ = (π i(t)��pi)(x)θ.
Since π i(tθ) ≤ π i(t)θ, by Lemma A.�� we have (π i(tθ)��pi)(x) ≤ (π i(t)θ��pi)(x). By the

induction hypothesis we have (π i(t)θ��pi)(x) ≤ (π i(t)��pi)(x)θ.
Case p = ‵tag(p) Analogous to the previous case, since π‵tag(tθ) ≤ π‵tag(t)θ.
Case p = p�&p� Each x ∈ capt(p) is either in capt(p�) or in capt(p�). Assume x ∈ capt(pi);

then, (tθ��p)(x) = (tθ��pi)(x) and (t��p)(x)θ = (t��pi)(x)θ. We conclude by the induction
hypothesis.

Case p = p��p� Every x ∈ capt(p) is both in capt(p�) and in capt(p�). We have (tθ��p)(x) =((t ∧ *p�+)θ��p�)(x) ∨ ((t � *p�+)θ��p�)(x) – pattern types are closed, so we can apply θ to
them too – and (t��p)(x)θ = (t ∧ *p� + ��p�)(x)θ ∨ (t � *p� + ��p�)(x)θ. We conclude by
applying the induction hypothesis to both members of the union. �

��

A Proofs

Generalization

����� � .�� Let Γ�, Γ� be two type environments such that var(Γ�) ⊆ var(Γ�) and t�, t� two types
such that t� ≤ t�.�en genΓ�(t�) � genΓ�(t�).
Proof An instance of genΓ�(t�) is a type t�θ� such that dom(θ�) ⊆ var(t�) � var(Γ�). Let θ� be the
restriction of θ� to the variables in var(t�) � var(Γ�).�en, t�θ� is an instance of genΓ�(t�).
We have t�θ� = t�θ� because the two substitutions di�er only on variables in var(t�) � var(t�)

(which do not appear in t� at all) or in var(Γ�)� var(Γ�) (which is empty). Finally, we have t�θ� ≤ t�θ�
because subtyping is preserved by substitutions. �

Properties of typing

����� � .��: Weakening Let Γ�, Γ� be two type environments such that Γ� � Γ� and var(Γ�) ⊆
var(Γ�). If Γ� �� e: t, then Γ� �� e: t.
Proof By induction on the derivation of Γ� �� e: t. We reason by cases on the last applied rule.

Case Ts-Var We have

Γ� �� x: t t ∈ inst(Γ�(x))
and hence, since Γ� � Γ�, there exists a t′ ∈ inst(Γ�(x)) such that t′ ≤ t. We apply Ts-Var to derive
Γ� �� x: t′ and Ts-Subsum to conclude.

Case Ts-Const Straightforward.

Case Ts-Abstr We have

Γ� �� λx .e�: t� → t� Γ�, {x: t�} �� e�: t� .
Since Γ� � Γ�, we have Γ�, {x: t�} � Γ�, {x: t�}; since var(Γ�) ⊆ var(Γ�), we have var(Γ�, {x: t�}) ⊆

var(Γ�, {x: t�}). We derive Γ�, {x: t�} �� e�: t� by the induction hypothesis and apply Ts-Abstr to
conclude.

Cases Ts-Appl, Ts-Pair, Ts-Tag, and Ts-Subsum Straightforward application of the induction hy-
pothesis.

Case Tk-Match We have

Γ� �� match e� with (pi → ei)i∈I : t
Γ� �� e�: t� t� ≤ �i∈I *pi + ti = (t� �� j<i *p j+) ∧ *pi+∀i ∈ I s. t. ti � 0. Γ�, genΓ�(ti��pi) �� ei : t′i t = �t i�0 t′i .

By the induction hypothesis, we derive Γ� �� e�: t�.
For any branch, note that var(Γ�) ⊆ var(Γ�) implies genΓ�(t) � genΓ�(t) for any t by LemmaA.��.

Hence, we have Γ�, genΓ�(ti��pi) � Γ�, genΓ�(ti��pi). Additionally, since var(genΓ�(ti��pi)) ⊆
var(Γ�) ⊆ var(Γ�), we have var(Γ�, genΓ�(ti��pi)) ⊆ var(Γ�, genΓ�(ti��pi)).

Hence we may apply the induction hypothesis for all i to derive Γ�, genΓ�(ti��pi) �� ei : t′i and
then apply Ts-Match to conclude. �

��

A.� Variants with set-theoretic types

����� � .��: Stability of typing under type substitutions Let θ be a type substitution. If Γ �� e: t,
then Γθ �� e: tθ.
Proof By induction on the derivation of Γ �� e: t. We reason by cases on the last applied rule.

Case Ts-Var We have

Γ �� x: t t ∈ inst(Γ(x)) Γ(x) = ∀A. tx t = txθx dom(θx) ⊆ A
and must show Γθ �� x: tθ.

By α-renaming we can assume A ♯ θ, that is, A∩ dom(θ) = � and A∩ var(θ) = �. Under this
assumption, (Γθ)(x) = ∀A. txθ. We must show that tθ = txθθ′x for a substitution θ′x such that
dom(θ′x) ⊆ A.

Let θ′x = [αθxθ�α � α ∈ A]. We show that tθθ′x = txθxθ = tθ, by showing that, for every α,
αθθ′x = αθxθ. If α ∈ A, then αθθ′x = αθ′x = αθxθ (θ is not de�ned on the variables in A). If
α ∉ A, then αθθ′x = αθ (θ never produces any variable in A) and αθxθ = αθ as α ∉ dom(θx).

Case Ts-Const Straightforward.

Case Ts-Abstr We have

Γ �� λx .e�: t� → t� Γ , {x: t�} �� e�: t� .
By the induction hypothesis we have Γθ , {x: t�θ} �� e�: t�θ. �en by Ts-Abstr we derive

Γθ �� λx .e�: (t�θ)→ (t�θ), which is Γθ �� λx .e�: (t� → t�)θ.
Cases Ts-Appl, Ts-Pair, and Ts-Tag Straightforward application of the induction hypothesis.

Case Ts-Match We have

Γ �� match e� with (pi → ei)i∈I : t
Γ �� e�: t� t� ≤ �i∈I *pi + ti = (t� �� j<i *p j+) ∧ *pi+∀i ∈ I s. t. ti � 0. Γ , genΓ(ti��pi) �� ei : t′i t = �t i�0 t′i

and must show Γθ �� match e� with (pi → ei)i∈I : tθ.
We prove it by establishing, for some types t̂� and t̂i , t̂′i for each i, that

Γθ �� e�: t̂� t̂� ≤ �i∈I *pi + t̂i = (t̂� �� j<i *p j+) ∧ *pi+
∀i ∈ I s. t. t̂i � 0. Γθ , genΓθ(t̂i��pi) �� ei : t̂′i �t̂ i�0 t̂′i ≤ tθ .

Let A = {α�, . . . , αn} = var(t�) � var(Γ). Let B = {β�, . . . , βn} be a set of type variables such
that B ♯ θ , Γ. Let θ� = [β��α� , . . . , βn�αn] and θ′ = θ ○ θ�.

By the induction hypothesis, using θ′, we derive Γθ′ �� e�: t�θ′, which is Γθ �� e�: t�θ′ (since
no αi is free in Γ, we have Γθ′ = Γθ). We take t̂� = t�θ′: note that the exhaustiveness condition
is satis�ed because substitutions preserves subtyping (and all accepted types of patterns are
closed). We have t̂i = tiθ′ for all i.

For all branches, note that t̂i � 0 implies ti � 0. In that case we have Γ , genΓ(ti��pi) �� ei : t′i
and, by the induction hypothesis using θ, we can derive Γθ , (genΓ(ti��pi))θ �� ei : t′iθ.
We show below Γθ , genΓθ(tiθ′��pi) � Γθ , (genΓ(ti��pi))θ. Since var(genΓθ(tiθ′��pi)) ⊆

var(Γθ), we have var(Γθ , genΓθ(tiθ′��pi)) ⊆ var(Γθ , (genΓ(ti��pi))θ). Hence, by Lemma A.��,
we derive Γθ , genΓθ(tiθ′��pi) �� ei : t′iθ. We take t̂′i = t′iθ.

��

A Proofs

Finally, we have �t̂ i�0 t′iθ ≤ �t i�0 t′iθ, because the le� union has fewer summands, since
t̂i � 0 implies ti � 0.
Proof that Γθ , genΓθ(tiθ′��pi) � Γθ , (genΓ(ti��pi))θ Recall that Γθ = Γθ′. We prove, for

all x ∈ capt(pi), that genΓθ′((tiθ′��pi)(x)) � (genΓ((ti��pi)(x)))θ. Let tx = (ti��pi)(x)
and t′x = (tiθ′��pi)(x).
We have genΓ(tx) = ∀A′. tx , where A′ = var(tx) � var(Γ). Since var(tx) ⊆ var(ti) =

var(t�), A′ ⊆ A. Let J = { j � α j ∈ A′ }; thus J ⊆ {�, . . . , n} and A′ = A�J = { α j � j ∈ J }.
Let B�J = { β j � j ∈ J }. We have genΓ(tx) = ∀B�J . txθ� by α-renaming (we are substituting
also the αi such that i ∉ J, but this is makes no di�erence since they are not in tx).�us,(genΓ(tx))θ = ∀B�J . txθ�θ = ∀B�J . txθ′, since B ♯ θ.

An instance of (genΓ(tx))θ is then a type txθ′θx , with dom(θx) ⊆ B�J . We must �nd an
instance of genΓθ′(t′x) which is a subtype of it. Let θ′x be the restriction of θx to variables
in var(t′x) � var(Γθ′).�en t′xθ′x = (tiθ′��pi)(x)θ′x is a valid instance of genΓθ′(t′x). We
prove (tiθ′��pi)(x)θ′x ≤ txθ′θx = (ti��pi)(x)θ′θx .
We have (tiθ′��pi)(x)θ′x = (tiθ′��pi)(x)θx : the two substitutions only di�er on vari-

ables in B�J � var((tiθ′��pi)(x)) (variables which do not appear in the type at all) and
on variables in B�J ∩ var(Γθ′) (which is the empty set, since Γθ′ = Γθ and B ♯ Γ , θ).�en,
by Lemma A.�� we have (tiθ′��pi)(x) ≤ (ti��pi)(x)θ′ and hence (tiθ′��pi)(x)θx ≤(ti��pi)(x)θ′θx .

Case Ts-Subsum �e conclusion follows from the induction hypothesis since substitutions pre-
serve subtyping. �

����� � .��: Expression substitution Let x�, . . . , xn be distinct variables and v�, . . . , vn values. Let
Γ′ = {x�: s�, . . . , xn: sn} and � = [v��x� , . . . , vn�xn].
If Γ , Γ′ �� e: t and, for all k ∈ {�, . . . , n} and for all tk ∈ inst(sk), Γ �� vk : tk , then Γ �� e�: t.

Proof By induction on the derivation of Γ , Γ′ �� e: t. We reason by cases on the last applied rule.

Case Ts-Var We have

Γ , Γ′ �� x: t t ∈ inst((Γ , Γ′)(x)) .
Either x = xk for some k or not. In the latter case, x� = x, x ∉ dom(Γ′) and hence (Γ , Γ′)(x) =

Γ(x).�en, since t ∈ inst((Γ , Γ′)(x)), t ∈ inst(Γ(x)) and we can apply Ts-Var.
If x = xk , then (Γ , Γ′)(x) = Γ′(x) = sk . We must then prove Γ �� vk : t, which we know by

hypothesis since t ∈ inst(sk).
Case Ts-Const Straightforward.

Case Ts-Abstr We have

Γ , Γ′ �� λx .e�: t� → t� Γ , Γ′, {x: t�} �� e�: t� .
By α-renaming we can assume x ∉ dom(Γ′); then (λx .e�)� = λx .(e��) and Γ , Γ′, {x: t�} =

Γ , {x: t�}, Γ′.�erefore we have Γ , {x: t�}, Γ′ �� e�: t� and hence Γ , {x: t�} �� e�: t� by the induc-
tion hypothesis. We apply Ts-Abstr to conclude.

Cases Ts-Appl, Ts-Pair, Ts-Tag, and Ts-Subsum Straightforward application of the induction hy-
pothesis.

��

A.� Variants with set-theoretic types

Case Ts-Match We have

Γ , Γ′ �� match e� with (pi → ei)i∈I : t
Γ , Γ′ �� e�: t� t� ≤ �i∈I *pi + ti = (t� �� j<i *p j+) ∧ *pi+∀i ∈ I s. t. ti � 0. Γ , Γ′, genΓ,Γ′(ti��pi) �� ei : t′i t = �t i�0 t′i .

We assume by α-renaming that no capture variable of any pattern is in the domain of Γ′.
�en, (match e� with (pi → ei)i∈I)� = match e�� with (pi → ei�)i∈I and Γ , Γ′, genΓ,Γ′(ti��pi) =
Γ , genΓ,Γ′(ti��pi), Γ′ for any i.
By the induction hypothesis, we derive Γ �� e��: t� and Γ , genΓ,Γ′(ti��pi) �� ei : t′i for all

i. From the latter, we prove Γ , genΓ(ti��pi) �� ei : t′i by weakening (Lemma A.��): we have
genΓ(ti��pi) � genΓ,Γ′(ti��pi) by Lemma A.�� – since var(Γ) ⊆ var(Γ , Γ′) – and clearly we have
var(Γ , genΓ(ti��pi)) ⊆ var(Γ , genΓ,Γ′(ti��pi)) since var(genΓ(ti��pi)) ⊆ var(Γ). �

Type soundness

������� � .��: Progress Let e be a well-typed, closed expression.�en, either e is a value or there
exists an expression e′ such that e � e′.
Proof By hypothesis we have � �� e: t.�e proof is by induction on its derivation; we reason by
cases on the last applied rule.

Case Ts-Var �is case does not occur because variables are not closed.

Case Ts-Const In this case e is a constant c and therefore a value.

Case Ts-Abstr In this case e is an abstraction λx .e�. Since it is also closed, it is a value.

Case Ts-Appl We have

� �� e� e�: t � �� e�: t′ → t � �� e�: t′ .
By the induction hypothesis, each of e� and e� either is a value or may reduce. If e� � e′�, then

e� e� � e′� e�. If e� is a value and e� � e′�, then e� e� � e� e′�.
If both are values then, by Lemma A.��, e� has the form λx .e� for some e�.�en, we can apply

R-Appl and e� e� � e�[e��x].
Case Ts-Pair We have

� �� (e�, e�): t� × t� � �� e�: t� � �� e�: t� .
By the induction hypothesis, each of e� and e� either is a value or may reduce. If e� � e′�, then(e�, e�)� (e′� , e�). If e� is a value and e� � e′�, then (e�, e�)� (e�, e′�). If both are values, then(e�, e�) is also a value.

Case Ts-Tag We have

� �� ‵tag(e�): ‵tag(t�) � �� e�: t� .
Analogously to the previous case, by the induction hypothesis we have that either e� is a value

or e� � e′�. In the former case, ‵tag(e�) is a value as well. In the latter, we have ‵tag(e�)� ‵tag(e′�).

��

A Proofs

Case Ts-Match We have

� �� match e� with (pi → ei)i∈I : t � �� e�: t� t� ≤ �i∈I *pi + .

By the inductive hypothesis, either e� is a value or it may reduce. In the latter case, if e� � e′�,
then match e� with (pi → ei)i∈I � match e′� with (pi → ei)i∈I .

If e� is a value, on the other hand, the expression may reduce by application of R-Match. Since
t� ≤ �i∈I *pi+, � �� e�: �i∈I *pi+ holds by subsumption. Hence, since e� is a value, � �� e�: *pi+
holds for at least one i (by Lemma A.��); for each such i we have e��pi = �i (by Lemma A.��).
Let j be the least of these i; then match e� with (pi → ei)i∈I � e j� j.

Case Ts-Subsum Straightforward application of the induction hypothesis. �
������� � .��: Subject reduction Let e be an expression and t a type such that Γ �� e: t. If e � e′,
then Γ �� e′: t.
Proof By induction on the derivation of Γ �� e: t. We reason by cases on the last applied rule.

Cases Ts-Var, Ts-Const, and Ts-Abstr �ese cases may not occur: variables, constants, and ab-
stractions never reduce.

Case Ts-Appl We have

Γ �� e� e�: t Γ �� e�: t′ → t Γ �� e�: t′ .
e� e� � e′ occurs in any of three ways: i) e� � e′� and e′ = e′� e�; ii) e� is a value, e� � e′� and

e′ = e� e′�; iii) both e� and e� are values, e� is of the form λx .e�, and e′ = e�[e��x].
In the �rst case, we derive by the induction hypothesis that Γ �� e′�: t′ → t and conclude by

applying Ts-Appl again.�e second case is analogous.
In the third case, we know by Lemma A.�� that Γ , {x: t′} �� e�: t. We also know that e� is a

value such that Γ �� e�: t′.�en, by Lemma A.��, Γ �� e�[e��x]: t.
Case Ts-Pair We have

Γ �� (e�, e�): t� × t� Γ �� e�: t� Γ �� e�: t� .
(e�, e�)� e′ occurs either because e� � e′� and e′ = (e′� , e�), or because e� is a value, e� � e′�,

and e′ = (e�, e′�). In either case, the induction hypothesis allows us to derive that the type of the
component that reduces is preserved; therefore, we can apply Ts-Pair again to conclude.

Case Ts-Tag Analogously to the previous case, a variant expression only reduces if its argument
does, so we apply the induction hypothesis and Ts-Tag to conclude.

Case Ts-Match We have

Γ �� match e� with (pi → ei)i∈I : t
Γ �� e�: t� t� ≤ �i∈I *pi + ti = (t� �� j<i *p j+) ∧ *pi+∀i ∈ I s. t. ti � 0. Γ , genΓ(ti��pi) �� ei : t′i t = �t i�0 t′i .

�e reduction match e� with (pi → ei)i∈I � e′ occurs either because e� � e′� and e′ =
match e′� with (pi → ei)i∈I or because e� is a value and e′ = e j�, where e��p j = � and, for all i < j,
e��pi = Ω. In the former case, we apply the induction hypothesis and conclude by Ts-Match.

��

A.� Variants with set-theoretic types

R-Fix
Y (λx .e) � e[Y (λx .e)�x] Tk-Fix

K; Γ �� e: τ → τ
K; Γ �� Y e: τ Ts-Fix

Γ �� e: t → t
Γ �� Y e: t

������ � .� Reduction and typing rules for the �xed-point combinator.

In the latter case, � is a substitution from the capture variables of p j to values. We can derive

Γ �� e�: *p j+ ∀i < j. Γ �� e�: ¬*pi+
by Lemma A.�� and thence Γ �� e�: t j by Lemma A.��.�erefore, by Lemma A.��, we have that,
for all x ∈ capt(p j), Γ �� x�: (t j��p j)(x). Let Γ′ = t j��p j.

We show that, additionally, Γ �� x�: tx holds for every tx ∈ inst(genΓ(Γ′(x))). Every such tx
is equal to Γ′(x)θ for a θ such that dom(θ) ⊆ var(Γ′(x)) � var(Γ).�en, Γ �� x�: Γ′(x)θ holds
by Lemma A.��, since Γθ = Γ (the substitution does not change any free variable of Γ).
From Γ , genΓ(Γ′) �� e j: t′j and from the fact that we have Γ �� x�: tx for all x ∈ capt(p j)

and all tx ∈ inst(genΓ(Γ′(x))), we derive Γ �� e j�: t′j by Lemma A.�� and then conclude by
subsumption.

Case Ts-Subsum Straightforward application of the induction hypothesis. �
��������� � .��: Type soundness Let e be a well-typed, closed expression, that is, such that� �� e: t holds for some t.�en, either e diverges or it reduces to a value v such that � �� v: t.
Proof Consequence of�eorem A.�� and�eorem A.��. �

Completeness with respect to�ariantsK

������ ��������� ��������� To prove the result of this section, we extend the�ariants
calculus and its type systems with the possibility of de�ning recursive functions by a �xed-point
combinator.�is simpli�es the proof because it allows us to assume that all arrow types are inhabited.
�e extension of the calculus is done by adding a new production Y e to the grammar de�ning

expressions, a new production Y E to the grammar of evaluation contexts, and the new reduction
rule R-Fix in Figure A.�. We extend�ariantsK and�ariantsS with the addition, respectively, of the
rules Tk-Fix and Ts-Fix in Figure A.�.

����� � .�� For any k-type τ in a non-recursive kinding environment K, we have var(�τ�K) ⊆
varK(τ). Likewise, for any k-scheme σ and k-type environment Γ, we have var(�σ�K) ⊆ varK(σ) and
var(�Γ�K) ⊆ varK(Γ).
Proof �e translation does not introduce new variables, therefore we can show var(�τ�K) ⊆ varK(τ)
by induction on w(τ,K). We extend this straightforwardly to type schemes and environments. �
����� � .�� Let p be a pattern and t ≤ *p+ an s-type. If K � p: τ⇒ Γ and t ≤ �τ�K , then, for all
x ∈ capt(p), (t��p)(x) ≤ �Γ(x)�K .

��

A Proofs

Proof By structural induction on p.

Cases p = _ and p = c �ere is nothing to prove since capt(p) = �.
Case p = x We have

K � p: τ⇒ {x: τ} t��x = {x: t}
and must prove {x: t}(x) ≤ �{x: τ}(x)�K , that is, t ≤ �τ�K , which is true by hypothesis.

Case p = (p�, p�) We have

K � p: τ� × τ� ⇒ Γ Γ = Γ� ∪ Γ� ∀i . K � pi : τi ⇒ Γi
t��p = π�(t)��p� ∪ π�(t)��p� .

Since t ≤ �τ��K × �τ��K , by Property �.�� we have π i(t) ≤ �τi�K . Likewise, π i(t) ≤ *pi+. We
apply the induction hypothesis to conclude.

Case p = ‵tag(p�) We have

K � p: α⇒ Γ K � p�: τ� ⇒ Γ α ∷ (L,U , T) ∈ K ‵tag ∈ U ⇒ ‵tag: τ� ∈ T
t��p = π‵tag(t)��p� .

Since t ≤ *‵tag(p�)+ = ‵tag(*p�+), by Property �.�� we have π‵tag(t) ≤ *p�+. We next prove
π‵tag(t) ≤ �τ��K , which allows us to apply the induction hypothesis and conclude.

�e translation of α is �α�K = (lowK(L, T)∨ α)∧ uppK(U , T). We have t ≤ �α�K and hence
t ≤ uppK(U , T). Since t ≤ ‵tag(1), t ≤ uppK(U , T)∧ ‵tag(1). We distribute the intersection over
the summands of uppK(U , T), which is a union.
If ‵tag ∉ U (in which case U ≠ �), then all summands have the form ‵tag�(τ′) and for each‵tag� we have ‵tag� ≠ ‵tag: hence, the intersection is empty and thus we have t ≤ 0 � ‵tag(0).�en

π‵tag(t) ≤ 0 ≤ �τ��K .
If ‵tag ∈ U , then necessarily ‵tag ∈ dom(T) holds as well. In that case the intersection

uppK(U , T) ∧ ‵tag(1) is equivalent to ‵tag(�‵tag:τ′∈T�τ′�K). Hence t ≤ ‵tag(�‵tag:τ′∈T�τ′�K)
and π‵tag(t) ≤ �‵tag:τ′∈T�τ′�K . Since ‵tag: τ� ∈ T , �‵tag:τ′∈T�τ′�K ≤ �τ��K , from which follows
π‵tag(t) ≤ �τ��K .

Case p = p�&p� We directly apply the induction hypothesis to both sub-patterns and conclude.

Case p = p��p� We have

K � p: τ⇒ Γ ∀i . K � pi : τ⇒ Γ
t��p = (t ∧ *p�+)��p� � (t � *p�+)��p� .

Since t ∧ *p�+ and t � *p�+ are subtypes of t, they are also subtypes of �τ�K . We can apply the
induction hypothesis and, for each x, derive both that (t ∧ *p�+��p�)(x) ≤ �Γ(x)�K and that(t � *p�+��p�)(x) ≤ �Γ(x)�K . Hence, (t��p)(x) ≤ �Γ(x)�K . �

����� � .��: Translation of type substitutions LetK,K′ be two non-recursive kinding environments
such that dom(K′) ∩ (dom(K) ∪ var�(K)) = �. Let θ be a k-type substitution such that dom(θ) ⊆
dom(K′) and K ,K′ � θ:K.

Let θ′ be the s-type substitution de�ned as [�αθ�K�α � α ∈ dom(K′)]. For every k-type τ, we have�τ�K ,K′θ′ � �τθ�K .
��

A.� Variants with set-theoretic types

Proof By complete induction on w(τ, (K ,K′)). We proceed by cases on τ and assume that the
lemma holds for all τ′ such that w(τ′, (K ,K′)) < w(τ, (K ,K′)).

Case τ = α, with α ∷ ● ∈ K ,K′ We have �α�K ,K′ = α, hence �α�K ,K′θ′ = αθ′. Either α ∈ dom(K)
or α ∈ dom(K′) (the domains are disjoint). In the former case, αθ = α and αθ′ = α.�us we
have �α�K ,K′θ′ = α = �αθ�K . In the latter, αθ′ = �αθ�K holds by de�nition of θ′.

Case τ = α, with α ∷ (L,U , T) ∈ K and α ∉ dom(K′) We have �α�K ,K′ = �α�K because no vari-
able in the kind of α is in dom(K′). For the same reason, since the translation does not add
variables, �α�K ,K′θ′ = �α�K . Additionally, αθ = α, so also �αθ�K = �α�K .

Case τ = α, with α ∷ (L′,U ′, T ′) ∈ K′ Because K ,K′ � θ:K, we know that αθ is some variable
β such that β ∷ (L,U , T) ∈ K and (L,U , T) � (L′,U ′, T ′θ).
We have

�αθ�K = �β�K = (lowK(L, T) ∨ β) ∧ uppK(U , T)
and

�α�K ,K′θ′ = �(lowK ,K′(L′, T ′) ∨ α) ∧ uppK ,K′(U ′, T ′)�θ′ =
(lowK ,K′(L′, T ′)θ′ ∨ αθ′) ∧ uppK ,K′(U ′, T ′)θ′ =
�lowK ,K′(L′, T ′)θ′ ∨ �(lowK(L, T) ∨ β) ∧ uppK(U , T)�� ∧ uppK ,K′(U ′, T ′)θ′ .

Let us de�ne

l = lowK(L, T) u = uppK(U , T)
l ′ = lowK ,K′(L′, T ′)θ′ u′ = uppK ,K′(U ′, T ′)θ′

and assume that the following hold (we prove them below):

l ≤ u l ′ ≤ u′ l ′ ≤ l u ≤ u′ .
�en we have also l ′ ≤ u by transitivity. Whenever t ≤ t′, we have t ∧ t′ � t and t ∨ t′ � t′.

�us we have the following equivalences:

�α�K ,K′θ′ = (l ′ ∨ ((l ∨ β) ∧ u)) ∧ u′� (l ′ ∧ u′) ∨ ((l ∨ β) ∧ u ∧ u′) distributivity
� l ′ ∨ ((l ∨ β) ∧ u) l ′ ≤ u′ and u ≤ u′
� (l ′ ∨ l ∨ β) ∧ (l ′ ∨ u) distributivity
� (l ∨ β) ∧ u l ′ ≤ l and l ′ ≤ u

by which we conclude.
We now prove our four assumptions.�e �rst, l ≤ u, holds because L ⊆ U and L ⊆ dom(T):

hence each branch of l appears in u as well.�e second is analogous.
For the other assumptions, note that �τ′�K ,K′θ′ � �τ′θ�K holds for all τ′ in the range of

T ′. To prove l ′ ≤ l , note that L′ ⊆ L and T ′θ ⊆ T . In l ′, we distribute the application of
θ′ over all the summands of the union and inside all variant type constructors. �en, we
show ‵tag(�‵tag:τ′∈T′�τ′�K ,K′θ′) ≤ l for each ‵tag ∈ L′. We have ‵tag(�‵tag:τ′∈T′�τ′�K ,K′θ′) �‵tag(�‵tag:τ′∈T′�τ′θ�K) = ‵tag(�‵tag:τ′θ∈T′θ�τ′θ�K). Since L′ ⊆ L, there is a summand of l with

��

A Proofs

the same tag. Since ‵tag is in the lower bound, it has a single type in both T and T ′ and, since
T ′θ ⊆ T , the type it has in T must be τ′θ.
To prove u ≤ u′, note that U ⊆ U ′. If U = �, then U ′ = �.�en both u and u′ are unions

of two types: the union of tags mentioned respectively in T and T ′ and the rest. For each ‵tag,
if ‵tag ∉ dom(T), then ‵tag ∉ dom(T ′), in which case both u and u′ admit it with any argument
type. If ‵tag ∈ dom(T), either ‵tag ∈ dom(T ′) or not. In the former case, u admits a smaller
argument type than u′ because T ′θ ⊆ T .�e same occurs in the latter case, since u′ admits ‵tag
with any argument type.

If U ≠ �, then U ′ could be � or not. In either case we can prove, for each ‵tag ∈ U , that u′
admits ‵tag with a larger argument type than u does.

Case τ = b Straightforward, since a basic type is translated into itself and is never a�ected by
substitutions.

Case τ = τ� → τ� By the induction hypothesis we have �τi�K ,K′θ′ � �τiθ�K for both i.�en

�τ� → τ��K ,K′θ′ = (�τ��K ,K′θ′)→ (�τ��K ,K′θ′) �(�τ�θ�K)→ (�τ�θ�K) = �(τ�θ)→ (τ�θ)�K = �(τ� → τ�)θ�K .

Case τ = τ� × τ� Analogous to the previous case. �
����� � .�� If � �� v: �τ�K , then there exists a value v′ such that K;� �� v′: τ and, for every
pattern p, v�p = Ω ⇐⇒ v′�p = Ω.

Proof By structural induction on v.
Note that values are always typed by an application of the typing rule corresponding to their form

(Ts-Const, Ts-Abstr, Ts-Pair, or Ts-Tag) to appropriate premises, possibly followed by applications of
Ts-Subsum. Hence, if � �� v: t, there is a type t′ ≤ t such that � �� v: t′ and that the last typing rule
used to derive � �� v: t′ is one of the four above, given by the form of v.

Case v = c We have �τ�K ≥ c. Hence τ = bc , as the translation of any other τ is disjoint from c.
�en we can take v′ = v.

Case v = (v�, v�) We have �τ�K ≥ t� × t� for some t� and t�. Hence τ = τ� × τ�: any other τ would
translate to a type disjoint from all products.�erefore � �� v: �τ��K × �τ��K . By Lemma A.��
we have � �� vi : �τi�K for both i; then by the induction hypothesis we �nd v′i for both i and let
v′ = (v′� , v′�).

Case v = ‵tag(v�) We have �τ�K ≥ ‵tag(t�) and � �� v: ‵tag(t�) for some t� � 0 (since t� types
the value v�).�erefore, by the same reasoning as above, τ = α with α ∷ (L,U , T) ∈ K. Since�τ�K ≥ ‵tag(t�), we have ‵tag ∈ L and therefore ‵tag: τ� ∈ T for some τ� such that t� ≤ �τ��K .
�en we have � �� v�: �τ��K ; we may apply the induction hypothesis to �nd a value v′� and let
v′ = ‵tag(v′�).

Case v = λx .e Note that an abstraction is only accepted by patterns which accept any value, so
any two abstractions fail to match exactly the same patterns.
We have � �� v: t� → t� for some t� → t� ≤ �τ�K . Hence we know τ is of the form τ� → τ�;

thus we have � �� v: �τ��K → �τ��K . We take v′ to be the function λx .Y (λ f .λx . f x) x, which
never terminates and can be assigned any arrow type. �

��

A.� Variants with set-theoretic types

����� � .�� Let K be a kinding environment, τ a k-type, and P a set of patterns. If τ �K P, then�τ�K ≤ �p∈P *p+.

Proof By contradiction, assume that τ �K P holds but �τ�K � �p∈P *p+.�e latter condition implies
that there exists a value v in the interpretation of �τ�K which is not in the interpretation of�p∈P *p+.
Because the de�nition of accepted type is exact with respect to the semantics of pattern matching,
we have v�p = Ω for all p ∈ P. We also have � �� v: �τ�K since v is in the interpretation of that
type (typing is complete with respect to the interpretation if we restrict ourselves to translations of
k-types).
By Lemma A.��, from v we can build a value v′ such that K;� �� v′: τ and, for every pattern p,

v�p = Ω ⇐⇒ v′�p = Ω. We reach a contradiction, since τ �K P and K;� �� v′: τ imply v′�p ≠ Ω
for all p ∈ P, whereas we have v�p = Ω for all p ∈ P. �
������� � .��: Preservation of typing Let e be an expression, K a non-recursive kinding environ-
ment, Γ a k-type environment, and τ a k-type. If K; Γ �� e: τ, then �Γ�K �� e: �τ�K .
Proof By induction on the derivation of K; Γ �� e: τ. We reason by cases on the last applied rule.

Case Tk-Var We have

K; Γ �� x: τ τ ∈ instK(Γ(x)) hence
Γ(x) = ∀A.Kx ▹ τx τ = τxθ dom(θ) ⊆ A K ,Kx � θ:K

and must show �Γ�K �� x: �τ�K . Since �Γ�K(x) = ∀A. �τx�K ,Kx , by Ts-Var we can derive�τx�K ,Kx θ′ for any s-type substitution θ′ with dom(θ′) ⊆ A.
Consider the s-type substitution θ′ = [�αθ�K�α � α ∈ A]. We have �τx�K ,Kx θ′ � �τxθ�K by

Lemma A.�� (we can assume the conditions on the domain of Kx to hold by renaming the
variables in A). Hence, we derive �τx�K ,Kx θ′ by Ts-Var and then �τxθ�K by subsumption.

Case Tk-Const We have

K; Γ �� c: bc �bc�K = bc
and may derive �Γ�K �� c: c by Ts-Const and �Γ�K �� c: bc by subsumption.

Case Tk-Abstr We have

K; Γ �� λx .e�: τ� → τ� K; Γ , {x: τ�} �� e�: τ� �τ� → τ��K = �τ��K → �τ��K .

By the induction hypothesis we derive �Γ�K , {x: �τ��K} �� e�: �τ��K , then we apply Ts-Abstr.

Cases Tk-Appl, Tk-Pair, and Tk-Fix Straightforward application of the induction hypothesis.

Case Tk-Tag We have

K; Γ �� ‵tag(e�): α K; Γ �� e�: τ� α ∷ (L,U , T) ∈ K ‵tag ∈ L ‵tag: τ� ∈ T�α�K = (lowK(L, T) ∨ α) ∧ uppK(U , T) .
We derive �Γ�K �� e�: �τ��K by the induction hypothesis, then �Γ�K �� ‵tag(e�): ‵tag(�τ��K)

by Ts-Tag. We show that ‵tag(�τ��K) ≤ �α�K holds: hence, we may derive the supertype by
subsumption.
Since ‵tag ∈ L and hence ‵tag ∈ dom(T), both lowK(L, T) and uppK(U , T) contain a sum-

��

A Proofs

mand ‵tag(�‵tag:τ′∈T�τ′�K). Since ‵tag: τ� ∈ T and no other type may be associated to ‵tag,
the intersection has a single factor �τ��K . �us we have both ‵tag(�τ��K) ≤ lowK(L, T) and‵tag(�τ��K) ≤ uppK(U , T); hence, ‵tag(�τ��K) ≤ �α�K .

Case Tk-Match We have

K; Γ �� match e� with (pi → ei)i∈I : τ
K; Γ �� e�: τ� τ� �K { pi � i ∈ I }∀i ∈ I. K � pi : τ� ⇒ Γi K; Γ , genK; Γ(Γi) �� ei : τ

and must show

�Γ�K �� match e� with (pi → ei)i∈I : �τ�K
which we prove by establishing, for some types t� and ti , t′i for each i, that

�Γ�K �� e�: t� t� ≤ �i∈I *pi + ti = (t� �� j<i *p j+) ∧ *pi+∀i ∈ I s. t. ti � 0. �Γ�K , gen�Γ�K(ti��pi) �� ei : t′i �t i�0 t′i ≤ �τ�K .

and then applying Ts-Match, followed by Ts-Subsum if necessary.
By the induction hypothesis we derive �Γ�K �� e�: �τ��K and hence have t� = �τ��K . By

Lemma A.��, we have t� ≤ �i∈I *pi+. For every branch, ti ≤ t� and ti ≤ *pi+: therefore, we can
apply Lemma A.�� and derive that (ti��pi)(x) ≤ �Γi(x)�K holds for every x ∈ capt(pi).

For each branch, we derive �Γ�K , �genK; Γ(Γi)�K �� ei : �τ�K by the induction hypothesis. We
derive �Γ�K , gen�Γ�K(ti��pi) �� ei : �τ�K by Lemma A.�� by proving �Γ�K , gen�Γ�K(ti��pi) ��Γ�K , �genK; Γ(Γi)�K and var(�Γ�K , gen�Γ�K(ti��pi)) ⊆ var(�Γ�K , �genK; Γ(Γi)�K).�e latter is
straightforward. For the former, for each x ∈ capt(pi) – say Γi(x) = τx and (ti��pi)(x) = tx –
we must show gen�Γ�K(tx) � �genK; Γ(τx)�K .�is holds because tx ≤ �τx�K and because, by
Lemma A.��, var(�Γ�K) ⊆ varK(Γ).

We can thus choose t′i = �τ�K for all branches, satisfying �t i�0 t′i ≤ �τ�K . �

� .� �������������� ��� ���-��������� �����

���������� ���������� ���� �������� ��������� We give an alternative de�nition of
the two relations e: t ⇒ C and t���p⇒ (Γ ,C) (given by the rules in Figure �.� on page �� and in
Figure �.� on page ��, respectively) where we keep track explicitly of the set A of new type variables we
introduce.�ese two relations, e: t⇒A C and t���p⇒A (Γ ,C), are de�ned by the rules in Figure A.�
and Figure A.�, respectively.
We use the symbol � to denote the union of two disjoint sets.�erefore when we write A� � A�

we require A� and A� to be disjoint. Since there is an in�nite supply of type variables to choose from,
the condition is always satis�able by an appropriate choice of variables.

����� � .��: Variables in constraints Given a constraint set C, we write var(C) for the set of
variables appearing in it.�e following properties hold:

• whenever t���p⇒A (Γ ,C), we have var(C) ⊆ var(t) ∪ A, var(Γ) ⊆ var(t) ∪ A, and A ♯ t;
• whenever e: t⇒A C, we have var(C) ⊆ var(t) ∪ A and A ♯ t;
• whenever Γ � C � D, we have var(D) ⊆ var(C) ∪ var(Γ).

���

A.� Reconstruction for set-theoretic types

TRs-Var
x: t⇒� {x ≤̇ t} TRs-Const

c: t⇒� {c ≤̇ t}
TRs-Abstr

e: β⇒A C
λx .e: t⇒A�{α,β} {def {x: α} in C , α → β ≤̇ t} A, α, β ♯ t

TRs-Appl
e�: α → β⇒A� C� e�: α⇒A� C�

e� e�: t⇒A��A��{α,β} C� ∪ C� ∪ {β ≤̇ t} A�,A�, α, β ♯ t

TRs-Pair
e�: α� ⇒A� C� e�: α� ⇒A� C�

(e�, e�): t⇒A��A��{α� ,α�} C� ∪ C� ∪ {α� × α� ≤̇ t} A�,A�, α�, α� ♯ t

TRs-Tag
e: α⇒A C

‵tag(e): t⇒A�{α} C ∪ {‵tag(α) ≤̇ t} A, α ♯ t

TRs-MatchM

e�: α⇒A� C� ti = (α �� j<i *p j+) ∧ *pi+∀i ∈ I ti���pi ⇒A i (Γi ,Ci) ei : β⇒A′i C
′
i

C = C� ∪ (�i∈I Ci) ∪ {def Γi in C′i � i ∈ I } ∪ {α ≤̇ �i∈I *pi+, β ≤̇ t}
A = A� � (�i∈I Ai) � (�i∈I A′i) � {α, β}

match e� with (pi → ei)i∈I : t⇒A C
A ♯ t

������ � .� Constraint generation rules (without let-polymorphism) with explicit variables.

t���_⇒� (�,�) t���x ⇒� ({x: t},�) t���c⇒� (�,�)
α����p� ⇒A� (Γ�,C�) α����p� ⇒A� (Γ�,C�)

t���(p�, p�)⇒A��A��{α� ,α�} (Γ� ∪ Γ�,C� ∪ C� ∪ {t ≤̇ α� × α�}) A�,A�, α�, α� ♯ t
α���p⇒A (Γ ,C)

t���‵tag(p)⇒A�{α} (Γ ,C ∪ {t ≤̇ ‵tag(α)}) A, α ♯ t
t���p� ⇒A� (Γ�,C�) t���p� ⇒A� (Γ�,C�)

t���p�&p� ⇒A��A� (Γ� ∪ Γ�,C� ∪ C�)
(t ∧ *p�+)���p� ⇒A� (Γ�,C�) (t � *p�+)���p� ⇒A� (Γ�,C�)
t���p��p� ⇒A��A� ({ x: Γ�(x) ∨ Γ�(x) � x ∈ capt(p�) },C� ∪ C�)

������ � .� Constraint generation for pattern environments with explicit variables.

���

A Proofs

Proof Straightforward proofs by induction on the derivations. �

Pattern environment reconstruction

����� � .��: Correctness of environment reconstruction Let p be a pattern and t, t′ two types,
with t′ ≤ *p+. Let t���p⇒ (Γ ,C). If θ is a type substitution such that θ � C and t′ ≤ tθ, then, for all
x ∈ capt(p), (t′��p)(x) ≤ Γ(x)θ.
Proof By structural induction on p.

Cases p = _ and p = c �ere is nothing to prove since capt(p) = �.
Case p = x We have

t���x ⇒ ({x: t},�) (t′��x)(x) = t′
and must show t′ ≤ tθ, which we know by hypothesis.

Case p = (p�, p�) We have

t���p⇒ (Γ� ∪ Γ�,C� ∪ C� ∪ {t ≤̇ α� × α�}) ∀i . αi���pi ⇒ (Γi ,Ci) .
Each x ∈ capt(p) is either in capt(p�) or in capt(p�). Let x ∈ capt(pi); then, we must show(π i(t′)��pi)(x) ≤ Γi(x)θ.�is follows from the induction hypothesis, since t′ ≤ tθ ≤ α�θ×α�θ

implies π i(t′) ≤ αiθ by Property �.��.

Case p = ‵tag(p�) We have

t���‵tag(p)⇒ (Γ ,C ∪ {t ≤̇ ‵tag(α)}) α���p⇒ (Γ ,C) .
Analogous to the previous case. We can apply the induction hypothesis, because t′ ≤ tθ ≤‵tag(α)θ implies π‵tag(t′) ≤ αθ by Property �.��.

Case p = p�&p� Every x ∈ capt(p) is either in capt(p�) or in capt(p�). Let x ∈ capt(pi); then, we
apply the induction hypothesis to pi to conclude.

Case p = p��p� We have

t���p��p� ⇒ ({ x: Γ�(x) ∨ Γ�(x) � x ∈ capt(p�) },C� ∪ C�)(t ∧ *p�+)���p� ⇒ (Γ�,C�) (t � *p�+)���p� ⇒ (Γ�,C�) .
By the induction hypothesis applied to both p� and p� we derive, for all x,

(t′ ∧ *p� + ��p�)(x) ≤ Γ�(x)θ (t′ � *p� + ��p�)(x) ≤ Γ�(x)θ
from which we can conclude

(t′��p)(x) = (t′ ∧ *p� + ��p�)(x) ∨ (t′ � *p� + ��p�)(x) ≤ Γ�(x)θ ∨ Γ�(x)θ . �
����� � .��: Precise solution to environment reconstruction constraints Let p be a pattern, t a
type, and θ a type substitution such that tθ ≤ *p+. Let t���p⇒A (Γ ,C), with A ♯ dom(θ).
�ere exists a type substitution θ′ such that dom(θ′) = A, that (θ ∪ θ′) � C, and that, for all

x ∈ capt(p), Γ(x)(θ ∪ θ′) ≤ (tθ��p)(x).

���

A.� Reconstruction for set-theoretic types

Proof By structural induction on p.

Cases p = _ and p = c In both cases we take θ′ = [].
Case p = x We have

t���x ⇒� ({x: t},�) .
We take θ′ = [] and have t(θ ∪ θ′) ≤ tθ.

Case p = (p�, p�) We have

t���(p�, p�)⇒A��A��{α� ,α�} (Γ� ∪ Γ�,C� ∪ C� ∪ {t ≤̇ α� × α�})
α����p� ⇒A� (Γ�,C�) α����p� ⇒A� (Γ�,C�) A�,A�, α�, α� ♯ t .

Let θ∗ = θ ∪ [π�(tθ)�α� , π�(tθ)�α�]. We have tθ′ = tθ and tθ′ ≤ *(p�, p�)+ = *p� + × * p�+; thus,
by Property �.��, π i(tθ′) ≤ *pi+. We also have Ai ♯ dom(θ∗), αi for both i, since {α�, α�} is
disjoint from each Ai .
We can therefore apply the induction hypothesis to pi , αi , and θ∗, for both i. We derive

from each that there is a substitution θ′i with domain Ai , such that (θ∗ ∪ θ′i) � Ci and, for all
x ∈ capt(pi), Γi(x)(θ∗ ∪ θ′i) ≤ (αiθ∗��pi)(x).

We take θ′ = [π�(tθ)�α� , π�(tθ)�α�] ∪ θ′� ∪ θ′�. We have (θ ∪ θ′) � C� ∪ C� ∪ {t ≤̇ α� × α�} since
it satis�es C� and C� and since tθ ≤ (α� × α�)θ′ = π�(tθ) × π�(tθ).

Case p = ‵tag(p�) We have

t���‵tag(p�)⇒A��{α} (Γ�,C� ∪ {t ≤̇ ‵tag(α)}) α���p� ⇒A� (Γ�,C�) A�, α ♯ t .
Analogously to the previous case, we construct θ∗ = θ ∪ [π‵tag(tθ)�α] and apply the induction

hypothesis to p�, α, and θ∗. We derive θ′� and take θ′ = [π‵tag(tθ)�α] ∪ θ′�.
Case p = p�&p� We have

t���p�&p� ⇒A��A� (Γ� ∪ Γ�,C� ∪ C�) t���p� ⇒A� (Γ�,C�) t���p� ⇒A� (Γ�,C�) .
For both i, we apply the induction hypothesis to pi , t, and θ to derive θ′i . We take θ′ = θ′�∪ θ′�.

Case p = p��p� We have

t���p��p� ⇒A��A� ({ x: Γ�(x) ∨ Γ�(x) � x ∈ capt(x) },C� ∪ C�)(t ∧ *p�+)���p� ⇒A� (Γ�,C�) (t � *p�+)���p� ⇒A� (Γ�,C�) .
We apply the induction hypothesis to p�, t∧*p�+, and θ to derive θ′�. We apply it to p�, t�*p�+,

and θ to derive θ′�; here, note that tθ ≤ *p� + ∨ * p�+ implies tθ � *p�+ ≤ *p�+.
We take θ′ = θ′� ∪ θ′�. We have (θ ∪ θ′) � C since it satis�es C� and C�. Furthermore, for

all x, we have Γ�(x)(θ ∪ θ′�) ≤ (tθ ∧ *p� + ��p�)(x) and Γ�(x)(θ ∪ θ′�) ≤ (tθ � *p� + ��p�)(x).
�en, Γ(x)(θ ∪ θ′) = Γ�(x)(θ ∪ θ′)∨ Γ�(x)(θ ∪ θ′) = Γ�(x)(θ ∪ θ′�)∨ Γ�(x)(θ ∪ θ′�), since A�
and A� are disjoint and both are disjoint from var(t). Finally, Γ�(x)(θ ∪ θ′�) ∨ Γ�(x)(θ ∪ θ′�) ≤(tθ��p)(x). �

���

A Proofs

Reconstruction without let-polymorphism

������� � .��: Soundness of constraint generation and rewriting Let e be an expression, t a type,
and Γ a type environment. If e: t⇒ C, Γ � C � D, and θ � D, then Γθ �� e: tθ.
Proof By structural induction on e.

Case e = x We have

x: t⇒ {x ≤̇ t} Γ � {x ≤̇ t}� {tx ≤̇ t} Γ(x) = tx .
By Ts-Var we derive Γθ �� x: txθ. Since θ � D, and hence txθ ≤ tθ, we have Γθ �� x: tθ by

subsumption.

Case e = c We have

c: t⇒ {c ≤̇ t} Γ � {c ≤̇ t}� {c ≤̇ t} .
Analogously to the previous case, we �rst apply Ts-Const and then conclude by subsumption.

Case e = λx .e� We have

λx .e�: t⇒ {def {x: α} in C�, α → β ≤̇ t} e�: β⇒ C�

Γ � {def {x: α} in C�, α → β ≤̇ t}� D� ∪ {α → β ≤̇ t} Γ , {x: α} � C� � D� .

By the induction hypothesis we derive Γθ , {x: αθ} �� e�: βθ. We apply Ts-Abstr to derive
Γθ �� λx .e�: (α → β)θ. Since θ � D, we have (α → β)θ ≤ tθ. Hence, we derive by subsumption
Γθ �� λx .e�: tθ.

Case e = e� e� We have

e� e�: t⇒ C� ∪ C� ∪ {β ≤̇ t} e�: α → β⇒ C� e�: α⇒ C�

Γ � C� ∪ C� ∪ {β ≤̇ t}� D� ∪ D� ∪ {β ≤̇ t} Γ � C� � D� Γ � C� � D� .

We derive Γθ �� e�: (αθ) → (βθ) and Γθ �� e�: αθ by the induction hypothesis. �en by
Ts-Appl we derive Γθ �� e� e�: βθ, and �nally – since βθ ≤ tθ – we conclude by subsumption.

Case e = (e�, e�) We have

(e�, e�): t⇒ C� ∪ C� ∪ {α� × α� ≤̇ t} e�: α� ⇒ C� e�: α� ⇒ C�

Γ � C� ∪ C� ∪ {α� × α� ≤̇ t}� D� ∪ D� ∪ {α� × α� ≤̇ t}
Γ � C� � D� Γ � C� � D� .

We have Γθ �� ei : αiθ for both i by the induction hypothesis. �en, we derive Γθ ��(e�, e�): (α� × α�)θ by Ts-Pair, and �nally conclude by subsumption.

Case e = ‵tag(e�) We have
‵tag(e�): t⇒ C C = C� ∪ {‵tag(α) ≤̇ t} e�: α⇒ C�

Γ � C � D D = D� ∪ {‵tag(α) ≤̇ t} Γ � C� � D� .

Analogous to the previous case. We apply the induction hypothesis, then Ts-Tag, then sub-
sumption.

���

A.� Reconstruction for set-theoretic types

Case e = match e� with (pi → ei)i∈I We have

match e� with (pi → ei)i∈I : t⇒ C
C = C� ∪ (�i∈I Ci) ∪ {def Γi in C′i � i ∈ I } ∪ {α ≤̇ �i∈I *pi+, β ≤̇ t} e�: α⇒ C�∀i ∈ I ti = (α �� j<i *p j+) ∧ *pi + ti���pi ⇒ (Γi ,Ci) ei : β⇒ C′i

Γ � C � D
D = D� ∪ (�i∈I Di) ∪ (�i∈I D′i) ∪ {α ≤̇ �i∈I *pi+, β ≤̇ t} Γ � C� � D�∀i ∈ I Γ � Ci � Di Γ , Γi � C′i � D′i .

By the induction hypothesis we have Γθ �� e�: αθ and Γθ , Γiθ �� ei : βθ for all i. Exhaust-
iveness is satis�ed since θ � α ≤̇ �i∈I *pi+ and therefore αθ ≤ �i∈I *pi+ (all pattern types are
closed).
We prove Γθ , (tiθ)��pi �� ei : βθ from Γθ , Γiθ �� ei : βθ, for all i, by Lemma A.��. To apply

the lemma, we must show Γθ , (tiθ)��pi � Γθ , Γiθ, which holds because, by Lemma A.��,((tiθ)��pi)(x) ≤ (Γiθ)(x) for any x. �e second hypothesis of weakening (containment of
variables) is not necessary in the absence of let-polymorphism, as it only in�uences the proof
when generalization is concerned.

We can therefore apply Ts-Match to derive Γθ �� match e� with (pi → ei)i∈I : βθ and conclude
by subsumption. �

������� � .��: Completeness of constraint generation and rewriting Let e be an expression, t a
type, and Γ a type environment. Let θ be a type substitution such that Γθ �� e: tθ.
Let e: t ⇒A C, with A ♯ Γ , dom(θ).�ere exist a type-constraint set D and a type substitution θ′,

with dom(θ′) = A, such that Γ � C � D and (θ ∪ θ′) � D.

Proof By structural induction on e.

Case e = x We have

x: t⇒� {x ≤̇ t} Γθ �� x: tθ Γ(x) = tx txθ ≤ tθ .

Since x ∈ dom(Γ), we have Γ � {x ≤̇ t}� {tx ≤̇ t}. Let θ′ = []; we have (θ ∪ θ′) � {tx ≤̇ t}.
Case e = c We have

c: t⇒� {c ≤̇ t} Γθ �� c: tθ c ≤ tθ .

We have Γ � {c ≤̇ t}� {c ≤̇ t}. Let θ′ = []. We have (θ ∪ θ′) � {c ≤̇ t} because cθ = c ≤ tθ.
Case e = λx .e� We have

λx .e�: t⇒A��{α,β} {def {x: α} in C�, α → β ≤̇ t} e�: β⇒A� C� A�, α, β ♯ t
Γθ �� λx .e�: tθ Γθ , {x: t�} �� e�: t� t� → t� ≤ tθ .

Let θ∗ = θ ∪ [t��α, t��β]. Note that Γθ∗ = Γθ and tθ∗ = tθ, because {α�, α�} ♯ Γ , t.
We have (Γ , {x: α})θ∗ �� e�: βθ∗, e�: β ⇒A� C�, and A� ♯ dom(θ∗). By the induction hypo-

thesis, therefore, Γ , {x: α} � C� � D� and (θ∗∪θ′�) � D�, for someD� and θ′� with dom(θ′�) = A�.
Γ , {x: α} � C� � D� implies Γ � def {x: α} in C� � D�. Hence, we have Γ � C � D =

D� ∪ {α → β ≤̇ t}. Let θ′ = [t��α, t��β] ∪ θ′�. It is de�ned on the correct domain and it solves the
constraints, since it solves D� and since (α → β)θ′ = t� → t� ≤ tθ.

���

A Proofs

Case e = e� e� We have

e� e�: t⇒A��A��{α,β} C� ∪ C� ∪ {β ≤̇ t}
e�: α → β⇒A� C� e�: α⇒A� C� A�,A�, α, β ♯ t

Γθ �� e� e�: tθ Γθ �� e�: t� → t� Γθ �� e�: t� t� ≤ tθ .

Let θ∗ = θ ∪ [t��α, t��β]. Note that Γθ∗ = Γθ and tθ∗ = tθ, since α, β ♯ Γ , t.
We have Γθ �� e�: (α → β)θ∗, e�: α → β⇒A� C�, and A� ♯ dom(θ∗). By the induction hypo-

thesis, therefore, Γ � C� � D� and (θ∗ ∪ θ′�) � D�, for some D� and θ′� with dom(θ′�) = A�.
Likewise, by applying the induction hypothesis to the derivation for e�, we derive Γ � C� � D�

and (θ∗ ∪ θ′�) � D�, for some D� and θ′� with dom(θ′�) = A�.
We can thus conclude that Γ � C � D = D� ∪D� ∪ {β ≤̇ t}. Let θ′ = [t��α, t��β]∪ θ′� ∪ θ′�. It is

de�ned on the correct domain and θ ∪ θ′ solves the constraints: it solves both D� and D�, and
β(θ ∪ θ′) = βθ′ = t� ≤ tθ = t(θ ∪ θ′).

Case e = (e�, e�) We have

(e�, e�): t⇒A��A��{α� ,α�} C� ∪ C� ∪ {α� × α� ≤̇ t}
e�: α� ⇒A� C� e�: α� ⇒A� C� A�,A�, α�, α� ♯ t

Γθ �� (e�, e�): tθ Γθ �� e�: t� Γθ �� e�: t� t� × t� ≤ tθ .

Analogous to the previous case. We de�ne θ∗ = θ ∪ [t��α� , t��α�] and proceed as above.

Case e = ‵tag(e�) We have
‵tag(e�): t⇒A��{α} C� ∪ {‵tag(α) ≤̇ t} e�: α⇒A� C� A�, α ♯ t
Γθ �� ‵tag(e): tθ Γθ �� e�: t� ‵tag(t�) ≤ tθ .

Analogous to the two previous cases. Here we de�ne θ∗ = θ ∪ [t��α].
Case e = match e� with (pi → ei)i∈I We have

match e� with (pi → ei)i∈I : t⇒A C
C = C� ∪ (�i∈I Ci) ∪ {def Γi in C′i � i ∈ I } ∪ {α ≤̇ �i∈I *pi+, β ≤̇ t}
A = A� � (�i∈I Ai) � (�i∈I A′i) � {α, β}
e�: α⇒A� C� ti = (α �� j<i *p j+) ∧ *pi+∀i ∈ I ti���pi ⇒A i (Γi ,Ci) ei : β⇒A′i C

′
i A ♯ t

Γθ �� match e� with (pi → ei)i∈I : tθ
Γθ �� e�: t� t� ≤ �i∈I *pi + t∗i = (t� �� j<i *p j+) ∧ *pi+∀i ∈ I Γθ , t∗i ��pi �� ei : t′i t′ = �i∈I t′i ≤ tθ .

Let θ∗ = θ ∪ [t��α, t′�β]. Note that Γθ∗ = Γθ and tθ∗ = tθ. Also, tiθ∗ = t∗i for all i.
By the induction hypothesis, there are D� and θ′� such that Γ � C� � D�, dom(θ′�) = A�, and(θ∗ ∪ θ′�) � D�. Note also that θ∗ � {α ≤̇ �i∈I *pi+}, because αθ∗ = t� ≤ �i∈I *pi+.
For each i, by Lemma A.�� (again considering θ∗), there exists a θ′i such that dom(θ′i) = Ai ,(θ∗ ∪ θ′i) � Ci , and, for all x ∈ capt(pi), Γi(x)(θ∗ ∪ θ′i) ≤ (t∗i ��pi)(x). Note that Γ(θ∗ ∪ θ′i) =

Γθ. By Lemma A.��, from Γθ , t∗i ��pi �� ei : t′i we derive (Γ , Γi)(θ∗ ∪ θ′i) �� ei : t′i ; then, by
subsumption, we derive (Γ , Γi)(θ∗ ∪ θ′i) �� ei : t′.

���

A.� Reconstruction for set-theoretic types

Nowwe have ei : β⇒A′i C
′
i and (Γ , Γi)(θ∗∪θ′i) �� ei : β(θ∗∪θ′i). By the induction hypothesis,

there are D′i and θ′′i such that Γ , Γi � C′i � D′i and (θ∗ ∪ θ′i ∪ θ′′i) � C′i .
Since Γ , Γi � C′i � D′i implies Γ � def Γi in C′i � D′i , we have Γ � C � D� ∪ (�i∈I Di) ∪(�i∈I D′i) ∪ {α ≤̇ �i∈I *pi+, β ≤̇ t} and we take θ′ = [t��α, t′�β] ∪ (�i∈I θ′i) ∪ (�i∈I θ′′i). �

Adding let-polymorphism

We �rst prove a di�erent version of the weakening lemma (Lemma A.��) which is more general than
the original statement (its proof relies on Lemma A.��, whose proof in turn used Lemma A.��).

����� � .�� Let Γ�, Γ� be two type environments such that Γ� � Γ�. Let t be a type such that
var(Γ�) ∩ var(t) ⊆ var(Γ�). If Γ� �� e: t, then Γ� �� e: t.
Proof By induction on the derivation of Γ� �� e: t. We reason by cases on the last applied rule.

Cases Ts-Var and Ts-Const As in the proof of Lemma A.��.

Case Ts-Abstr We have

Γ� �� λx .e�: t� → t� Γ�, {x: t�} �� e�: t� .
Since Γ� � Γ�, we have Γ�, {x: t�} � Γ�, {x: t�}. Since var(Γ�) ∩ var(t� → t�) ⊆ var(Γ�), we

have var(Γ�, {x: t�}) ∩ var(t�) ⊆ var(Γ�, {x: t�}). We derive Γ�, {x: t�} �� e�: t� by the induction
hypothesis and conclude by Ts-Abstr.

Case Ts-Appl We have

Γ� �� e� e�: t Γ� �� e�: t′ → t Γ� �� e�: t′ .
Let θ be a type substitution which maps the variables in var(t′)�(var(t)∪var(Γ�)) into other

variables which do not appear in Γ�. Note that tθ = t and Γ�θ = Γ�. By Lemma A.�� we have

Γ� �� e�: (t′θ)→ t Γ� �� e�: t′θ .

We have var(Γ�) ∩ var(t′θ) ⊆ var(Γ�) ∩ var((t′θ) → t) ⊆ var(Γ�) and Γ� � Γ�. Hence, by
the induction hypothesis, we derive Γ� �� e�: (t′θ) → t and Γ� �� e�: t′θ. We apply Ts-Appl to
conclude.

Cases Ts-Pair and Ts-Tag Straightforward application of the induction hypothesis.

Cases Ts-Match and Ts-Subsum Analogous to the case for applications. We replace the variables
in t� or t′, respectively, with new variables if they do not appear also in t or in Γ�. �

������� � .��: Soundness of constraint generation and rewriting with let-polymorphism
Let e be an expression, t a type, and Γ a type environment. If e: t⇒ C, Γ � C � D, and θ � D, then
Γθ �� e: tθ.
Proof By structural induction on e. We write only the cases for variables and pattern-matching
expressions; the others are as in the proof of�eorem A.��.

���

A Proofs

Case e = x We have

x: t⇒ {x ≤̇ t}
Γ � {x ≤̇ t}� {tx[β��α� , . . . , βn�αn] ≤̇ t} Γ(x) = ∀{α�, . . . , αn}. tx .

Let A = {α�, . . . , αn}. By α-renaming we assume A ♯ θ; then we have (Γθ)(x) = (∀A. tx)θ =∀A. (txθ). Consider the substitution θx = [β�θ�α� , . . . , βnθ�αn]. It has domain A, so we can derive
Γθ �� x: txθθx .
We show txθθx = tx[β��α� , . . . , βn�αn]θ by showing αθθx = α[β��α� , . . . , βn�αn]θ holds for all

α ∈ var(tx). Either α ∈ A or not. In the �rst case, α = αi for some i; then αθθx = αθx = βiθ
and α[β��α� , . . . , βn�αn]θ = βiθ. In the latter, α ≠ αi for all i; then αθθx = αθ, since var(αθ) ∩
dom(θx) = � and α[β��α� , . . . , βn�αn]θ = αθ.

�erefore we derive Γθ �� x: tx[β��α� , . . . , βn�αn]θ by Ts-Var and Γθ �� x: tθ by subsumption.

Case e = match e� with (pi → ei)i∈I We have

match e� with (pi → ei)i∈I : t⇒ C
C = {let [C′�](Γi in C′i)i∈I , β ≤̇ t}
C′� = C� ∪ (�i∈I Ci) ∪ {α ≤̇ �i∈I *pi+} e�: α⇒ C�∀i ∈ I ti = (α �� j<i *p j+) ∧ *pi + ti���pi ⇒ (Γi ,Ci) ei : β⇒ C′i

Γ � C � D
Γ � C′� � D′� Γ � C� � D� D′� = D� ∪ (�i∈I Ci) ∪ {α ≤̇ �i∈I *pi+}
θ� ∈ tally(D′�) ∀i ∈ I. Γ , genΓθ�(Γiθ�) � C′i � D′i
D = equiv(θ�) ∪ (�i∈I D′i) ∪ {β ≤̇ t}

and we must show Γθ �� match e� with (pi → ei)i∈I : tθ.
We prove it by establishing, for some types t̂� and t̂i , t̂′i for each i, that

Γθ �� e�: t̂� t̂� ≤ �i∈I *pi + t̂i = (t̂� �� j<i *p j+) ∧ *pi+
∀i ∈ I. Γθ , genΓθ(t̂i��pi) �� ei : t̂′i �t̂ i�0 t̂′i ≤ tθ .

Since θ� ∈ tally(D′�), θ� � D′� and thus θ� � D�.�en, from

e�: α⇒ C� Γ � C� � D� θ� � D�

we derive Γθ� �� e�: αθ� by the induction hypothesis.
Let A = var(αθ�) � var(Γθ�) = {α�, . . . , αn}. Let B = {β�, . . . , βn} be a set of type vari-

ables such that B ♯ Γ , θ , θ� and let θ∗ = [β��α� , . . . , βn�αn]. We derive Γθ�θ∗ �� e�: αθ�θ∗ by
Lemma A.��; note that Γθ�θ∗ = Γθ�, because we are substituting variables that do not ap-
pear in Γθ�. By the same lemma, we derive Γθ�θ �� e�: αθ�θ∗θ. By Lemma A.��, we derive
Γθ �� e�: αθ�θ∗θ (we prove the required premises below).

We take t̂� = αθ�θ∗θ. We have αθ�θ∗θ ≤ �i∈I *pi+ because θ� � D′� implies αθ� ≤ �i∈I *pi+
and because subtyping is preserved by substitutions (recall that the accepted types of patterns
are closed). We also have t̂i = tiθ�θ∗θ for all i.

For each branch i, from

ei : β⇒ C′i Γ , genΓθ�(Γiθ�) � C′i � D′i θ � D′i

���

A.� Reconstruction for set-theoretic types

we derive Γθ , (genΓθ�(Γiθ�))θ �� ei : βθ by the induction hypothesis. We derive by Lemma A.��
Γθ , genΓθ(t̂i��pi) �� ei : βθ (we prove the premises below). �us we have t̂′i = βθ for every
branch; we apply Ts-Match′ to derive Γθ �� match e� with (pi → ei)i∈I : βθ, then subsumption
to derive Γθ �� match e� with (pi → ei)i∈I : tθ.

Proof of Γθ �� e�: αθ�θ∗θ from Γθ�θ �� e�: αθ�θ∗θ To apply Lemma A.��, we must show

Γθ � Γθ�θ var(Γθ) ∩ var(αθ�θ∗θ) ⊆ var(Γθ�θ) .
To prove Γθ � Γθ�θ, consider an arbitrary x:∀Ax . tx ∈ Γ. By α-renaming, we assume

Ax ♯ θ , θ�; then, we must prove ∀Ax . txθ � ∀Ax . txθ�θ. For every γ, γθ � γθ�θ since
θ � equiv(θ�). Hence, txθ � txθ�θ.
To prove var(Γθ) ∩ var(αθ�θ∗θ) ⊆ var(Γθ�θ), consider γ ∈ var(Γθ) ∩ var(αθ�θ∗θ).

Since γ ∈ var(αθ�θ∗θ), we have γ ∈ var(δθ) for some δ ∈ var(αθ�θ∗). We have δ ∉ B: if δ
were in B, then it would be una�ected by θ, we would have γ = δ, and γ ∈ var(Γθ) could
not hold. Since we have a δ ∈ var(αθ�θ∗), necessarily there must be a ζ ∈ var(αθ�) such
that δ ∈ var(ζθ∗) and, since δ ∉ B, ζ ∉ A.�en ζ = δ, since θ∗ only acts on variables in A.
�us we know that there exists a δ ∈ var(αθ�) such that δ ∉ A: hence, δ ∈ var(Γθ�).�en,
since γ ∈ var(δθ), γ ∈ var(Γθ�θ).

Proof of Γθ , genΓθ(t̂i��pi) �� ei : βθ from Γθ , (genΓθ�(Γiθ�))θ �� ei : βθ ByLemmaA.��, we
can prove the result by showing

Γθ , genΓθ(t̂i��pi) � Γθ , (genΓθ�(Γiθ�))θ
var(Γθ , genΓθ(t̂i��pi)) ⊆ var(Γθ , (genΓθ�(Γiθ�))θ) .

�e second condition is straightforward. For the �rst, we prove, for every x ∈ capt(pi),
genΓθ((t̂i��pi)(x)) � (genΓθ�(Γiθ�(x)))θ. Let Γi(x) = tx . �en, genΓθ�(Γiθ�(x)) =∀A. txθ�, where A is var(αθ�) � var(Γθ�) as de�ned above (not all variables in A ap-
pear in txθ�, schemes are de�ned disregarding useless quanti�cation). By α-renaming, we
have genΓθ�(Γiθ�(x)) = ∀B. txθ�θ∗ and, since B ♯ θ, (genΓθ�(Γiθ�(x)))θ = ∀B. txθ�θ∗θ.
Since t̂i ≤ t̂� = αθ�θ∗θ and since θ ○ θ∗ ○ θ� � Ci (because θ� � Ci), by Lemma A.��

we have (t̂i��pi)(x) ≤ txθ�θ∗θ.�en, genΓθ((t̂i��pi)(x)) � ∀B. txθ�θ∗θ holds because
all variables in B may be quanti�ed when generalizing (t̂i��pi)(x), since no βi appears in
Γθ. �

���

References

Balat, Vincent, Jérôme Vouillon, and Boris Yakobowski. Experience report: Ocsigen, a web
programming framework. In ��� ������� International Conference on Functional
Programming (����), Edinburgh, ��, pages ���–���. ����.

Benzaken, Véronique, Giuseppe Castagna, Kim Nguy�n, and Jérôme Siméon. Static and
dynamic semantics of NoSQL languages. In ��� �������-������ Symposium on
Principles of Programming Languages (����), Rome, Italy, pages ���–���. January ����.

Benzaken, Véronique, Giuseppe Castagna, and Alain Frisch. CDuce: an ���-centric
general-purpose language. In ��� ������� International Conference on Functional
Programming (����), Uppsala, Sweden, pages ��–��. August ����.

Castagna, Giuseppe, Kim Nguy�n, Zhiwu Xu, and Pietro Abate. Polymorphic functions
with set-theoretic types. Part �: Local type inference and type reconstruction. In ���
�������-������ Symposium on Principles of Programming Languages (����), Mum-
bai, India, pages ���–���. January ����.

Castagna, Giuseppe, Kim Nguy�n, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca
Padovani. Polymorphic functions with set-theoretic types. Part �: Syntax, semantics,
and evaluation. In ��� �������-������ Symposium on Principles of Programming
Languages (����), San Diego, California, ���, pages �–��. January ����.

Castagna, Giuseppe and Zhiwu Xu. Set-theoretic foundation of parametric polymorphism
and subtyping. In ��� ������� International Conference on Functional Programming
(����), Tokyo, Japan, pages ��–���. September ����.

Damas, Luis and Robin Milner. Principal type-schemes for functional programs. In ���
�������-������ Symposium on Principles of Programming Languages (����), Al-
buquerque, New Mexico, ���, pages ���–���. January ����.

Frisch, Alain.�éorie, conception et réalisation d’un langage de programmation adapté à
���. PhD thesis. Université Paris � – Denis Diderot, December ����.

Frisch, Alain. OCaml + XDuce. In ��� ������� International Conference on Functional
Programming (����), Portland, Oregon, ���, pages ���–���. September ����.

Frisch, Alain, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping: dealing
set-theoretically with function, union, intersection, and negation types. Journal of the
���, ��(�):�–��, September ����.

Garrigue, Jacques. Programming with polymorphic variants. In ��� ������� Workshop
on ��, Baltimore, Maryland, ���, informal proceedings. September ����.

Garrigue, Jacques. Code reuse through polymorphic variants. InWorkshop on Foundations
of So�ware Engineering (����), Sasaguri, Japan, November ����.

Garrigue, Jacques. Simple type inference for structural polymorphism. In International
Workshop on Foundations of Object-Oriented Languages (����), Portland, Oregon, ���,
informal proceedings. January ����.

���

References

Garrigue, Jacques. Typing deep pattern-matching in presence of polymorphic variants.
In ����� Workshop on Programming and Programming Languages, Gamagori, Japan,
March ����.

Garrigue, Jacques. A certi�ed implementation of �� with structural polymorphism and
recursive types.Mathematical Structures in Computer Science, ��:���–���, May ����.

Girard, Jean-Yves. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur.�èse d’état. Université Paris �, ����. Summary in Proceedings of the
Second Scandinavian Logic Symposium (J. E. Fenstad, editor), North-Holland, ����
(pages ��–��).

Gordon, Michael J.C., Robin Milner, and Christopher P. Wadsworth. Edinburgh ���.
Springer-Verlag ���� ��, ����.

Hosoya, Haruo and BenjaminC. Pierce. XDuce: A statically typed ��� processing language.
��� Transactions on Internet Technology, �(�):���–���, May ����.

Leroy, Xavier. Typage polymorphe d’un langage algorithmique. PhD thesis. Université Paris �,
June ����.

Leroy, Xavier.�e OCaml system release �.��: Documentation and user’s manual. With
Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
Available from ‹http://caml.inria.fr›. September ����.

Maranget, Luc.Warnings for patternmatching. Journal of Functional Programming, ��(�):���–
���, ����.

Odersky, Martin, Martin Sulzmann, and Martin Wehr. Type inference with constrained
types.�eory and Practice of Object Systems, �(�):��–��, ����. Summary in International
Workshop on Foundations of Object-Oriented Languages (����), informal proceedings,
����.

Ohori, Atsushi. A polymorphic record calculus and its compilation. ��� Transactions on
Programming Languages and Systems, ��(�):���–���, November ����.

Pierce, Benjamin C. Types and Programming Languages. ��� Press, ����.

Pottier, François and Didier Rémy.�e essence of �� type inference. Dra� of an extended
version. September ����.

Pottier, François and Didier Rémy. �e essence of �� type inference. In Benjamin C.
Pierce, editor, Advanced Topics in Types and Programming Languages, chapter ��, pages
���–���. ��� Press, ����.

Rémy, Didier. Type systems for programming languages. Course notes for the academic
year ����–����. November ����.

Tobin-Hochstadt, Sam and Matthias Felleisen.�e design and implementation of Typed
Scheme. In ��� �������-������ Symposium on Principles of Programming Languages
(����), San Francisco, California, ���, pages ���–���. January ����.

Vytiniotis, Dimitrios, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. O��-
����I�(X) – Modular type inference with local assumptions. Journal of Functional
Programming, ��(�–�):���–���, September ����.

Wand,Mitchell. A simple algorithm and proof for type inference. Fundamenta Informaticae,
��:���–���, ����.

���

	Introduction
	Polymorphic variants in OCaml
	The ML language family and OCaml
	Polymorphic variants
	Shortcomings of OCaml and proposed extensions

	A calculus for ML with variants
	Syntax
	Semantics
	Type system
	Variants in other models and in OCaml

	Variants with set-theoretic types
	Types and subtyping
	Type system
	Comparison with other systems

	Reconstruction for set-theoretic types
	Restriction of the type system
	Reconstruction without let-polymorphism
	Adding let-polymorphism

	Extensions and variations
	Overloaded functions
	Refining the type of a matched expression
	Applicability to OCaml

	Conclusions
	Proofs
	A calculus for ML with variants
	Variants with set-theoretic types
	Reconstruction for set-theoretic types

	References

