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Abstract

We present a direct translation from a sub-logic of µ-
calculus to non-deterministic automata of finite binary
trees. The logic is an alternation-free modal µ-calculus,
restricted to finite trees and where formulae are cycle-
free. This logic is expressive enough to encode signif-
icant fragments of query languages (such as Regular
XPath). We have implemented our translation. Our pro-
totype effectively solves static analysis problems that
were beyond reach, such as the XPath query contain-
ment problem with DTD constraints of significant size.

Introduction
Tree automata are tightly connected to expressive logics.
Capturing the language of models of a given logical for-
mula using a tree automaton constructed from the formula
has proved to be an essential technique to show decidability
and complexity bounds for a variety of logics.

In practice, however, such an automaton construction
is not necessarily feasible efficiently from a given MSO-
complete (Monadic Second Order) logical language. This
is one of the main reasons why automata-based decision
procedures did not have the same success in practice as
they had on the theoretical side, as pointed out in e.g. (Pan,
Sattler, and Vardi 2006) and (Ünel and Toman 2007). Im-
plementations of satisfiability-testing algorithms for expres-
sive logics rarely rely on automata-based techniques. No-
table exceptions include MONA (Klarlund and Møller 2001;
Klarlund, Møller, and Schwartzbach 2001) for the weak
monadic second-order logic of two successors (WS2S)
(Thatcher and Wright 1968; Doner 1970) and MLSolver
(Friedmann and Lange 2010) for the full µ-calculus (with-
out converse modalities) (Kozen 1983). In general, however,
automata-based decision procedures implementations are
often outperformed by alternative techniques such as tableau
methods, as found in e.g. (Pan, Sattler, and Vardi 2006;
Tanabe et al. 2005; Genevès et al. 2015). Such techniques
try to avoid one of the main weakness of automata-based
techniques: the explicit representation and construction of
automata in intermediate steps of the decision procedure.
Such intermediate steps often involve extremely large au-
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tomata and make the decision procedure fail even if the final
automaton is actually small.

Nevertheless, there are applications where such an ex-
plicit construction of a tree automaton is key and inevitable.
One such application is the static analysis of queries in the
presence of schemas. More specifically, solving the problem
of query containment under schema constraints. In this con-
text, building a tree automaton has proved to be useful in
decreasing the overall combined complexity of the problem
by an exponential in the size of the schema, as pointed out
in (Libkin and Sirangelo 2010). Another application is the
static typing of tree manipulating functional programs. In
such settings, type-checking is often performed by so-called
type inference, an operation that requires as input an explicit
tree automaton. For example, the type-checkers of (Ben-
zaken et al. 2013) need to produce a tree automaton from
some logical language representing statements à la XPath
(ten Cate, Litak, and Marx 2010). Finally, queries evalua-
tors seeking performance can benefit from such a translation
by incorporating the automata construction directly in their
compilers (Arroyuelo et al. 2015). While such a translation
is known to be feasible in theory, an efficient implementa-
tion has only been conjectured to be feasible so far. This
implementation challenge together with the aforementioned
applications motivated the present work.

In this paper, we investigate the construction of a finite
tree automaton from a formula of a specific tree logic Lµ
which is MSO-complete. This logic is an alternation-free
fragment of the µ-calculus with backward modalities, in-
terpreted over finite trees. Thanks to its expressive power
and succinctness, this logic has found many applications in
particular for the static analysis of queries and programs
that process semi-structured data such as XML (Genevès,
Layaı̈da, and Schmitt 2007; Libkin and Sirangelo 2010;
Calvanese et al. 2010). An efficient decision procedure for
testing the satisfiability of this logic has been successfully
designed and implemented in (Genevès et al. 2015). How-
ever, the procedure relies on an inverse tableau method that
(only) looks for a single satisfying model. In this paper, we
propose a technique for effectively building a tree automa-
ton representing the set of all satisfying models of a given
formula. To reach that goal, we build the automaton in one
pass, in a way that is as parsimonious as possible, in partic-
ular for building the automaton transitions.



Related Work. Several works addressed the translation of
formulae into tree automata or their satisfiability. The sem-
inal work on MONA (Klarlund and Møller 2001; Klarlund,
Møller, and Schwartzbach 2001) developed implementation
techniques for WS2S which is succinct, but whose satisfi-
ability is non-elementary. We consider the equally expres-
sive Lµ logic introduced in (Genevès, Layaı̈da, and Schmitt
2007) whose time complexity for satisfiability is 2O(n).

More recently (Libkin and Sirangelo 2008) introduced
a translation from CXPath to tree automata in 2O(n). This
work was further developed in (Libkin and Sirangelo 2010)
and (Francis, David, and Libkin 2011). However, CXPath
represents a strict subset of µ-calculus and weaker than the
tree logic used here. In addition, their translation produce
unranked tree automata for which efficient implementations
are notoriously lacking (none have been reported).

In the meantime, (Calvanese et al. 2010) presented a two
steps translation from µXPath formulas (a MSO-complete
µ-calculus variant) to non-deterministic tree automata. The
first step is to translate the formulas to two-way alternat-
ing tree automata and the second step is to translate these
automata to non-deterministic tree automata. The size of
the obtained tree automaton is 2O(n2). The second step has
been improved (Björklund, Gelade, and Martens 2010) for
a sublogic such that the intermediary two-way alternating
tree automata are “loop-free”. From this sublogic, a non
deterministic tree automaton with 2O(n) states can be con-
structed. More precisely, if n is the size of the lean (a subset
of the Fischer-Ladner closure presented here) of the formula,
their automaton has 22n states and 24n transitions. Their
translation has no reported implementation.

Contributions. Our contributions are twofold. First, we
present a new direct translation from Lµ to tree automata.
This translation produces an automaton that has, at most, 2n

transitions where n is the size of the lean. This improves on
the best known translation that has 24n transitions. Second,
our method allows our prototype to leverage semi-implicit
representation techniques and to avoid the construction of
inaccessible states. The result is a parsimonious implemen-
tation with which we solve concrete problems that were
out of reach. Specifically, we provide the first implementa-
tion of such a translation and show that it effectively solves
the static analysis of XPath queries under large real-world
schemas such as XHTML. So far, such problem instances
were beyond reach.

Logical context
Formulae
The logic we consider is a fragment of the alternation free
modal µ-calculus presented below. The grammar of our for-
mulae is given in figure 1.

In this paper we suppose that the formulae we are given
are closed formulae and that each variable name is only
bound once (eventually thanks to an α-conversion). Finally,
we impose that formulae respect the “cycle-freeness” and
the “guarded variables” properties of the language Lµ that
are presented later.

ϕ ::= formula
| P atomic proposition
| f(ϕ1, . . . , ϕk) f is a boolean function
| X variable
| µ(Xi = ϕi)i∈I in ψ polyadic fixpoint
| 〈a〉ϕ modality

Figure 1: Grammar of formulae

Focused trees
We consider only finite binary trees (our results transfer to
unranked trees thanks to the well-known “first-child next-
sibling” bijective mapping: see e.g. (Genevès, Layaı̈da, and
Schmitt 2007)). The models of our formulae are focused
trees; focused trees are trees with the additional information
of which node we are focused on. The set of all focused trees
(and therefore the set of all possible models) is F .

To change the focus in a focused tree, we have four “pro-
grams”: 〈1〉,〈2〉,〈1̄〉,〈2̄〉 (also used in the formulae 〈a〉ϕwith
a ∈ {1, 2, 1̄, 2̄}). For T a focused tree and a ∈ {1, 2}, T 〈a〉
(resp. T 〈ā〉) denotes the same tree but where the focus is
moved on the a-child (resp. the parent with (T 〈ā〉) 〈a〉 =
T ). Obviously, T 〈a〉 (resp. T 〈ā〉) is only defined if the node
we are focused on has a a-child (resp. if it is the a-child of
some node).

Atomic propositions
Atomic propositions corresponds to propositions that can be
verified directly against a node. We write P ` T when the
proposition P is true on the node focused by T .

Fixpoints
The formulae of the form µ(Xi = ϕi)i∈I in ψ in our gram-
mar correspond to fixpoints. Each fixpoint has a finite num-
ber of variables indexed by a set I (each fixpoint can have a
different number of variables and therefore a different I).

Boolean functions
When using the “natural” interpretation of formulae, the set
of models for a formula a∧ b is the intersection of the set of
models for the formula a and for the formula b. We present
here how to transform a boolean function to a function over
sets and extend this “natural” interpretation.

Let f : {0, 1}k → {0, 1} be a boolean function of ar-
ity k and k sets of focused trees S1, . . . , Sk, we extend
f to a set function by defining f(S1, . . . , Sk) as {x ∈
F | f(χ(x, S1), . . . , χ(x, Sk))} with χ(x,E) = 1 when
x ∈ E and χ(x,E) = 0 otherwise.

For the simple functions f∧(ϕ1, ϕ2) = ϕ1 ∧ ϕ2,
f∨(ϕ1, ϕ2) = ϕ1 ∨ ϕ2, f¬(ϕ) = ¬ϕ and f>() = > we do
have f∧(A,B) = A∩B, f∨(A,B) = A∪B, f¬(A) = F\B
and f> = F .

We restrict the use of boolean functions in formu-
lae. In a formula f(ϕ1, . . . , ϕk), we either have ϕi a
closed formula or f use its i-th argument positively:
∀(x1, . . . , xk) ∈ {0, 1}kf(x1, . . . , xi−1, 0, xi+1, . . . , xk) ≤
f(x1, . . . , xi−1, 1, xi+1, . . . , xk)).



Interpretation of formulae
The interpretation of a formula ϕ is recursively defined as
JϕKV where V is the environment mapping the free vari-
ables of ϕ to sets of models. Figure 2 presents the definition
of JϕKV . The notation V [A → B] indicates that the envi-
ronment V is modified to add a binding from the variable A
to the set of models B (with the unicity of variables names
we never replace a binding).
Lemma 1. Due to the restrictions on boolean functions, the
interpretation is growing in environment i.e. A ⊆ B ⇒
JϕKV [X → A] ⊆ JϕKV [X → B].

JXKV = V (X)
JP KV = { T ∈ F | P ` T }

Jf(ϕ1, . . . , ϕn)KV = f
(
Jϕ1KV, . . . , JϕnKV

)
J〈a〉ϕKV = {T 〈a〉 | T ∈ JϕKV

∧T 〈a〉 is defined}
Jµ(Xi = ϕi)i∈I in ψKV = JψKV [Xi → Ui]i∈I

With Uj =
⋂

(T1,...,Tn)∈S Tj and S =

{(T1, . . . , Tn) ∈ P(F)n | ∀j(JϕjKV [Xi → Ti]i∈I ⊆ Tj)}.

Figure 2: Interpretation of formulae

Guarded variables
A subformula ψ of a formula ϕ is guarded in ϕ if there
is a subformula 〈a〉κ of ϕ such that ψ is a subformula of
κ. The first restriction we impose on formulae is for every
fixpoint µ(Xi = ϕi)i∈I in ψ, and for i ∈ I the vari-
ables (Xj)j∈I have to be guarded in ϕi. This restriction
is used to transform a formula with unguarded fixpoints to
a formula where all fixpoints are guarded; we expand the
unguarded fixpoints (i.e. we replace variables by their defi-
nition) and since variables are guarded the resulting formula
has guarded fixpoints.
Definition 1. The unfolding of a formula ϕ is written as
unf(ϕ) and is defined as:

unf(P )) = P
unf(f(ϕ1, . . . , ϕk)) = f(unf(ϕ1), . . . , unf(ϕk))

unf(〈a〉ϕ) = 〈a〉ϕ
unf(µ(Xi = ϕi)i∈I in ψ) = unf(ψ′)

where ψ′ = ψ{Xj/µ(Xi = ϕi)i∈I in ϕj}j∈I is the for-
mula where for j ∈ I the occurrences of the variables Xj

are replaced by µ(Xi = ϕi)i∈I in Xj .
Lemma 2. For a closed formula ϕ, unf(ϕ) is well-defined,
in unf(ϕ) all fixpoints are guarded and unf(ϕ) has the same
semantic as ϕ (i.e. JϕKV = Junf(ϕ)KV ).

Proof. The whole proof is shown in the appendix.
The main idea of the proof is to use the order on formu-

lae: first on the set of unguarded fixpoints and then on the
size of the formula. After that, the harder part is proving that
expanding a fixpoint does not change its semantic.

Let Uj =
⋂

(T1,...,Tn)∈S Tj and S =

{(T1, . . . , Tn) ∈ P(F)n | ∀j(JϕjKV [Xi → Ti]i∈I ⊆ Tj)},

we have that Uj = JϕjKV [Xj → Uj ] because the function
(Ti)i∈I → (JϕiKV [Xj → Tj ]) is a growing function.

If X is a variable and Y a formula, then Jψ{X/Y }KV =
JψKV [X → JY KV ] and thus Jµ(Xi = ϕi)i∈I in ψKV =
JψKV [Xi → jUj ] = JψKV [Xi → JϕjKV [Xj → Uj ]] =
Jψ{Xi/µ(Xi = ϕi)i∈I in ϕj}KV .

Cycle-free formulae
Definition 2. Paths are suits of programs. A path p =
〈a1〉 〈a2〉 . . . 〈an〉 is valid on a focused tree T if for 1 ≤
i ≤ n, (. . . (T 〈a1〉) . . . ) 〈ai〉 is defined. The set of paths for
a formula is:

P(P ) = ∅
P(f(ϕ1, . . . , ϕn)) =

⋃n
i=1 P(ϕi)

P(〈a〉ϕ) = {〈a〉} ∪ {〈a〉 p | p ∈ P(unf(ϕ))}

Because our underlying models are binary trees, a path
can only give the focus twice on the same node if there is a
pattern 〈a〉 〈ā〉 or 〈ā〉 〈a〉. Such a pattern is called a cycle. A
formula is cycle-free if there is a finite bound on the number
of cycles the paths of this formula can contain. We impose
that all formulae are cycle-free.
Definition 3. Let ϕ be a cycle-free formula and T be a fixed
focused binary tree, we take the smallest c such that no path
of ϕ has c cycles and we define c(ϕ, T ) = c× |T |.
Lemma 3. Any path of ϕ that is longer than c(ϕ, T ) is not
a valid path in T .

Proof. A valid path with no cycle is smaller than the number
of nodes. Otherwise, it would give the focus twice on the
same node and there would be a cycle. Let p be a valid path
of ϕ. We can split p into n paths with no cycle pattern. Each
of these paths is valid somewhere in the tree and does not
contain any cycle, therefore each of these paths is smaller
than |T |: p is either smaller than n× T or invalid.

Lean, type, consistent type
Definition 4. The Lean is defined for an unfolded formula.
It is a small variation of the classical Fischer-Ladner clo-
sure. The Lean can be defined as:

Lean (P ) = {P}
Lean (f(ϕ1, . . . , ϕk)) = ∪ki=1Lean (ϕi)

Lean (〈a〉ϕ) = {〈a〉ϕ} ∪ Lean (unf(ϕ))

Lemma 4. For a formula ψ, |Lean(unf(ψ))| = O(|ψ|).

Proof. The set Lean(unf(ψ)) contains the atomic proposi-
tions appearing in ψ and the formulae of the form 〈a〉ϕ
where 〈a〉ϕ is a subformula of ψ or a subformula of an un-
folded subformula of ψ. |Lean(ψ)| is at most linear in the
size of ψ.

We consider a formula ξ and we write Lean for
Lean(unf(ξ)), n for the size of Lean(unf()) and ω1, . . . , ωn
for Lean. A formula ϕ for which Lean(unf(ϕ)) is included
in Lean is called a Lean formula. First, we need to introduce
the lemmas 5 and 6.



Lemma 5. For a Lean-formula ϕ there is a boolean func-
tion fϕ such that JϕK = Jfϕ(ω1, . . . , ωn)K.

Proof. For a formula κ with no free variables, unf(κ) is
necessarily of one the subforms: P , 〈a〉ψ or f(ψ1, . . . , ψn)
where the ψi are also of one of these three forms.

For ϕ = fp(ϕ1, . . . , fi(ϕi,1, . . . , ϕi,k), . . . , ϕl),
we can combine fp and fi into an equiv-
alent fc (fc(v1, . . . , vi,1, . . . , vi,k, . . . , vl) =
fp(v1, . . . , fi(vi, 1, . . . , vi,k), . . . , vl)). and for ϕ not a
function, we can use the identity function to get the
semantically equivalent (x→ x)(ϕ).

In any case unf(κ) can always be transformed in an equiv-
alent f(ϕ1, . . . , ϕl) where f is a boolean function and theϕj
are unguarded subformulae of ϕ of the form P and 〈a〉ψ. ϕ
is a Lean formula, so each ϕj is necessarily a ωk for some
k. For ϕ a function using a subset of {ω1, . . . , ωn} as argu-
ments we can add arguments to f and permute them to get a
f such that unf(κ) = f(ω1, . . . , ωn).

Lemma 6. For i ∈ 1..n we have either an atomic proposi-
tion P such that JωiKV = JP KV or it exists ai and fi such
that JωiKV = J〈ai〉 fi(ω1, . . . , ωn)KV .

Proof. By definition of the Lean, for i ∈ 1..n we have
either ωi = P or ωi = 〈ai〉ϕi for some P , ai and ϕi.
Which means we either have JωiKV = JP KV or it ex-
ists fi such that JϕiKV = Jfi(ω1, . . . , ωn)KV and thus
JωiKV = J〈ai〉 fi(ω1, . . . , ωn)KV .

Remark 1. The (ωi)i∈1..n represent the Lean as a set and
are, by definition, all different syntactically. We can have
semantically equivalent but syntactically different formulae
(like ω1 = a∨ b and ω2 = b∨ a) but this is only possible for
modal formula (of the form ωi = 〈ai〉ϕi): for ωi = P any
equivalent formula should be ωj = P ′ with JP KV = JP ′KV
thus P = P ′. It is clear that a ωi cannot be semantically
equivalent to a modal formula and an atomic proposition.

Definition 5. A type is an element of {0, 1}n. For a type
t and a boolean function f of arity n, we write f(t) for
f(t1, . . . , t1). A type t is said consistent with a focused tree
T when ∀i ∈ 1..n (t1 = 1⇔ T ∈ JωiK).

We denote by L the set of i such that ωi represents an
atomic proposition; Fa the set of ωi using the modality a,
Fa =

{
i
∣∣ (JωiKV = J〈a〉 fi(ω1, . . . , ωn)KV

)
∈ Lean

}
.

Definition 6. Let 1̃ = 2̄ and 2̃ = 1̄, let y be a
type and a ∈ {1, 2}, the set Sa(y) of types com-
patible with being the a-th parent of y is Sa(y) ={
x ∈ {0, 1}n | ∀i ∈ Fã yi = 0 ∧ ∀i∈Fa xi=fi(y)

∀i∈Fā yi=fi(x)

}
.

Definition 7. For i ∈ {1, 2}, #i is the set of types having
no i-child: #i = {x | ∀v ∈ Fi xv = 0}.
Lemma 7. Sa is such that Sa(x) ∩ Sa(y) 6= ∅ then we
necessarily have Sa(x) = Sa(y).

Proof. Let y and x be two types, a ∈ {1, 2}, let z ∈ Sa(x)∩
Sa(y) and w ∈ Sa(x). We have ∀i ∈ Fafi(y) = zi =
fi(x) = wi, ∀i ∈ Fāyi = fi(z) = xi = fi(w) and finally
∀i ∈ Fã yi = xi = 0 therefore w ∈ Sa(y).

Definition 8. The set of atomic propositions appearing in ξ
is L. A type t forces the value of each proposition in L. We
write L(t) for the set of atomic proposition implied by t.

Annotation of trees
We introduce the notions of locally and globally consistent
tree annotations and prove that they are equivalent. Local
consistency can be used to derive an automaton, while global
consistency will help in establishing that the automaton cap-
tures the set of trees that are models of the formula.
Definition 9. An annotation of a finite tree T is a func-
tion from the nodes of T to types. An annotation γ is con-
sistent when each node N is associated with a consistent
type γ(N ). γ(N )i denotes the i-th component of γ(N ) (if
γ(N ) = (t1, . . . , tn) then γ(N )i = ti). Note that a given
tree has only one consistent annotation.
Definition 10. We say that an annotation γ of the tree T is
locally consistent when:
• for each node N , {P ∈ L | P ` N} = L(γ(N );
• if Nc is the a-child of Np, then γ(Np) ∈ Sa(γ(Nc));
• if N has no a-child γ(N ) ∈ #a;
• ifN has no parent then there are no i ∈ F1̄∪F2̄ such that
γ(N )i = 1.

Theorem 1 (Local consistency is consistency). Given a tree
T , an annotation is locally consistent iff it is globally con-
sistent.

Proof. The idea of the proof (see appendix) relies on a no-
tion of consistency at a distance k. We show that local con-
sistency is consistency at distance k for all k. Then we show
that for k big enough, the consistency at distance k is the
consistency.

Given a formula ϕ and a tree T , all paths of P(ϕ) are
valid on T if they have less than c(T , ϕ) programs. Thus,
we only need to show that the local consistency checks the
consistency on all finite paths.

Automaton construction
A first idea for an automaton that checks a formula is to
have types as states and make the transitions enforce the
local consistency. This would lead to a bottom-up non-
deterministic tree automaton that has 2n states and (2n)3

transitions. We introduce here the notion of interface that
allows a bottom-up non-deterministic tree automaton that is
much smaller (O(2n) transitions in the worst case) and more
prone to optimization.

States of the automaton
States of our automaton are sets of types with a “side” (1 or
2) plus a unique final state F . The information contained in
a state (S, i) (where S is a set of types and i ∈ {1, 2}) is
that S represents a set of possible types for the i-parent of
the current node.
Definition 11. F is the set of types that are compatible with
being a root and a solution of ξ.

F =
{
t ∈ {0, 1}n | fξ(t) = 1 ∧ (∀i ∈ (F1̄ ∪ F2̄), ti = 0)

}



Definition 12. Let Ci = {Si(t) | t type} ∪ #i, the set of
states of our automaton isQ = (C1 × {1}) ∪ (C2 × {2}) ∪
{(F , 0)}.
Remark 2. As a consequence of remark 7, given i ∈ {1, 2}
and two types y1, y2, we have either Si(y1)∩ Si(y2) = ∅ or
Si(y1) = Si(y2).

Transitions
We use the representation e1, e2

l−→ e3 to indicate that there
is a transition where e1 is the state of the 1-child, e2 is the
state of the 2-child, l is the label and e3 is the state of the
parent. (#i, i) represents the state of a leaf that is a i-child.

The alphabet of our automaton is the powerset of the setL
of atomic propositions appearing in ξ. A node n is labelled
with l when ∀p ∈ L (p ∈ l⇔ n ∈ JpK)

Let e1 = (E1, 1), and e2 = (E2, 2) for each t ∈ E1 ∩E2

and for i ∈ {1, 2}, e1, e2
L(t)−−−→ Si(t) is a transition. We also

have a transition e1, e2
L(t)−−−→ F for each t ∈ F ∩E1 ∩E2 .

We say that those transitions are built with the type t.

Lemma 8. A tree is accepted if and only if it satisfies the
formula.

Proof. ⇒ Let T be a tree and suppose that T is accepted.
There is a valid run η, let η(n) be the state the run associates
with the node n. We will introduce an annotation τ and show
that τ is locally consistent.

For all non root node n, the state η(n) was obtained using

a transition of the form (e1, 1), (e2, 2)
L(t)−−−→ (Si(t), i) with

t ∈ e1 ∩ e2. Let τ(n) be such a t. The run is accepting, so
the root node r is associated with η(r) = F . F comes from

a transition (e1, 1), (e2, 2)
L(t)−−−→ F and that ensures there is

a t in e1 ∩ e2 ∩ F , let τ(r) be such a t.
τ is locally consistent: A node n is labelled with L(τ(n)).

Let ni be the i-child of np and let (Ei, i) = η(ni), we have
τ(n) ∈ Ei and Ei = Si(τ(ni)). Thus τ(n) ∈ Si(τ(ni)).
Let n be a node, if n has no i-child, τ(n) ∈ #i which im-
plies τ(n)i = 0 for i ∈ Fi. Finally, the root r is associated
with τ(r) ∈ F and therefore τ(r)i = 0 for i ∈ F1̄ ∪ F2̄.
⇐ Let T be a tree and suppose that T satisfies the formula

ξ. We consider the annotation γ of T that associates each
nodes n with its consistent type γ(n). The function ρ that
associates each node n of T with ρ(n) = Si(γ(n)) when n
is a i-child and with ρ(n) = F when n is the root node is an
accepting run.

Size of the automaton
The number of sets Si(t) depends only on which formulae
of Fi ∪ Fī are true. Therefore, the number of distinct Sa
classes is bounded by 2|Fa∪Fā| . The number of states of our
automaton is bounded by the number of distinct sets S1 plus
the number of distinct sets S2 plus three (#1 , #2 and F).
We have 2|F1∪F1̄| + 2|F2∪F2̄| ≤ 2n (where n = |Lean|) so
the automaton has, at most, 3 + 2n states.

Each transition is built using a type t. Depending on
whether t ∈ #1, t ∈ #2, t ∈ S1(t′) and t ∈ S2(t′′)
(for some t′ and t′′), they are, at most, four possibilities

for the two children states in a transition built using t:
(#1,#2),(#1,S2(t′′)), (S1(t′),#2), (S1(t′),S2(t′′)). De-
pending on whether t is compatible with a 1-parent, a 2-
parent, or a root solution, there are, at most, three possible
states for the parent state in a transition built using t: S1(t),
S2(t) and F . The automaton has, at most, 3× 4× 2n transi-
tions.

Algorithm implementation
The algorithm works by computing transitions from pairs of
known accessible states and marking the discovered states
as accessible. The algorithm starts with the two states asso-
ciated with leaves (#1 and #2) marked as accessible. Then,
for each pair of accessible states we compute the set of all
transitions using those states. Each new discovered state is
marked as accessible.

The main operation of our algorithm is the computation
of transitions. In order to compute it our prototype relies
on a symbolic representation of types for fast enumerations.
Once the formula is encoded into n formulae of the form
ωi = 〈a〉 fi(ω1, . . . , ωn) or ωi = P the complexity of the
translation to an automaton is O(n× 2n).

Experimental validation
The source code of the prototype and the benchmark are
available at the address: http://anonymized.

Typing XPath
Tree automata are needed for a variety of XPath-related ap-
plications: typechecking (Benzaken et al. 2013), query eval-
uation (Arroyuelo et al. 2015) and a variety of static analysis
problems involving XPath queries (Schwentick 2007). Our
first set of experiments aims at assessing the relevance of
our method in this context. We translate XPath queries to
tree automata and show that our translation can be done in
reasonable time for “real-world” queries and that the result-
ing automaton is relatively small (much less than the O(2n)
worst case), enabling further analyses on these automata.

The XPathMark (Franceschet 2005) is a set of queries in-
troduced to benchmark the major aspects of the XPath lan-
guage. Our benchmark is a subset of XPathMark queries. We
kept only the queries that can be translated into Lµ without
approximation. We did not consider the set of “Ci” queries
that contain comparisons between data values: a feature that
makes statis analysis tasks such as query containment un-
decidable. XPathMark queries B10, B11(i), B12(i), B13(i),
B14(i), B15(i) for i = 3 are translated into tree automata in:
111.41 0.09, 0.18, 0.05, 0.01 and 135.05 seconds, respec-
tively. These queries translate into either empty or very small
automata, because their structure is simple.

Table 3 presents for each query the time spent (in sec-
onds), the Lean size, the lg (log in base 2) of the number of
states and the lg of the number of transitions of the resulting
automaton. Table 3 shows that for most queries, the transla-
tion is done in less than a second and the size of the resulting
automaton is much smaller than the worst case O(2n).



Query A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B8 B9
Time (s) 0.30 0.00 0.02 2.14 0.02 1.01 0.06 0.67 0.52 0.01 0.02 0.02 0.63 0.66 0.06 0.12 94.8
Lean size 22 13 17 25 18 23 19 23 23 16 17 17 24 23 17 22 42
lg(#states) 8.1 5.4 6.5 9.4 6.3 9.2 7.2 9.9 8.2 5.9 6.3 6.3 8.9 9.2 6.4 7.6 13.9
lg(#trans) 10.1 7.4 8.9 15.5 10.0 14.6 11.4 14.3 11.5 9.1 9.3 9.3 13.3 11.9 10.8 11.3 14.2

Figure 3: Statistics of the translation of the XPathMark Benchmark

The query containment problem
Testing the containment e ⊆ e′ (are all models of e also
models of e′?) can be done by checking the satisfiability of
¬e ∧ e′ or by intersecting the automata for e′ and ¬e.

To benchmark our prototype we re-used the contain-
ment problems from the paper that introduced the btl-solver
(Genevès et al. 2015). Table 4 presents the results of our
benchmark comparing three methods: translating both for-
mulae to automata and intersecting them (method inter-
a4µ), translating directly the formula ¬e ∧ e′ to automata
and testing it for emptyness (method full-a4µ) and testing
the satisfiability with the btl-solver.

Unsurprisingly the method full-a4µ is outperformed by
the method inter-a4µ. The mixed comparison between inter-
a4µ and btl-solver can be attributed to the fact that our
translation produces automata that are much smaller than
the worst case but sometimes there is a very small counter-
example which makes the btl-solver terminates quickly (for
instance in e5 ⊆ e6).

Problem Answer inter-a4µ full-a4µ btl-solver
e1 ⊆ e2 Y es 0.84 2.20 2.82
e2 ⊆ e1 No 1.00 2.26 2.67
e3 ⊆ e4 Y es 0.06 0.52 0.97
e4 ⊆ e3 Y es 0.05 0.48 1.15
e5 ⊆ e6 No 7.42 610.54 0.85
e6 ⊆ e5 Y es 6.81 596.53 8.88

Figure 4: Time in seconds for a4µ and the btl-solver

Satisfiability and containment modulo schema
The problem of satisfiability modulo schema is known to be
EXPTIME-complete for the vast majority of queries found
in practice, even for “simple” schema like DTD (Benedikt,
Fan, and Geerts 2005). Specifically, the complexity depends
both on the query size n and on the schema size m. As no-
ticed in (Libkin and Sirangelo 2010), a direct logical ap-
proach results in a 2O(n·m) time complexity. This is inter-
esting because once an automaton is built from the query,
it can then be simply intersected with the automaton repre-
senting the constraint which yields a betterO((m+n) · 2n)
time complexity. For this reason, state-of-the-art implemen-
tations of the direct logical technique can hardly deal with
recursive queries that require to unfold large schema (like
XHTML). Table 5 shows that the implementation techniques
we propose here extend the envelope of practically solvable

problem instances, and speed up feasible cases considerably.
Queries e8, e9, e10 and e11 are also taken from the bench-
mark of the btl-solver, with e13 = e10 ∪ e11 ∪ e12.

Figure 6 reports on satisfiability-testing times for the
XPath (//tr/∗)n under the XHTML Strict and Basic DTDs.

Problem DTD Answer inter-a4µ btl-solver
e8 None Sat 0.01 0.19
e8 XHTML Sat 0.11 2.26

e9 ⊆ e13 None No 0.01 0.23
e9 ⊆ e13 XHTML Y es 0.15 3.5

Figure 5: Time in seconds for a4µ and the btl-solver
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Figure 6: Satisfiability of (//tr/∗)n under constraints.

Conclusion
In this paper, we present a translation from an expressive
tree logic to tree automata. We first introduce a notion of
tree annotations and locally consistent tree annotations. We
prove that local consistency of annotations correspond to
their global consistency. From there, we prove that the au-
tomaton construction is correct, and focus on a more parsi-
monious translation compared to the state-of-the-art.

The complexity of the construction is simply exponential
in terms of the formula size. This is an improvement over
previous translations, either in terms of the supported logical
language expressivity or in terms of computational com-
plexity of the construction. We explain how this construction
can be implemented efficiently and provide a prototype
implementation. To the best of our knowledge, this is the
first implementation of a translation for such an expressive
µ-calculus. We have also carried out practical experiments
for the static analysis of XPath queries under real-world
schemas such as XHTML. Our prototype successfully
solves practical instances that were beyond reach.
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Proof of lemmas
Lemma (1). Due to the restrictions on boolean functions,
the interpretation is growing in environment i.e. A ⊆ B ⇒
JϕKV [Y → A] ⊆ JϕKV [Y → B].

Proof. Using the recursive order used to define JϕKV we
have:

• JXKV [Y → A] = A ⊆ B = JXKV [X → B] for X =
Y ;

• JXKV [Y → A] = V (X) = JXKV [Y → B] for X 6= Y ;
• JP KV [Y → A] = JP KV [Y → B];
• for a formula Jf(ϕ1, . . . , ϕn)KV , for all closed

formulae ϕj we have JϕjKV [Y → A] =
JϕjKV [Y → B] = JϕjK∅] and for ϕi an open
formula, we recursively have JϕjKV [Y → A] ⊆
JϕjKV [Y → B] and f use its j-th argument posi-
tively which means Jf(ϕ1, . . . , ϕn)KV [Y → A] =
f(Jϕ1KV [Y → A], . . . , JϕnV [Y → A]K) ⊆
f(Jϕ1KV [Y → A], . . . , JϕjKV [Y → B], . . . , JϕnV [Y → A]K);

• J〈a〉ϕKV [Y → A] ⊆ J〈a〉ϕKV [Y → B] since
JϕKV [Y → A] ⊆ JϕKV [Y → B];

• Jµ(Xi = ϕi)i∈I in ψKV [Y → C] =
JψKV [Y → C,Xi → Ui]i∈I ,
Uj =

⋂
(T1,...,Tn)∈S Tj and S =

{(T1, . . . , Tn) ∈ P(F)n | ∀j(JϕjKV [Y → C,Xi → Ti]i∈I ⊆
Tj)}; the sets JϕjKV [Y → C,Xi → Ti]i∈I are bigger
when C = B than when C = A (by the recursive
hypothesis) which means S is smaller and therefore the
Uj are larger. The Ui being larger in the case C = B,
recursively we have JψKV [Xi → Ui] that is also larger.

Lemma (2). For a closed formula ϕ, unf(ϕ) is well-defined,
in unf(ϕ) all fixpoints are guarded.

Proof. We introduce an order on formulae: first on the set of
unguarded fixpoints and then on the size of the formula.

We will prove that the only recursive uses of unf(ψ) in
the definition of unf(ϕ) are with a ψ smaller in the sense of
definition .

• For ϕ = P and ϕ = 〈a〉ψ, unf(ϕ) does not use recursion
therefore it is well-defined.

• For ϕ = f(ϕ1, . . . , ϕk), each ϕi has a subset of the free
fixpoints of ϕ and is of smaller size. Thus the ϕi are
smaller in the sense of definition .

• For ϕ = µ(Xi = ϕi)i∈I in ψ, all occurrences of the
Xi are guarded (cf restriction ??) therefore the expan-
sion into ψ{Xi/µ(Xi = ϕi)i∈I in Xi} removes the un-
guarded fixpoint ϕ.

Using the order used to prove the well-definedness of
unf(ϕ) we have:

• P and 〈a〉ψ have no unguarded fixpoint
• recursively the unf(ϕi) have no unguarded fixpoint there-

fore unf(f(ϕ1, . . . , ϕk)) has none either.

• unf(µ(Xi = ϕi)i∈I in ψ) =
unf(ψ{Xi/µ(Xi = ϕi)i∈I in X − I}) and
unf(ψ{Xi/µ(Xi = ϕi)i∈I in Xi}) has no unguarded
fixpoint.

Lemma (2 bis). unf(ϕ) has the same semantic as ϕ (i.e.
JϕKV = Junf(ϕ)KV ).

Proof. The only peculiar point of this proof lies
in proving that expanding a fixpoint does not
change its semantic, or Jµ(Xi = ϕi)i∈I in ψKV =
Jψ{Xi/µ(Xi = ϕi)i∈I in Xi}KV .

We write (Ti)i∈I⊆̇(Ni)i∈I for ∀ i ∈ I (Ti ⊆ Ni) and
(Ti)i∈I ∩̇(Ni)i∈I for (Ti ∩ Ni)i∈I . For any x, y we have
x∩̇y⊆̇x.

Let f((Tj)j∈I) =
(
JϕjKV [Xi → Ti]

)
j∈I by component-

wise applications of lemma 1 we have (Ti)i∈I⊆̇(Ni)i∈I ⇒
f((Ti)i∈I)⊆̇f((Ni)i∈I).

Let (Uj)j∈I =
⋂̇
x∈S x and S =

{x ∈ P(F)I | (f(x)⊆̇x)}, we have f((Uj)j∈I) =

f(
⋂̇
x∈S x) ⊆

⋂̇
x∈S f(x) ⊆

⋂̇
x∈Sx = (Uj)j∈I but

f((Uj)j∈I)⊆̇(Uj)j∈I ⇒ f(f((Uj)j∈I))⊆̇f((Uj)j∈I)

therefore f((Uj)j∈I) ∈ S and thus (Uj)j∈I⊆̇f((Uj)j∈I)
which gives us (Uj)j∈I = f((Uj)j∈I) =
(JϕjKV [Xj → Uj ])j∈I

If X is a variable and Y a formula, then Jψ{X/Y }KV =
JψKV [X → JY KV ] and thus Jµ(Xi = ϕi)i∈I in ψK =
JψKV [Xi → jUj ] = JψKV [Xi → JϕjKV [Xj → Uj ]] =
Jψ{Xi/µ(Xi = ϕi)i∈I in ϕj}KV .

Proof of the theorem
The verification function Vγ
We consider γ, a locally consistent annotation. We want to
prove that a locally consistent annotation is a consistent an-
notation. The local consistency checks that an annotation is
correct at range 1 (Is the annotation correct with the atomic
propositions and is it consistent with the existence and the
type of neighbours?). We build a function Vγ checking the
consistency at range k (Is the annotation valid if we cross,
at most, k modalities?).

Definition 13. We define Vγ a function taking a Lean for-
mula ϕ, a tree T focused on a node t (ϕ is tested against
T ), an integer k (at which ”range” do we check the for-
mula) and returning a boolean. We define Vγ by induction
on k decreasing and on the size of the formula ϕ.

• If ϕ = P there is a unique i such that JωiK = JP K,
Vγ(ϕ, T , k) = (γ(t)i)

• Vγ(f(ϕ1, . . . , ϕn), T , k) =
f(Vγ(ϕ1, T , k), . . . ,Vγ(ϕn, T , k))

•
Vγ(〈a〉ϕ, T , k) =





γ(t)i if k = 0

i such that ωi = 〈a〉ϕ

Vγ(unf(ϕ), T 〈a〉 , k − 1) if k > 0 ∧ T 〈a〉 exists

0 if k > 0

∧ T 〈a〉 does not exist

Lemma 9. The function k → Vγ(ϕ, T , k) is constant.

Proof. Let ϕ be a Lean formula and T a tree focused on
the node t, we only need to prove that Vγ(ϕ, T , 1) =
Vγ(ϕ, T , 0) by induction on the size of ϕ.

• Vγ(Pj , T , 1) = γ(t)i = Vγ(Pj , T , 0) (for the i such that
JωiK = JPjK) ;

•

Vγ(f(ϕ1, . . . , ϕk), T , 1) = f(Vγ(ϕ1, T , 1), . . . ,Vγ(ϕk, T , 1))

= f(Vγ(ϕ1, T , 0), . . . ,Vγ(ϕk, T , 0))

= Vγ(f(ϕ1, . . . , ϕk), T , 0)

• Vγ(〈a〉ϕ, T , 1) ={
Vγ(unf(ϕ), T 〈a〉 , k − 1) when T 〈a〉 exists
0 otherwise

Let i ∈ Fa be such that ωi = 〈a〉ϕ, we have unf(ϕ) =
fi(ϕ1, . . . , ϕn). The annotation γ is consistent, if T 〈a〉
does not exist then γ(T )i = 0 and Vγ(ϕ, T , 1) = 0 =
γ(T )i = Vγ(ϕ, T , 0).
If T 〈a〉 does exist:

Vγ(〈a〉ϕ, T , 1) = Vγ(unf(ϕ), T 〈a〉 , 0) =

fi (Vγ(ω1, T 〈a〉 , 0), . . . ,Vγ(ωn, T 〈a〉 , 0))) =

fi(γ(T 〈a〉)1, . . . , γ(T 〈a〉)1) =

fi(γ(T 〈a〉)) = γ(T )i = Vγ(〈a〉ϕ, T , 0)

The equality fi(γ(T 〈a〉)) = γ(T )i stands by definition
of γ(T ) ∈ γ(T 〈a〉)).

Equivalence between Vγ and JϕK
Lemma 10. For every focused tree T and every Lean-
formula ϕ we have Vγ(ϕ, T , 0)⇔ T ∈ JϕK.

Proof. We now show that for ϕ, k, T when all paths of P(ϕ)
longer than k are not valid paths of T then Vγ(ϕ, T , k) =
χ(T , JϕK).

• Vγ(Pj , T , k) = γ(t)i = (T ∈ JϕK) (for i such that
JωiK = JPjK);

• Vγ(f(ϕ1, . . . , ϕk), T , k) =
f(Vγ(ϕ1, T , k), . . . ,Vγ(ϕk, T , k))
= f(χ(ϕ1, T , k), . . . , χ(ϕk, T , k)) =
χ(T , Jf(ϕ1, . . . , ϕk)K);

• if T 〈a〉 is defined then 〈a〉 is a valid path of T and k ≥ 1.
We have
Vγ(〈a〉ϕ, T , k) = Vγ(unf(ϕ), T 〈a〉 , k − 1) and
Vγ(unf(ϕ), 〈a〉 T , k − 1) = χ(T 〈a〉 , Junf(ϕ)K) =
χ(T 〈a〉 , JϕK) = χ(T 〈a〉 〈ā〉 , J〈a〉ϕK) =
χ(T , J〈a〉ϕK). The constraint on paths holds, a path
of P(unf(ϕ)) on T 〈a〉 of size k is a valid path of P(ϕ) on
T 〈a〉 of size k and therefore a valid path of size k for ϕ
on T ;

• if T 〈a〉 is not defined then Vγ(〈a〉ϕ, T , k) = 0 and
¬χ(T , J〈a〉ϕK).

There is no valid path p ∈ P(ϕ) such that p is of size greater
than c(ϕ, T ). Thus Vγ(ϕ, T , 0) = Vγ(ϕ, T , c(ϕ, T )+1)⇔
T ∈ JϕK so Vγ(ϕ, T , 0)⇔ T ∈ JϕK.


