
Learn Programming with OCaml

Algorithms and Data Structures

Sylvain Conchon & Jean-Christophe Filliâtre

Translated by Urmila Nair

March 11, 2025

The OCaml Software Foundation funded the translation of this book into
English by Urmila Nair, and suggested that the result be made Open Access.
The present English version is thus available under the license CC BY SA
4.0.

Compiled from commit 89f4126 on March 11, 2025.

For our wives and daughters

 Contents

 Preface

 I Programming with OCaml

 1 The Working Environment

 1.1 The Compiler and the Interpreter

 1.2 A First OCaml Program

 1.3 Programming Environments

 1.4 Installing OCaml Libraries

 2 First Steps with OCaml

 2.1 Leap Years

 2.2 The Monte-Carlo Method

 2.3 Drawing a Cardioid

 2.4 The Mandelbrot Set

 2.5 Sieve of Eratosthenes

 2.6 Drawing a Curve

 2.7 Copying a File

 2.8 Reversing the Order of Lines in a Text

 2.9 Converting Integers from an Arbitrary Base

 2.10 Breakout without Bricks

 2.11 Logo Turtle

 2.12 Playing a Musical Score

 2.13 Quadtrees

 2.14 Solving the N-Queens Problem

 2.15 Exercises

 3 OCaml Concepts: A Closer Look

 3.1 Type-Checking Algorithm

 3.2 Runtime Model

 3.3 Analyzing the Execution Time of a Program

 3.4 Exercises

 II Data Structures

 4 Arrays

 4.1 Resizeable Arrays

 4.2 Bit Vectors

 4.3 Ropes

 4.4 Persistent Arrays

 4.5 Exercises

 5 Sets and Dictionaries

 5.1 Binary Search Trees

 5.2 AVL Trees

 5.3 Hash Tables

 5.4 Prefix Trees

 5.5 Patricia Trees

 5.6 Exercises

 6 Queues

 6.1 Imperative Queues

 6.2 Persistent Queues

 6.3 Imperative Priority Queues

 6.4 Persistent Priority Queues

 6.5 Exercises

 7 Graphs

 7.1 Adjacency Matrix

 7.2 Adjacency Lists

 7.3 Adjacency Dictionaries

 7.4 Performance Comparison

 7.5 Exercices

 8 Disjoint Sets

 8.1 The Basic Idea

 8.2 Implementation

 8.3 Exercises

 9 Zippers

 9.1 Zippers on Lists

 9.2 Zippers on Trees

 9.3 Cursors

 9.4 Exercises

 III Algorithmic Techniques and Applications

 10 Arithmetic

 10.1 Euclid’s Algorithm

 10.2 Exponentiation by Squaring

 10.3 Modular Arithmetic

 10.4 Matrix Calculus

 10.5 Exercises

 11 Dynamic Programming and Memoization

 11.1 Basic Idea

 11.1.1 Memoization

 11.1.2 Dynamic Programming

 11.2 Mechanical Memoization

 11.3 Differences between Memoization and Dynamic Programming

 11.4 Hash-consing

 11.5 Exercises

 12 Sorting Algorithms

 12.1 Insertion Sort

 12.1.1 Lists

 12.1.2 Arrays

 12.2 Quicksort

 12.2.1 Lists

 12.2.2 Arrays

 12.3 Merge Sort

 12.3.1 Lists

 12.3.2 Arrays

 12.4 Heapsort

 12.4.1 Lists

 12.4.2 Arrays

 12.5 Optimal Complexity

 12.6 Experimental Evaluation

 12.7 Exercises

 13 Graph Algorithms

 13.1 Breadth-First Search

 13.2 Depth-First Search

 13.3 Shortest Path

 13.4 Minimum spanning tree

 13.5 Exercises

 Index

 Preface

Learning to program is difficult. To program well requires knowledge of algorithms,
imagination, foresight, mastery of a programming language. Most of all, it requires
experience, since the difficulties are often hidden in the details. This book offers a
synthesis based on our own experience, both as programmers and as teachers of
programming.

 It is important to remember that style is essential to programming. The same
algorithm can be written in a given language in multiple ways; only some of these are
simultaneously elegant and efficient, which is what the programmer should strive for,
above all else. This is why we chose to use a concrete programming language, OCaml,
rather than pseudocode.

 The book is divided into three parts. Part I is an introduction to the OCaml
language. It is aimed at beginners, including both novice programmers and more
experienced programmers who do not know OCaml. Various small programs will
enable the reader to discover the basic concepts of programming and the OCaml
language. Parts II and III focus on fundamental algorithmic concepts, with a view to
enabling readers to write their own programs in an efficient and structured manner.

Algorithmic concepts are presented directly in OCaml syntax, and all the programs in
this book can be readily reused.

 Who Should Read This Book

The book is aimed at teachers, students, and programmers seeking to discover and use
the OCaml language effectively. For teachers and students, the book may be
used as a textbook in courses on algorithms or functional programming. It
contains numerous code samples and exercises. For OCaml programmers,
it may serve as a reference text in the study of specific data structures or
algorithms.

 The Book’s Companion Website

All the programs in this book have been compiled and tested with OCaml version
4.14.0. The programs are available at the following address:

http://programmer-avec-ocaml.lri.fr/

 Acknowledgements

We would like to thank François Pottier for discussions regarding the creation of this
book. We are also very grateful to our colleagues Arthur Charguéraud and Frédéric
Voisin for their careful and constructive revision of the text. We would also like to
thank everyone who read and commented on it: Thomas Braibant, Martin Clochard,
David Declerck, Léon Gondelman, Louis Mandel, Simão Melo de Sousa, Mattias
Roux. Finally, we thank the Eyrolles editorial team for their precious help in putting
the book together.

 Part I
Programming with OCaml

 Chapter 1
The Working Environment

The OCaml language is available for use with the main operating systems (Linux,
macOS, Windows). It can be obtained at the following address:

https://ocaml.org/

The site contains installation instructions for these systems. Once you have installed
OCaml, you will have access to the following tools: an interpreter, ocaml; two
compilers, ocamlc and ocamlopt; and a package manager, opam. We briefly present
these four tools below.

 1.1 The Compiler and the Interpreter

The OCaml system includes two compilers: ocamlc and ocamlopt. The first generates
portable code, independent of the hardware architecture; the second generates more
efficient native code (X86, ARM, etc.). You can use either of these two tools to
compile the programs given in this book. The system also includes an interactive
version, namely, the program ocaml. This is an interpreter or toplevel that executes a
read-eval-print loop (REPL).

 1.2 A First OCaml Program

We illustrate the use of these tools with a simple program that displays the message
Hello world! on the screen. It can be written as follows:

 let () = print_string "Hello world!\n"

This is itself a complete program. We will go into the details of such programs in the next
chapter. If the program is stored in a file hello.ml, it can be compiled from within a
terminal1
using ocamlc, as follows:

 > ocamlc hello.ml

We can then execute the resulting binary, a.out, with the expected result:

 > ./a.out
 Hello world!

The binary can be given a different name using the compiler’s -o option:

 > ocamlc -o hello hello.ml
 > ./hello
 Hello world!

 To use the interpreter, it suffices to type the command ocaml in a terminal. The
program then displays a prompt in the form of the character #, prompting the user to
enter an expression.

 > ocaml
 OCaml version 4.14.0
 #

To be evaluated, the expression must end with two semicolons ;; followed by a
carriage return. The toplevel verifies that the expression is syntactically correct and
well-typed. It then evaluates the expression and displays the result. Thus,
in order to display the message Hello world! on the screen, it suffices to
type:

 > ocaml
 OCaml version 4.14.0

 # let () = print_string "Hello world!\n";;
 Hello world!
 #

 In addition to the result, the toplevel also displays the type inferred by
OCaml for the expression that has been entered. For example, if you enter
the mathematical expression 1 + 4 × 2, the interpreter returns the following
response:

 # 1 + 4 * 2;;
 - : int = 9
 #

This shows that the expression is of type int (the type of integers), and that its result
is 9. From now on, we will present the expression entered by the user and the
interpreter’s response against a gray background. Thus, the evaluation of the
preceding expression will be presented, as follows:

 # 1 + 4 * 2 ;;
 - : int = 9

 To exit the toplevel, type the command #quit, as follows:

 # #quit;;
 >

A simpler way to do this is to press the keys ctrl and D simultaneously.

 1.3 Programming Environments

As with many other programming languages, you can work with OCaml using your
preferred text editor (Emacs, Visual Studio Code, etc.). The text editor may be
configured with OCaml-specific syntax coloring, error highlighting, and so
forth.

 In this text, we will use the tool dune to automate the compilation process. This
tool can be obtained via the opam package manager, and can be installed by typing
the following command in a terminal:

 > opam install dune

Another solution is to use the tool make. This requires writing a configuration file
(Makefile) specific to OCaml.

 Online Environments

There are also online solutions for using OCaml without installing it on your machine.
One example is the online interpreter TryOCaml, available at the following address:

https://try.ocamlpro.com/

Another example is the website

https://replit.com/

which offers online environments for a number of languages, among them OCaml.

 1.4 Installing OCaml Libraries

The community of OCaml users has developed a number of OCaml libraries. The
easiest way to install them is to use the package manager opam. In the next chapter,
we will use a graphics library, which may be installed as follows:

 > opam install graphics

We will explain later how to use this library and, more generally, any library installed
using opam.

 Chapter 2
First Steps with OCaml

The best way to learn a programming language is by programming. We therefore
present below fourteen (little) programs to get started with OCaml. The aim is to
introduce the basic constructions and ideas of the language.

 2.1 Leap Years

[image: PIC] Ideas introduced

 	the general form of a program

 	the let construct

 	calling a function

 	basic types (int, bool, string)

 	standard library (Printf, Sys, etc.), module system

 	access to program arguments (Sys.argv)

 	access to the elements of an array (notation t.(i))

Program 1 [leap_year.ml] — Leap Year

let year = read_int ()
let leap =
 (year mod 4 = 0 && year mod 100 <> 0) || year mod 400 = 0
let msg = if leap then "is" else "is not"
let () = Printf.printf "%d %s a leap year\n" year msg

Our first program, leap_year.ml, determines if a given year is a leap year. We can
compile it using ocamlc.

 > ocamlc -o leap_year leap_year.ml

When the program is launched, it waits for the user to enter a year. It then prints
whether the year is a leap year or not.

 > ./leap_year
 2013
 2013 is not a leap year

 Let us now consider the structure of this program. The first line reads an integer
from standard input:

 let year = read_int ()

This line alone contains several notions of the OCaml language. Firstly, it is a variable
declaration of the form:

 let year = ...

This initializes a new variable year with the result of the expression to the right of the
symbol =. The type of the variable year does not have to be declared; it is
automatically deduced by the compiler or the interpreter. The expression to the
right of the symbol = is a function call. It is a call to the predefined function
read_int.

 ... = read_int ()

Here, () indicates that the function read_int does not take any meaningful argument. It
only returns an integer, read from standard input.

 The second line introduces a boolean variable leap whose value is true if and only
if year is a leap year, that is, if it is divisible by 4 but not by 100, or if it is divisible
by 400.

 let leap =
 (year mod 4 = 0 && year mod 100 <> 0) || year mod 400 = 0

The infix operator mod returns the remainder of integer division. The operators && and ||
represent the boolean AND and OR, respectively. As with year, the type of the
variable leap is deduced automatically. The following line introduces a third variable,
msg, which contains a string:

 let msg = if leap then "is" else "is not"

The variable msg will contain the string "is" if leap is true, and the string
"is not" if it is false. (Strings are delimited by double quotes ".) Note that the
construction if-then-else is used here to construct an expression, namely, a
string.

 Finally, the last line prints a message that indicates whether or not the year
entered is a leap year.

 let () = Printf.printf "%d %s a leap year\n" year msg

This is achieved by calling the library function Printf.printf with three arguments: a
formatting string "%d %s a leap year\n" together with the two values, year and
msg, which respectively replace %d and %s in the printed message. As you can
see, the function call is denoted by simply juxtaposing the function and its
arguments. Unlike other languages, OCaml does not use parentheses around
arguments.

 ... = Printf.printf "%d %s a leap year\n" year msg

We refer the reader to the OCaml manual for further information on the standard library
and, in particular, on the function Printf.printf. The manual is available
online at the address: https://ocaml.org/manual. Finally, note that

the call to the function printf is contained in a declaration of a specific
form:

 let () = ...

This is somewhat enigmatic, and will be left so for the present. It will be explained when
we discuss pattern matching in sections 2.6 Drawing a Curve and 2.12 Playing a
Musical Score. For now, suffice it to say that in general an OCaml program is a series
of declarations that are evaluated from top to bottom, that is, in the order in which
they appear in the source file. Unlike languages like C or Java, there is no main
entry point. The specific form let () = ... is used in order to maintain the
same format in case of expressions that do not return a value. When this
form is used, OCaml verifies that the expression does indeed not return a
value.

 Additional Information

 The Command Line

Rather than reading the year from standard input, we can pass it on the command
line. In that case, the program is invoked as follows:

 > ./leap_year 2013
 2013 is not a leap year

To do this, we replace the line let year = read_int () with:

 let year = int_of_string Sys.argv.(1)

This line calls the predefined function int_of_string with Sys.argv.(1) as argument.
The value Sys.argv.(1) contains the year passed as parameter on the command line.
As is the case with other programming languages (Java or C, for example), we can
retrieve the values passed to the program in the form of an array of strings,
designated Sys.argv in OCaml. More precisely, the array is called argv, and
it is available within the Sys module, which consists of an interface to the
operating system. The notation Sys.argv involves the module system of
OCaml, that organizes libraries in terms of units, called modules, which
themselves contain different values. Without getting into the details of the module
system, suffice it to say for now that we refer to a value in a module by writing
the name of the module, followed by the name of the value, separated by
a dot. (We will discuss this in greater detail in section 2.11 Logo Turtle.)
Thus, Sys.argv must be read as “the array argv that belongs to the module
Sys.”

 We use the notation t.(i) to access the i-th element of an array t. We will return
to the notion of arrays in section 2.5 The Sieve of Eratosthenes. The first element of
Sys.argv is Sys.argv.(0) since arrays are indexed starting from 0. This is the
program’s name (here leap_year). The second element is Sys.argv.(1). This is the
first parameter passed to the program (2013 in our example). Since it is a string, it
must be converted into an integer by calling the function int_of_string, which
belongs to the module Stdlib. This is a special module for which it is not necessary
to write Stdlib.f.

 Type-Checking

Let us now consider some additional details regarding the datatypes introduced in our
first program. While the types of variables are inferred automatically, it is also
possible to display them using the -i option of the compiler:

 > ocamlc -i leap_year.ml
 val year : int
 val leap : bool
 val msg : string

We thus see that the variables year, leap, and msg are respectively of type int, bool,
and string. These are three predefined types in OCaml. Let us examine these and
other related types using the toplevel.

 Types int, int32, and int64

Let us begin with the type int, which corresponds to processor-native integers, also
called machine integers. An integer constant can be written in decimal, binary (prefix
0b), octal (prefix 0o) or hexadecimal (prefix 0x) notations. Thus, the decimal constant
91 can be written as 0b1011011 in binary, as 0o133 in octal, and as 0x5B in
hexadecimal.

 The usual operations on the type int are addition (+), subtraction (-),
multiplication (*), integer division (/), and remainder (mod).

 # 2 * (7 / 2) + 7 mod 2;;
 - : int = 7

For greater clarity, the digits may be separated using an underscore (_).

 # 0x2f_ff_ff_ff + 268_435_456;;
 - : int = 1073741823

The precision of the type int depends on the machine architecture. The minimum and
maximum values of the type int are given by the two constants min_int and
max_int.

 # min_int;;
 - : int = -1073741824

On a 32-bit machine, values of type int are encoded as 31-bit signed
integers1 ,
so that min_int and max_int have the values −230 and 230 − 1, respectively.
On a 64-bit machine, the values of type int are encoded as 63-bit signed
integers. The machine representation of integers uses the two’s complement
representation and may be manipulated with the help of shift operations
(lsl, lsr, and asr) and bitwise operations (land, lor, lxor, and lnot). For
example, you can test the fifth bit of the representation of the integer 42
using:

 # 42 land (1 lsl 5);;
 - : int = 32

To manipulate 32-bit or 64-bit signed integers, OCaml offers two specific types: int32
and int64. The integer constants of type int32 (or int64) are written with the suffix
l (or L).

 # 123l;;
 - : int32 = 123l
 # 10_000_000_000_000L;;
 - : int64 = 10000000000000L

The arithmetic operations on these two types may be found in the OCaml modules Int32
and Int64.

 The Type bool

The type bool represents boolean values, that is, true and false. The operations on
the type bool are conjunction (&&), disjunction (||), and negation (not).

 # not true && false || true;;
 - : bool = true

Negation has the highest priority, followed by conjunction, and then disjunction. The
preceding expression is therefore read as:

 # ((not true) && false) || true;;
 - : bool = true

The evaluation order of the operations && and || is fixed from left to right. Furthermore,
the second argument is evaluated only if necessary, that is, only if the first argument
of the operation && (respectively, ||) is true (respectively, false). These are the only
operations for which the evaluation order is specified. Furthermore, these are the only
operations whose evaluation is lazy.

 The comparison operations =, <>, <, >, <=, and >= return a boolean.

 # 1 < 2 && 3 = 4;;
 - : bool = false

Boolean expressions are mainly used in the conditional construction if e1 then e2 else e3.
Depending on whether the expression e1 is true or false, either the expression e2 or
the expression e3 is evaluated.

 # if 1 < 2 then 3 else 4;;
 - : int = 3

As is clear in this example, the construction if then else is an expression like any other.
In particular, for this expression to be well-typed, the two branches e2 and
e3 must have the same type, which is then the type of the expression as a
whole.

 Types char and string

Characters are represented by the type char. They are written between single quotes:
’a’. Characters that are not printable are entered using a notation of the form ’\c’,
where c can be a character (n, r, t, \), or an ASCII code (between 0 and
255), written with three decimal digits (\ddd) or two hexadecimal digits
(\xdd).

 # ’a’;;
 - : char = ’a’
 # ’\n’;;
 - : char = ’\n’
 # ’\\’;;
 - : char = ’\\’
 # ’\126’;;
 - : char = ’~’
 # ’\x7E’;;
 - : char = ’~’

You can convert a character to its ASCII code and vice versa with the help of the
functions Char.code and Char.chr of the Char module.

 Strings are represented by the type string. They are written within double
quotes: "abc". Within a string, characters that are not printable may be entered with
the same syntax used for the type char.

 # "a";;
 - : string = "a"
 # "hello world\n";;
 - : string = "hello world\n"
 # "";;
 - : string = ""
 # "abc\126def";;
 - : string = "abc~def"

As is clear in this example, the string "a" does not have the same type as the
character ’a’. In general, there is no conversion between these two types. You can
access the i-th character of a string s with the notation s.[i], the first character
having index 0.

 # "abc".[1];;
 - : char = ’b’

The length of a string is given by the function String.length of the module String.
Finally, two strings can be concatenated using the operator ^.

 # String.length ("abc" ^ "def");;
 - : int = 6

The reader is referred to the OCaml manual for further details regarding the modules
presented in this chapter.

 Input/Output

The simplest input/output functions are those that print values of basic
types, such as print_string, which was used above to print Hello world.
Other such functions include print_char, print_int, and print_float;
print_newline, to print a carriage return; and print_endline, to print a
string followed by a carriage return. These six printing functions write to
standard output. To write to standard error, there are six other functions:
prerr_char, prerr_string, etc. Likewise, there are functions that read from
standard input, namely read_int, read_float, and read_line. There is also a
variant of the function printf to write to standard error, Printf.eprintf.
You will find more details regarding input/output in section 2.7 Copying a
File.

 2.2 The Monte-Carlo Method

[image: PIC] Ideas introduced

 	side effects, expression sequences, references (ref keyword)

 	local variables (let-in construct)

 	for loops

 	floating-point numbers (type float)

 	random number generation using the module Random

Our second program (see page 46), approx_pi.ml, calculates the value of π
experimentally using the Monte-Carlo method. This method consists in randomly
generating points in a square of side 1, whose area is therefore 1, and then counting
the number of those points that lie within a quarter circle of radius 1 inscribed in
this square. The area of the quarter circle is π∕4. Figure 2.1 illustrates the
idea.

 [image: PIC]

Figure 2.1: Computation of π using the Monte-Carlo method.

 We compile the program approx_pi.ml, for instance using ocamlopt (for greater
efficiency), as follows:

 > ocamlopt -o approx_pi approx_pi.ml

We then execute the program and give it the number of points to be generated. If this
number is sufficiently large, the proportion of points contained within the quarter
circle approaches the ratio of the area of the quarter circle to that of the square, that
is, π∕4. We obtain the following results:

 > ./approx_pi
 500
 3.136000
 > ./approx_pi
 5000
 3.113600
 > ./approx_pi
 50000
 3.149920
 > ./approx_pi
 500000
 3.142184

In practice, however, this method yields a value of π that is accurate only to a few
decimal places. For example, with 10 million points, the value is accurate only to the
third decimal place.

Program 2 [approx_pi.ml] — Approximation of π

let n = read_int ()

let () =
 let p = ref 0 in
 for k = 1 to n do
 let x = Random.float 1.0 in
 let y = Random.float 1.0 in
 if x *. x +. y *. y <= 1.0 then
 p := !p + 1
 done;
 let pi = 4.0 *. float !p /. float n in
 Printf.printf "%f\n" pi

 As in our first program, the first line of approx_pi.ml obtains the number n of
points to be generated by reading an integer from standard input:

 let n = read_int ()

The rest of the program uses a loop to generate n points at random. In each
iteration of the loop, we increase by 1 the contents of a variable initialized with
0 if the generated point lies within the quarter circle of radius 1. At the
end, we display the approximate value of π, which equals four times the
ratio of the number of points within the quarter circle to the total number of
points.

 Computing in this manner, by modifying the contents of a variable, is called
computation by side effects. More generally, the term side effect is used in relation to
expressions that do not return a value when evaluated. As we have mentioned in the
previous section, a declaration of the form let () = ... is used to evaluate such
expressions.

 The rest of the program consists in the expression that follows the = sign.
It begins with the initialization of a variable p using a declaration of the
form:

 let p = ... in
 ...

This declaration introduces a local variable, whose use or scope is restricted to the
expression that follows the keyword in. This kind of declaration is useful when one
wishes to restrict the visibility of a variable, whether to prevent its usage in other
parts of the program or because one wishes to hide temporarily another variable with
the same name.

 The variable p is initialized with a reference, that is, a memory cell, the contents
of which can be modified, and which initially contains the value 0. This
reference will be used to count the number of points that fall within the quarter
circle.

 let p = ref 0 in
 ...

The variable p is created by calling the predefined function ref (defined in the Stdlib
module) with the integer 0 as argument. The application of this function has the
effect of allocating a new memory cell and initializing its contents to 0. The type of p
inferred by OCaml is int ref, read as “a reference containing a value of type
int.”

 The next line introduces a for loop that evaluates the expression situated between
the keywords do and done n times, while varying the contents of a variable k from 1
to n:

 for k = 1 to n do
 ...
 done

The variable k is the index of the loop, and the expression between do and done is the
body of the loop. The index k is initialized with the value 1. Then, the body is
evaluated. This is the first iteration of the loop. Then, k is increased, and the
body is evaluated again. This is the second iteration of the loop. And so
on and so forth. Following the evaluation for which k equals n, the loop
terminates.

 The body of the loop begins by generating the coordinates of a point (x,y)
randomly within the square of side 1.

 let x = Random.float 1.0 in
 let y = Random.float 1.0 in

To this end, two local variables, x and y, are initialized by two calls to the function
Random.float with the floating-point number 1.0 as argument. Each of these calls
returns a floating-point number between 0 and 1 (including 0 and excluding 1). As
we will see later, OCaml makes a strong distinction between floating-point
numbers, which are of type float, and integers, which are of type int. Crucially,
a dot must be inserted after the number 1 to represent the floating-point
number 1. We thus write 1.0 or 1. to distinguish it from the integer 1 of type

int.

 The conditional that follows increases the contents of the reference p if the point
(x,y) is within the quarter circle, that is, if x2 + y2 ≤ 1.

 if x *. x +. y *. y <= 1.0 then
 p := !p + 1

As we see in the expression x *. x +. y *. y, the arithmetic operators on floating-point
numbers are also distinguished syntactically from operators on integers: A dot . must
be added after the sign of each operator (+, -, etc.). Thus, +. is the addition operator
on floats, *. the multiplication operator, etc. However, the same operator <= is used
to compare floats and integers. (See chapter 3 for further details on comparison
operators.)

 The expression p := !p + 1 is used to increase the reference p by 1. Here, the
assignment operator := serves to modify the contents of a reference, and the prefix
unary dereference operator ! is used to retrieve the contents of a reference. Thus, if p
is a reference of type int ref, the value !p is of type int. The loop ends after the
iteration for which k equals n. The evaluation then continues with the expression that
follows the ; operator.

 for k = 1 to n do
 ...
 done;

Such a series of evaluations is called an expression sequence. For an expression sequence
to be accepted by OCaml, the expression before the semicolon must not return a
value, that is, it must only perform side effects.

 The declaration that follows the for loop defines a local variable pi containing the
approximation of π.

 let pi = 4.0 *. float !p /. float n in

In order to perform a division of floating-point numbers, the integer values !p and n are
converted into floats using the function float (defined in the Stdlib module).

Finally, we display the approximation of π thus calculated using the function
Printf.printf:

 Printf.printf "%f\n" pi

Just as we used %d in a formatting string to display an integer, here we use %f to display
a float.

 Additional Information

Here, we present further explanations regarding the ideas introduced in this second
program.

 The Type float

Real numbers are represented in the computer using a specific kind of encoding called
floating-point numbers, or more simply floats. In OCaml, floating-point numbers are
encoded using the double-precision IEEE 754 standard (64 bits). There are no
single-precision (32 bits) floating-point numbers in OCaml.

 As we noted earlier, the type of floating-point numbers is float. A constant of
type float is written either in decimal notation (for example, 3.14) or in scientific
notation (for example, 6.02214e23). A dot must always be used in the decimal
notation, to indicate that the constant is not of type int. In case of scientific
notation, however, the dot is not compulsory.

 # 3 ;;
 - : int = 3
 # 3. ;;
 - : float = 3.
 # 1e6 ;;
 - : float = 1000000.

Operations on the type float are distinct from those on the type int. They are followed
by a dot, as in case of floating-point constants: +., -., *., /.. Unlike in other
languages, arithmetic operations thus have different names depending on whether
integers or floats are involved, and there are no implicit conversions between the types
int and float.

 # 2 +. 3.14;;
 Error: This expression has type int but an expression was
 expected of type float

The conversion functions float and truncate must be used to convert integers to
floats and vice versa.

 # 3.14 /. float 2;;
 - : float = 1.57
 # truncate 3.141592;;
 - : int = 3

 Numerous operations on the type float are available in the Stdlib module, such
as exponentiation **, square root sqrt, trigonometic functions, logarithmic functions,
etc. Thus, the value of π, which is not predefined in OCaml, could be calculated using
the following expression:

 # 4. *. atan 1.;;
 - : float = 3.14159265358979312

 Unlike the type int, the type float includes three additional values,
neg_infinity, infinity, and nan, that represent calculations that have no
meaningful result.

 # -1. /. 0.;;
 - : float = neg_infinity
 # 1. /. 0.;;
 - : float = infinity
 # 0. /. 0.;;
 - : float = nan

Unlike other languages, OCaml offers only one type of floating-point numbers, namely,
64-bit double-precision floats conforming to the IEEE 754 standard. Floats lie
between a minimum value min_float and a maximum value max_float.

 # min_float;;
 - : float = 2.22507385850720138e-308
 # max_float;;
 - : float = 1.79769313486231571e+308

 The let and let-in Constructs

The let and let-in constructs are used, respectively, to define global and local
variables. Two important points must be noted regarding variables:

 	Variables are necessarily initialized.

 	The type of a variable is automatically inferred.

The first point results simply from the fact that variables can only be defined using the
constructions let and let-in, whose syntax requires an expression for the initial
value. The second point is specific to the OCaml language.

 You can use the toplevel to find out the type inferred for a variable. For instance,
if we type the following declaration:

 # let x = 1+2;;

The interpreter displays the response:

 val x : int = 3

This indicates that we have defined a global variable x, initialized with the integer 3. The
type of x is inferred from the expression 1+2, namely, int.

 It is equally important to master the scoping rules of variables declared by a let
or let-in construct. The scope of a global variable x begins immediately after the
declaration let x = ... used to define it. This scope extends until the end of the
program. The scope of a local variable introduced with the let-in construct is
limited to the expression that follows the keyword in. Thus, each of the three
declarations below triggers a scoping error:

 # let x = x + 1;;
 Error: Unbound value x
 # (let v = 1 + 2 in v * v) + v;;
 Error: Unbound value v
 # let z = 1 + z in z * 2;;
 Error: Unbound value z

The three declarations above illustrate an important rule regarding variable usage: To be
used, a variable must have been declared beforehand. The following program is
therefore correct:

 let x = 10
 let y = x+2

By contrast, the program below is wrong:

 let y = x+2
 let x = 10

 It is important to note that in the expression let x = e1 in e2; e3, the scope of the
variable x extends to the entire expression e2; e3. The precedence of the operator ; is
higher than that of the construction let. In other words, this expression must be read
as: let x = e1 in (e2; e3). Program 2 uses this scoping rule in the declaration of the local
variable p.

 let () =
 let p = ... in
 for k = 1 to n do
 ...
 p := !p + 1
 done;
 let pi = 4. *. float !p /. float n in
 ...

Thus, the variable p is visible both in the for loop and in the body of the declaration of
the variable pi.

 You can use the same name for several variables, including those of different types.
The use of a variable x always refers to the nearest declaration. Consider the following
program as an example:

 let x = 10
 let y = x + 2
 let x = 20
 let () = Printf.printf "x=%d y=%d\n" x y

The declaration let x = 20 defines a new variable x, which hides the scope of the
previous one. The message displayed when you execute the program is therefore
x=20 y=12.

 The for Loop

As we have seen in our example, for loops are used to evaluate a given expression a
certain number of times. They have the following form:

 for i = e1 to e2 do
 e
 done

The index of the loop, the variable i, is introduced by the for construct. Its value cannot
be modified by the user. Its scope is limited to the body of the loop (the expression
e), and therefore it cannot be used in the expressions e1 and e2. These two
expressions are evaluated only once, before the execution of the loop. This can be
observed with the following program:

 let () =
 for i = (Printf.printf "*"; 0) to (Printf.printf "."; 5) do
 Printf.printf "%d" i
 done

When you execute this program, it displays the string *.012345. The evaluation of the
for loop begins with the initialization of the index i with the value of the expression
(Printf.printf "*"; 0). The evaluation of this sequence first causes the symbol *
to be printed. Then, the integer 0 is returned. The fact that the second printed
character is a dot . indicates that the expression (Printf.printf "."; 5),
which corresponds to the final value of the index, is evaluated next. As the
rest of the message contains only the numbers displayed by the expression
Printf.printf "%d" i of the body of the loop, it may be deduced that the
expressions e1 and e2 are not evaluated again. It is also important to note that if the
value of e1 is strictly greater than that of e2, the body of the loop is never
executed.

 There is also a variant of the for construct that goes backwards. For
example, the following program displays the numbers 9 8 7 6 5 4 3 2 1 0, in this
order.

 let () =
 for i = 9 downto 0 do
 Printf.printf "%d " i
 done

Note that the index can only be increased or decreased by 1 in each iteration. For
other increments, it is possible to use a while loop, which will be discussed
later.

 For the sake of completeness, let us note that the body of the for loop in
program 2 does not make use of the loop index k. The OCaml compiler
can detect this and emit a warning, if we add the command-line option -w
+a:

 > ocamlopt -w +a -o approx_pi approx_pi.ml
 Warning 35 [unused-for-index]: unused for-loop index k.

A solution is to avoid naming the index of the loop, by replacing it with an
underscore _.

 for _ = 1 to n do

This does not change the behavior of the for loop in any way.

 2.3 Drawing a Cardioid

[image: PIC] Ideas introduced

 	open directive

 	library (extension .cma)

 	library Graphics

 	function ignore

Our third program (see page 62), cardioid.ml, draws a cardioid, that is, a curve
that represents the trajectory of a fixed point on a circle that turns around a second
circle of the same diameter, as shown in figure 2.2.

 [image: PIC] [image: PIC]

Figure 2.2: Drawing a cardioid.

 Mathematically, a cardioid is an algebraic plane curve that may be defined by the
following parametric equations:

[image: { x(𝜃) = a(1 − sin(𝜃)) cos(𝜃) y(𝜃) = a(1 − sin(𝜃)) sin(𝜃)]

 where a is the radius of each circle.

Program 3 [cardioid.ml] — Drawing a cardioid

open Graphics

let () = open_graph " 300x200"

let () =
 moveto 200 150;
 for i = 0 to 200 do
 let th = atan 1. *. float i /. 25. in
 let r = 50. *. (1. -. sin th) in
 lineto (150 + truncate (r *. cos th))
 (150 + truncate (r *. sin th))
 done;
 ignore (read_key ())

 To trace the cardioid, we use the OCaml library Graphics, which allows you to
open a two-dimensional graphical window and draw in it using elementary graphical
functions. This library contains a single module, also called Graphics. Since we will
be using a number of functions of this module, the program begins with a directive to
open the module:

 open Graphics

We will thus be able to use the values and functions of this library without having to
prefix them each time with the name of the module, Graphics.

 The following line opens a graphical window with the function open_graph. This
function takes as argument a string indicating the window’s dimensions.

 let () = open_graph " 300x200"

This statement opens a window of size 300 × 200, that is, 300 pixels wide and 200 pixels
high. (Note that the space at the start of the string is mandatory.) We then draw
within this window using integer coordinates, the origin being located at the bottom
left of the window, the x-coordinates taking values from 0 to 299 and the
y-coordinates from 0 to 199 (see figure 2.3).

[image: 0x0yxy∙2199-a-a99xxiiss]

Figure 2.3: Coordinate system of the library Graphics.

 The rest of the program plots the cardioid. Since this part of the code does not
return a value, we place it within a declaration of the form:

 let () = ...

The functions we will use to draw the cardioid rely on a notion of current point. This
point can be positioned using moveto. A call to lineto x y traces a line segment
from the current point to the point with coordinates (x,y), which then becomes the
new current point.

 We begin by placing the current point at (200,150), by calling the function
moveto, with a view to drawing a cardioid beginning at this point:

 moveto 200 150;

We use a for loop to vary the angle 𝜃 between 0 and 2π. For this, we make use of an
integer index i varying from 0 to 200, and we use the fact that arctan(1) = π∕4 to
calculate 𝜃 as arctan(1) × i∕25.

 for i = 0 to 200 do
 let th = atan 1. *. float i /. 25. in
 ...
 done

In OCaml, the arctangent of an angle, expressed in radians, is calculated using the
function atan of the standard library Stdlib.

 The following line defines a local variable r with the value of the intermediate
subexpression a(1 − sin(𝜃)), where the radius a of the cardioid is fixed at 50
pixels:

 let r = 50. *. (1. -. sin th) in

This variable is used to factor out one part of the calculation of the coordinates of the
point (x(𝜃),y(𝜃)).

 Finally, using the function lineto, we trace a segment between the current point
and the point with coordinates (x(𝜃),y(𝜃)). Since graphical coordinates are integers,
we use the function truncate to extract the integer part of the expressions used to
calculate the coordinates.

 lineto (150 + truncate (r *. cos th))
 (150 + truncate (r *. sin th))

After the for loop, the last line of the code pauses the program, waiting for a key to be
pressed. This is in order to keep the graphical window from closing immediately after
the drawing finishes.

 ignore (read_key())

Since we are only waiting for a key to be pressed, we ignore the actual character returned
by the function read_key using the predefined function ignore.

 Compilation

In order to compile the program cardioid.ml, we must explicitly tell the compiler
that we wish to use the library Graphics. This is not needed in case of the modules
we saw earlier, such as Sys, Arg or Printf, which belong to the OCaml standard
library. The Graphics library is contained in the file graphics.cmxa, which must be
added to the command line. Furthermore, we must tell the compiler the location of
this file, which was installed by opam. This can be done using the following
command:

 > ocamlopt -I ‘ocamlfind query graphics‘ graphics.cmxa cardioid.ml -o cardioid

The tool ocamlfind allows you to find the location of the library graphics, which is
then passed to the OCaml compiler using the -I option. (Note that the command
ocamlfind query graphics has to be placed between backquotes.) If you wish to use
the ocamlc compiler, you should replace the suffix .cmxa by .cma. As we will see in
section 2.10 Breakout without Bricks, the order of the files on the command line of the
compiler is important: Here, graphics.cmxa must appear before cardioid.ml since
the latter uses the library Graphics.

 Another way of compiling our program consists in using dune. To do this, we write
a configuration file, which must be named dune, in the directory containing
cardioid.ml. This file should contain the following:

 (executable
 (name cardioid)
 (libraries graphics))

This specifies that we wish to construct an executable that is named cardioid, and
that uses the library graphics. Assuming that our two files cardioid.ml and dune
are in the directory my-first-project/, we must first perform an initialization step
with the following command:

 > dune init project my-first-project/

We can then shift to the directory my-first-project/ and build the executable
there:

 > cd my-first-project/
 > dune build

Finally, we can execute the program with the following command:

 > dune exec ./cardioid.exe

The executable is named cardioid.exe, where the extension .exe is added by dune.
It is stored in a subdirectory _build/default/, and the command dune exec allows
us to launch it directly.

 To use the library Graphics from within the toplevel ocaml, it suffices to type the
following command in the terminal:

 > ocaml -I ‘ocamlfind query graphics‘ graphics.cma
 OCaml version 4.14.0
 #

Note that the library Graphics can also be used directly from within TryOCaml.

 The Library Graphics

In addition to the functions moveto and lineto used in our program cardioid.ml,
the library Graphics offers various other functions: plot, to plot a point; set_color,
to modify the display color; draw_circle, to draw a circle; set_line_width, to
change the line thickness; fill_rect, to shade a rectangle; draw_string, to display a
string, etc. The reader is referred to the OCaml manual’s web page for a complete
description of this library. It is important to note that, although the features of
Graphics are limited, this library has the advantage of being available on many
architectures. If you wish to use a more sophisticated library, you can use (depending
on your operating system):

 	OCaml-Canvas: a portable Canvas framework for OCaml, with an interface
 similar to HTML5 Canvas.

 	LablTk: a Tcl/Tk library that allows you to create graphical user interfaces
 (GUI) with drop-down menus, buttons, etc.

 	LablGtk: similar to LablTk but based on the graphical library Gtk.

 	OCamlsdl: an SDL library mainly used to create video games.

This list is not exhaustive.

 2.4 The Mandelbrot Set

[image: PIC] Ideas introduced

 	function declarations

 	recursive functions

 	type unit and the value ()

Program 4 (see page 80) draws the Mandelbrot set (see figure 2.4). It is defined as
the set of points (a,b) of the plane for which neither of the following two recursive

sequences tends to infinity in absolute value.

 	 x0
	 =
	 0

	 y0
	 =
	 0

	 xn+1
	 =
	 xn2 − yn2 + a

	 yn+1
	 =
	 2xnyn + b

	

 [image: PIC]

Figure 2.4: Mandelbrot set.

 Although there is no exact method to determine whether this condition holds, it
can be proven that one of these sequences must tend to infinity as soon as
xn2 + yn2 > 4. This result allows us, firstly, to deduce that the points of the
Mandelbrot set belong to a disc of radius 2 and center (0,0). Secondly, it enables us to
draw an approximation of the Mandelbrot set, defined by the set of points (a,b)
such that xn2 + yn2 ≤ 4 for the first k terms of these sequences. Note that
the precision of this approximation depends solely on the number of terms
k.

 The program begins with an open Graphics directive to simplify the use of the
functions of the graphical library. It continues with the definition of two global
variables width and height, containing respectively the width and height of the
graphical window we wish to open (here, 800 × 800):

 let width = 800
 let height = 800

Next, we fix k, the maximum number of terms to be calculated (100 terms sufficing for a
good approximation):

 let k = 100

 The following declaration defines a function norm2 that takes two arguments x
and y and returns the value of the expression x2 + y2.

 let norm2 x y = x *. x +. y *. y

 We discuss this syntactic construction in greater detail at the end of this section.
For now, note that, as in the case of a function call, the names of the arguments are
only separated by spaces. Note also that the body of the function, the expression to
the right of the symbol =, may be arbitrary.

Program 4 [mandelbrot.ml] — Drawing the Mandelbrot Fractal
_

open Graphics

let width = 800
let height = 800
let k = 100

let norm2 x y = x *. x +. y *. y

let mandelbrot a b =
 let rec mandel_rec x y i =
 if i = k || norm2 x y > 4. then i = k
 else
 let x’ = x *. x -. y *. y +. a in
 let y’ = 2. *. x *. y +. b in
 mandel_rec x’ y’ (i + 1)
 in
 mandel_rec 0. 0. 0

let draw () =
 for w = 0 to width - 1 do
 for h = 0 to height - 1 do
 let a = 4. *. float w /. float width -. 2. in
 let b = 4. *. float h /. float height -. 2. in
 if mandelbrot a b then plot w h
 done
 done

let () =
 let dim = Printf.sprintf " %dx%d" width height in
 open_graph dim;
 draw ();
 ignore (read_key ())

 The following function, mandelbrot, determines whether a point with coordinates
(a,b) belongs to the Mandelbrot set by calculating the first k terms of the
recursive sequences (xn) and (yn). In a manner similar to the declaration of
norm2, we declare the function mandelbrot with two arguments a and b as
follows:

 let mandelbrot a b = ...

To calculate the terms of the two recursive sequences, we define a local recursive function
mandel_rec with three arguments x, y, and i.

 let rec mandel_rec x y i =
 ...
 in

The first two arguments x and y of mandel_rec contain the i-th values xi and
yi of the recursive sequences, and the third argument contains the index
i.

 Before we discuss the body of this function let us note that, syntactically
speaking, a declaration of the form let rec is used to define a recursive function. This
is a function in which you can use its own name within its body. Furthermore, as with
local variable declarations, the scope of a local function, whether it is introduced by
let-rec-in or simply let-in, is limited to the expression that follows the keyword
in.

 The body of the function mandel_rec begins with a test to determine whether we
have reached the calculation of the k-th term of the sequence, or if the stopping
condition xi2 + yi2 > 4 holds:

 if i = k || norm2 x y > 4. then i = k
 else

In both cases, the mandel_rec function ends and returns a boolean indicating whether or
not the point is in the set. If neither of these conditions holds, we calculate xi+1 and

yi+1 by applying the equations of the recursive sequences, and store them in the local
variables x’ and y’:

 let x’ = x *. x -. y *. y +. a in
 let y’ = 2. *. x *. y +. b in

We then call the function mandel_rec again to calculate the following terms:

 mandel_rec x’ y’ (i + 1)
 in

Finally, the mandelbrot function starts the calculation by calling the local function
mandel_rec with the initial values x0 and y0 as arguments:

 in
 mandel_rec 0. 0. 0

 To draw the Mandelbrot set, it suffices to traverse each row and each column of
the graphical window and to display the pixels (a,b) for which mandelbrot a b returns
the value true.

 The drawing code is contained in a function draw that is declared as
follows:

 let draw () = ...

A declaration of this form is used to define functions without arguments. To be precise,
this declaration defines a function with a single argument, denoted by ().
This is the unique value of a particular type, unit. As we will see in section
2.6 Drawing a Curve, this is an example of a function defined by pattern
matching.

 The function draw traverses the rows and columns of the graphical window using
two nested for loops:

 for w = 0 to width - 1 do
 for h = 0 to height - 1 do
 ...
 done
 done

To draw the Mandelbrot set in a window of size width×height, we scale the window
coordinates to points (a,b) in [−2,2] × [−2,2], where a and b are variables defined as
follows:

 let a = 4. *. float w /. float width -. 2. in
 let b = 4. *. float h /. float height -. 2. in

All that remains is to determine whether the point (a,b) belongs to the set, by
calling the function mandelbrot and plotting the point using the function
plot:

 if mandelbrot a b then plot w h
 done
 done

 To complete the program, we open a graphical window of size width × height
by building a string of the form " wxh" where w and h are replaced by the values
contained in the variables width and height.

 let () =
 let dim = Printf.sprintf " %dx%d" width height in
 open_graph dim;

The string is constructed by calling the function Printf.sprintf with a formatting
string " %dx%d", and the two arguments width and height. The function
Printf.sprintf is similar to the function printf, except that it returns the string as
result instead of displaying it.

 Finally, we draw the Mandelbrot set by calling the function draw. We then wait
until a key is pressed to end the program:

 draw ();
 ignore (read_key ())

Note that the same syntax is used to call the function draw, as is used in its
declaration.

 Function Declarations

Let us return to the notion of function in OCaml. A function is declared with the
keyword let. Thus, a global function f that associates x with x + 1 is written simply
as:

 # let f x = x + 1;;
 val f : int -> int = <fun>

As with variables, its type is inferred. More precisely, the type of its argument (here
int) and that of its result (also int) are both inferred. The type of f has
the form int -> int, where the type to the left of the arrow -> is that of
the argument and the type to the right is that of the result. However, the
value of f is not displayed. Only <fun> is displayed, indicating that it is a
function.

 Functions may be local and follow the same scoping rules as variables.

 # let sqr x = x * x in sqr 3 + sqr 4;;
 - : int = 25
 # (let sqr x = x * x in sqr 3) + sqr 4;;
 Error: Unbound value sqr

 By default, functions are not recursive.

 # let fact x = if x = 0 then 1 else x * fact (x-1);;
 Error: Unbound value fact

The construction let rec must be explicitly used to introduce a recursive function.

 # let rec fact x = if x = 0 then 1 else x * fact (x-1);;
 val fact : int -> int = <fun>
 # fact 10;;
 - : int = 3628800

 Notice that in the previous example, we wrote fact (x-1) and not fact x-1. The
second expression is understood as (fact x) - 1 because function application is the
operation with the highest precedence.

 Mutually recursive functions must be defined simultaneously using the keyword
and. For example, we can define two mutually recursive functions f and g as
follows:

 let rec f x = ... g ...
 and g x = ... f ...

 A function may take several arguments. These are simply juxtaposed both in the
definition and when it is called. For example, the following declaration defines a
function plus with two arguments:

 # let plus x y = x + y ;;
 val plus : int -> int -> int = <fun>
 # plus 3 4;;
 - : int = 7

The type inferred by OCaml for this function is int -> int -> int. Adding parentheses
yields the type int -> (int -> int) (the operator -> is right associative), which is read
as: “a function that takes a value of type int and returns a function of type int to
int ”. The function plus is therefore seen as a function with one argument that
returns a function that awaits the second argument. Thus, strictly speaking, OCaml
does not have functions that take multiple arguments. There are only higher-order
functions with one argument, that is, functions that take a single argument and
return another function. We will discuss such functions later on (section 2.6 Drawing
a curve).

 2.5 Sieve of Eratosthenes

[image: PIC] Ideas introduced

 	arrays

 	while loop

 	begin-end block

Program 5 [sieve.ml] — Sieve of Eratosthenes

let max = read_int ()

let prime = Array.make (max + 1) true

let () =
 prime.(0) <- false;
 prime.(1) <- false;
 let limit = truncate (sqrt (float max)) in
 for n = 2 to limit do
 if prime.(n) then begin
 let m = ref (n * n) in
 while !m <= max do
 prime.(!m) <- false;
 m := !m + n
 done
 end
 done

let () =
 for n = 2 to max do
 if prime.(n) then Printf.printf "%d\n" n
 done

Our next program (see page 88) determines the primality of integers n ≤ N
for a given integer N. To do this, it uses an algorithm called the sieve of
Eratosthenes. Let us illustrate how it works for N = 23. We write down all the
integers from 0 to N and progressively eliminate all the integers that are
not prime. Hence the name sieve. We begin by noting that 0 and 1 are not
prime.

 [image: PIC]

Next, we determine the first integer that has not yet been eliminated, namely, 2. We
eliminate all its multiples, that is, all even integers greater than 2. These are shaded
below.

 [image: PIC]

Then, we repeat the process. The next integer that has not yet been eliminated is 3. We
eliminate all the multiples of 3, shown shaded below.

 [image: PIC]

Note that certain integers have already been eliminated (the multiples of 6 in this
case).

 The next integer to be considered is 5. Since 5 × 5 > 23, the sieve is finished: All
multiples of 5, that is, k × 5, have either been eliminated (if k < 5) or are greater than
23 (if k ≥ 5). The integers that remain are the prime numbers less than or equal to N:
2, 3, 5, 7, 11, 13, 17, 19 and 23.

 The program sieve.ml implements the sieve of Eratosthenes for a value of N
entered on standard input. We store this value in a variable max.

 let max = read_int ()

We then create an array of booleans prime of size max+1. To this end, we use the library
function Array.make. It takes as arguments the size of the array and a default value
for its elements, here true.

 let prime = Array.make (max + 1) true

Recall that arrays are indexed starting from 0. The indices of the array prime are
therefore the integers from 0 to max, both included. We begin by indicating that the
integers 0 and 1 are not primes, by assigning the value false to the two
corresponding elements of the array prime.

 let () =
 prime.(0) <- false;
 prime.(1) <- false;

For this, we have used the construction t.(i) <- v, which assigns the value v to the cell
with index i in the array t. This is a special syntax for the library function
Array.set. We could also have written Array.set prime 0 false.

 We continue the program by specifying the largest number to be considered. This
is ⌊[image: √ ---- max]⌋, which can be calculated thus:

 let limit = truncate (sqrt (float max)) in

The main loop of the sieve then iterates over the integers from 2 to limit, testing
whether each is prime. The loop therefore has the following structure:

 for n = 2 to limit do
 if prime.(n) then begin
 ...
 end

The construction begin-end introduces a block, that is, a piece of program that is
delimited, indicated here by the ellipses. In OCaml, there is no distinction between
expressions and instructions; there are only expressions. The delimited piece of code is
thus nothing but an expression; it could have been delimited by parentheses.
Nevertheless, the use of begin-end highlights the imperative character of this
expression.

 Let us now discuss this block. It consists of a second loop that eliminates all
multiples of n in the array prime. The same reasoning that allows us to stop the sieve
as soon as n×n > N also allows us to begin the elimination from n×n (rather than
2n), the smaller multiples having already been eliminated. To iterate over all the
integer multiples of n from n2 onwards, we initialize a reference m to the starting
value:

 let m = ref (n * n) in

Then, we use a loop that assigns false to prime.(!m) and increases m by n, as long as
the expression !m <= max holds. Such a loop is written using a while construct, as
follows:

 while !m <= max do
 prime.(!m) <- false;
 m := !m + n
 done

Note that, as in case of the for loop, the body of the while loop is delimited by the
keywords do and done.

 This completes the sieve. The values of the array prime now indicate which
numbers less than or equal to max are prime. We can display these prime numbers
using another loop.

 let () =
 for n = 2 to max do
 if prime.(n) then Printf.printf "%d\n" n
 done

We could instead have displayed the prime numbers upon finding them, that is, while
executing the sieve. However, the sieve’s loop stops when n = ⌊[image: √ ---- max]⌋, so that another
loop would have been necessary anyway to display the prime numbers between
⌊[image: √ ---- max]⌋ + 1 and max.

 Additional Information

We return here to the constructions while and begin-end introduced in this section,
and then discuss arrays.

 The while Loop

In general, the syntax of the while loop is:

 while e1 do
 e2
 done

The expression e1 must be of type bool and the expression e2 of type unit.

 The begin-end Block

The construction begin-end is equivalent to a pair of parentheses. Thus, you can
write:

 # 2 * begin 1 + 2 end;;
 - : int = 6

Nevertheless, the convention is to limit its use to expressions that perform side effects, by
analogy with the notion of block in languages such as C or Java.

 Arrays

An array can be constructed explicitly by specifying the values that make it
up.

 # let t = [| 12; 32; 3; 8 |];;
 val t : int array = [|12; 32; 3; 8|]

To allocate an array of an arbitrary and, in particular, statically unknown size, we use the
library function Array.make. It takes as arguments the size of the array and a value
used to initialize all its cells. (As with any OCaml value, an array must be
initialized.)

 # let u = Array.make 1024 ’a’;;
 val u : char array = [|’a’; ’a’; ’a’; ... |]

The size of an array can be obtained using the library function Array.length.

 # Array.length u;;
 - : int = 1024

Note finally that accessing an array with an index that lies outside the range of valid
indices produces a runtime error, signaled by an exception:

 # u.(4012);;
 Exception: Invalid_argument "index out of bounds".

Exceptions will be discussed in detail later on.

 Matrices

There is no predefined type for matrices nor, more generally, for multidimensional
arrays. We simply use arrays of arrays. Consider, for instance, the matrix:

[image: () 1 0 M = (2 3)]

 It is represented by the expression:

 # let m = [| [| 1; 0 |];
 [| 2; 3 |] |];;
 val m : int array array = [|[|1; 0|]; [|2; 3|]|]

The element Mi,j is accessed with m.(i).(j), which is nothing more than two successive
accesses: First, we access row i with m.(i), and then, its element at index
j.

 # m.(1).(0);;
 - : int = 2

All operations on matrices are implemented using those of arrays. The module
Array nonetheless offers an operation to create a matrix, make_matrix, which
takes as arguments the dimensions of the matrix and the initial value of its
elements. We will return to matrices in the section 10.4 Matrix Calculus of
chapter 10.

 Aliasing

Imperative structures must be handled with caution. In particular, whenever it
is possible to reference an imperative structure in multiple ways, you may
think you are modifying different data even though this need not be the
case.

 A typical example of aliasing is obtained by allocating an array with all its
elements initialized to the same array. Consider the following expression:

 Array.make 3 (Array.make 4 v)

You may think you are constructing a 3 × 4 matrix, each of whose elements is v. In
reality, this expression constructs a single array of size 4—let us call it a—whose
elements have the value v, and an array of size 3, whose three elements are the same
array a. In other words, the result is as follows:

 [image: PIC]

 Of course, this is not what we want, as it has only four elements instead of
twelve. To construct an array of arrays correctly, you can use the function
Array.make_matrix of the standard library, by writing Array.make_matrix 3 4 v,
which has the effect of constructing the desired matrix, that is:

 [image: PIC]

 2.6 Drawing a Curve

[image: PIC] Ideas introduced

 	pairs, n-tuples

 	evaluation order

 	first-class, higher order, anonymous functions

 	definition by pattern matching, wildcard pattern

Our sixth program (see page 104), plot.ml, draws a curve specified by a set of
points in the plane. The algorithm consists in joining these points with line
segments, proceeding in increasing order of their x-coordinates. For example, the
curve drawn for the set of points {(20,15),(2,2),(30,10),(10,15)} is shown in
figure 2.5.

[image: 0x0y11∙2∙22∙3∙1--05000aaxxiiss]

Figure 2.5: Drawing a curve.

 To draw this curve, we begin by reading from standard input an integer that
indicates the number of points in the set.

 let n = read_int ()

Next, we define a function that reads the coordinates of a point from standard
input:

 let read_pair () =
 let x = read_int () in
 let y = read_int () in
 (x, y)

After reading the first integer, x, and the second, y, from standard input using two calls
to read_int, the function read_pair returns the pair of integers (x,y), constructed
very naturally using the syntax (x,y). The type of this pair is written as int * int in
OCaml. We will discuss pairs and, more generally, n-tuples in greater detail at the
end of this section.

 We then create an array data of size n that we initialize with the pairs of integers
read from standard input. To do this, we use the library function Array.init that
takes as arguments the size of the array and a function used to initialize the array’s
cells:

 let data = Array.init n (fun i -> read_pair ())

The function call Array.init illustrates two new notions. First, the expression
fun i -> ... passed as an argument to Array.init is an anonymous function. The
symbol i to the left of the arrow -> represents the argument of the function, the
expression to the right, its body. Second, this call shows that functions in OCaml are
values like any other. We also say they are first-class values. They can be passed as
arguments and, as we will see later, returned as the results of other functions. A
function like Array.init, which takes a function as an argument, is called a
higher-order function.

 The function Array.init returns an array obtained by initializing the cell at
index k (ranging from 0 to n− 1) with the value obtained by applying the function
(fun i -> read_pair ()) to k.

 Thus, if the integers entered on standard input consist of the sequence
4 20 15 2 2 30 10 10 15, the preceding declarations define a variable n containing the
integer 4 and an array data whose contents are graphically represented as follows:

[image: PIC]

 To draw the curve, we must begin by sorting the cells of this array in increasing
order of x-coordinates. To this end, we begin by defining a function that compares
two pairs by their first component:

 let compare (x1, y1) (x2, y2) = x1 - x2

This function returns an integer. Its sign is interpreted by the sorting algorithm as
follows:

 	if x1 - x2 = 0, the two pairs are considered to be equal;

 	if x1 - x2 > 0, the first pair is considered to be greater;

 	if x1 - x2 < 0, the first pair is considered to be smaller.

 Before continuing with the description of our program, let us stop an instant and
consider the form of this declaration.

 The arguments of the function compare are not simple identifiers, but rather
patterns. They each have the form of a pair (xi,yi). The use of patterns allows us
here to easily retrieve the components xi and yi of the pairs passed as arguments of
the function. This is a declaration by pattern matching. This form of declaration is
very frequently used in OCaml programs, and we will use it on numerous occasions in
this book.

Program 6 [plot.ml] — Drawing a Curve

let n = read_int ()

let read_pair () =
 let x = read_int () in
 let y = read_int () in
 (x, y)

let data = Array.init n (fun i -> read_pair ())

let compare (x1, y1) (x2, y2) = x1 - x2
let () = Array.sort compare data

open Graphics
let () =
 open_graph " 200x200";
 set_line_width 3;
 let (x0,y0) = data.(0) in moveto x0 y0;
 for i = 1 to n-1 do
 let (x,y) = data.(i) in
 lineto x y
 done;
 ignore (read_key ())

 To sort the array, we use the higher-order function Array.sort which, in
addition to the array to be sorted, takes as its first argument a function to
compare the elements of the array. This sorting is done in-place, that is, directly
within the array data. The call to Array.sort only performs side effects.

 let () = Array.sort compare data

At the end of this call, the contents of data are as follows:

[image: PIC]

 All that remains is to draw the curve by joining the points thus ordered, with line
segments. We begin with a directive open Graphics. Then, we open a graphical
window of size 200 × 200. The call set_line_width 3 fixes the thickness of the line
segments.

 open Graphics
 let () =
 open_graph " 200x200";
 set_line_width 3;

We then retrieve the first pair (x0, y0) from the 0-th cell of the array data, and use it to
fix the coordinates of the current point using the function moveto:

 let (x0,y0) = data.(0) in moveto x0 y0;

Here again, we use a declaration by pattern matching to extract the components
of a pair stored in the array. The value contained in data.(0) is matched

by means of the pattern (x0, y0), which defines two local variables x0 and
y0.

 We then iterate over all the elements of the array data with the help of a for loop
to join the points:

 for i = 1 to n-1 do
 let (x,y) = data.(i) in
 lineto x y
 done;

The body of the loop retrieves the coordinates (x,y) of each point using a local
declaration by pattern matching (identical to the one above) and draws a line from
the current point to the point with coordinates (x,y).

 Additional Information

 Pairs and n-Tuples

A pair of two values v1 and v2 can be constructed using the traditional notation
(v1, v2). The type of pairs uses the mathematical notation of the Cartesian
product.

 # (1, true);;
 - : int * bool = (1, true)

 You will note that the comma is used to construct the pair while the symbol * is
used to construct the type of the pair. The two projections are written fst and snd
respectively.

 # fst (1 + 2, true);;
 - : int = 3
 # snd (1, not true);;
 - : bool = false

 Pairs may be arbitrarily nested.

 # ((1, true), (3.14, false));;
 - : (int * bool) * (float * bool) = ((1, true), (3.14, false))

 Pairs are a special case of n-tuples, and use the same syntax for both values and
types.

 # (1, true, 3.14);;
 - : int * bool * float = (1, true, 3.14)

 It should be noted that the type (int * int) * int, the type int * (int * int), and
the type int * int * int are not the same:

 	the first is that of a pair whose first component is a pair;

 	the second is that of a pair whose second component is a pair;

 	the third is that of a triple.

 Projections by Pattern Matching and Wildcard Pattern

There are no projection functions for n-tuples. A declaration by pattern matching
must be used to retrieve each component. For example:

 # let (x, (y, z), t) = (1, (true, "hello"), 3.4);;
 val x : int = 1
 val y : bool = true
 val z : string = "hello"
 val t : float = 3.4

 If you only wish to access certain components of an n-tuple, you may
use a wildcard pattern, which is written as _, to avoid having to introduce
unnecessary variable names. For example, if you wish only to access the
components x and z of the above triple, you can write the following pattern
matching:

 # let (x, (_, z), _) = (1, (true, "hello"), 3.4);;
 val x : int = 1
 val z : string = "hello"

 Wildcard patterns also allow you to represent arbitrary values. Thus, if you only
wish to access components x and t, you may use a wildcard pattern to represent the
second component of the above triple:

 # let (x, _, t) = (1, (true, "hello"), 3.4);;
 val x : int = 1
 val t : float = 3.4

 Functions with Several Arguments and n-Tuples

It is equally important to differentiate clearly between a function with several
arguments and a function that takes a single argument which is an n-tuple. Consider,
for instance, the following function pyth:

 # let pyth (x, y, z) = x*x + y*y = z*z;;
 val pyth : int * int * int -> bool = <fun>

 It takes a triple of integers as argument. You therefore call it using a single
argument of the form (e1,e2,e3), as in the following call:

 # pyth (3, 4, 5);;
 - : bool = true

On the other hand, the same function may be written as a function of several arguments,
as follows:

 # let pyth x y z = x*x + y*y = z*z;;
 val pyth : int -> int -> int -> bool = <fun>

This function must be called by juxtaposing its name with three arguments, as in the
following call:

 # pyth 3 4 5;;
 - : bool = true

The types int * int * int -> bool and int -> int -> int -> bool illustrate clearly the
difference between these two variants. In this text, we adopt the Curry style,
wherein functions take n arguments rather than an n-tuple. In particular, this
enables the partial application of functions: You can pass the function fewer
arguments than it expects and obtain another function in return. For example, by
applying the function pyth to an integer, you obtain a function that takes two
arguments:

 # let f = pyth 3;;
 val f : int -> int -> bool = <fun>

You can then apply it several times:

 # f 4 5;;
 - : bool = true
 # f 6 7;;
 - : bool = false

 Records

Tuples serve to group several values together. However, it is easy to confuse the
different components of an n-tuple when they have the same type. Thus,
a date represented by a triple of integers, of type int * int * int, does not
indicate clearly which integer designates the day, the month, and the year. To
correct this defect, the OCaml language provides the notion of record, that is,
an n-tuple whose fields are named. To create a record, you must declare a
new type beforehand, describing the names and the types of the different
fields.

 # type date = { day : int; month : int; year : int };;
 type date = { day : int; month : int; year : int; }

We can then construct a value of the type date with the following syntax.

 # let valentine’s_day = { day = 14; month = 2; year = 2014 };;
 val valentine’s_day : date = { day = 14; month = 2; year = 2014 }

We access a field f of a record e using the notation e.f.

 # valentine’s_day.month;;
 - : int = 2

A new record can be constructed based on another record of the same type, preserving
the values of certain fields and giving new values to others. We use the construction
with for this.

 # let d = { valentine’s_day with day = 15 };;
 val d : date = {day = 15; month = 2; year = 2014}

This is identical to the following declaration:

 # let d = { day = 15;
 month = valentine’s_day.month;
 year = valentine’s_day.year };;
 val d : date = {day = 15; month = 2; year = 2014}

Another advantage of records over n-tuples is that the order of fields is not significant.
We can therefore write:

 # let us_valentine’s_day = { month = 2; day = 14; year = 2014; };;
 val us_valentine’s_day : date = {day = 14; month = 2; year = 2014}
 # us_valentine’s_day = valentine’s_day;;
 - : bool = true

It is also possible to use a pattern to retrieve the values of each field, once again in any
order.

 # let { day; month; year } = valentine’s_day;;
 val day : int = 14
 val month : int = 2
 val year : int = 2014

We can omit certain fields by using the wildcard pattern _ to indicate the fields to be
ignored.

 # let { day; month; _ } = valentine’s_day;;

Tuples are nevertheless useful, particularly because they do not require us to declare a
type.

 Records with Mutable Fields

The keyword mutable declares a record field that can be modified.

 # type student = { number : int; mutable age : int };;
 type student = { number : int; mutable age : int; }

A record field is modified using the construction <-.

 # let birthday e = e.age <- e.age + 1;;
 val birthday : student -> unit = <fun>

This modification does not return a value. Hence its type is unit. We observe this side
effect in the following example:

 # let e = { number = 123456; age = 21 };;
 val e : student = {number = 123456; age = 21}
 # birthday e;;
 - : unit = ()
 # e;;
 - : student = {number = 123456; age = 22}

 We can use a record with a mutable field to simulate the traditional notion of a
mutable variable. For example, in case of a variable of type int, it suffices to declare a
type with a single mutable field value.

 # type variable = { mutable value : int };;
 type variable = { mutable value : int; }

We then use x.value to access the contents of the variable x and the assignment
x.value <- e to modify it.

 # let x = { value = 41 };;
 val x : variable = {value = 41}
 # x.value <- x.value + 1;;
 - : unit = ()
 # x.value;;
 - : int = 42

Strictly speaking, we are not modifying the variable x. We modify only the value
contained in the record that x points to. So, more precisely, it is the notion of pointer
that is being used here.

 To avoid having to define such a type each time we need a mutable variable,
OCaml offers the predefined type of references, that we have already used (see
section 2.2 Approximation of π). A reference is created using the keyword ref.

 # let x = ref 41;;
 val x : int ref = {contents = 41}

As is clear, the type of a reference, written as int ref, is that of a record, with a single
field contents. We access this field using the notation ! and modify its contents using
the notation :=.

 # x := !x + 1;;
 - : unit = ()
 # !x;;
 - : int = 42

 Evaluation Order

The OCaml language does not specify the evaluation order of the components of
n-tuples and records. Thus, in the pair (e1, e2), it is not possible to know
a priori if the expression e1 will be evaluated before e2 or the other way
around.

 Of course, we can easily figure out the evaluation order of a specific implementation of
OCaml using an expression that creates a pair, as follows:

 # (read_int (), read_int ());;
 4
 5
 - : int * int = (5, 4)

We can see here that it is the expression e2 that is evaluated first, since the first integer
typed in, here 4, is stored in the second component of the pair.

 In general, it is not a good idea to write a program that relies on the
evaluation order implemented by a specific compiler. It is better to use local
declarations to specify the evaluation order. Thus, what we ought to write
is:

 # let x = read_int () in let y = read_int () in (x, y);;
 4
 5
 - : int * int = (4, 5)

 Anonymous Functions

The definitions of anonymous functions are not limited to one argument. Functions
that take several arguments may be defined as follows:

 # fun x y -> x + y;;
 - : int -> int -> int = <fun>

It is interesting to note that the following two declarations are strictly equivalent:

 # let f = fun x -> x + 1;;
 val f : int -> int = <fun>
 # let f x = x + 1;;
 val f : int -> int = <fun>

 2.7 Copying a File

[image: PIC] Ideas introduced

 	input/output

 	exceptions

Our next program, copy_file.ml, copies the contents of one file into another, with
the names of the two files passed on the command line.

 For this, we write a function copy_file that takes as arguments the names of the
files, as strings f1 and f2. We begin by opening channels c1 and c2 on the files f1

and f2, respectively.

 let copy_file f1 f2 =
 let c1 = open_in f1 in
 let c2 = open_out f2 in

The first, c1, is opened for reading and the second, c2, for writing.

 Then, we execute an infinite loop, (while true), which reads characters from c1
and writes them to c2.

 while true do output_char c2 (input_char c1) done

When there are no more characters left to read, the function input_char raises a
predefined exception, namely, End_of_file. This interrupts the execution of the
while loop and, more generally, of the program being executed, until the exception is
caught. Here, we catch this exception just outside the while loop. We do this with the
construction try-with.

 let () =
 try
 while true do ... done
 with End_of_file ->
 close_in c1; close_out c2

The meaning of the construction try e1 with E -> e2 is as follows: We begin by
evaluating the expression e1. If a value is obtained, it is the value of the entire
try-with expression. If, however, the evaluation of e1 raises the exception E, then we
evaluate the expression e2, and that is the result of the expression as a whole. Finally,
if e1 raises an exception other than E, then the exception is not caught, and it is the
expression try-with as a whole that raises it.

 In our case, the expression e1 is an infinite loop, whose evaluation will never end.
However, it ends by raising the exception End_of_file, which is then caught, and the
two files c1 and c2 are closed.

 All that remains then is to call the function copy_file with the first two
arguments of the command line, namely, Sys.argv.(1) and Sys.argv.(2).

Program 7 [copy_file.ml] — Copying a file

let copy_file f1 f2 =
 let c1 = open_in f1 in
 let c2 = open_out f2 in
 try
 while true do output_char c2 (input_char c1) done
 with End_of_file ->
 close_in c1; close_out c2

let () = copy_file Sys.argv.(1) Sys.argv.(2)

 Additional Information

 Input/Output Channels

Input/output devices are represented by channels. Input channels are of the
predefined type in_channel, and output channels of the type out_channel. Three
predefined values represent, respectively, standard input, standard output, and
standard error of the program being executed: stdin of type in_channel, and stdout
and stderr of type out_channel.

 Functions are available for reading and writing on channels. The function
input_char, of type in_channel -> char, reads a single character from the channel
passed as argument. We can thus read a character from standard input, stdin, in the
following manner:

 # let c = input_char stdin;;
 a
 val c : char = ’a’

A more general function, input, can be used to read n characters from an input channel
and store them at a certain position within a string.

 Similarly, the output_char function, of type out_channel -> char -> unit, writes a
character to an output channel. A more general function, output, writes a given
substring. There is also a function Printf.fprintf that writes to an output
channel, in a manner analogous to the function Printf.printf that we used
earlier.

 Files can also be manipulated as channels. Thus, a file is opened for reading with
the function open_in, of type string -> in_channel, and for writing with the function
open_out, of type string -> out_channel. The string designates the file name.
Symmetrically, we close a channel with the functions close_in and close_out.

Input/output operations on channels can fail (reading or writing on a closed channel,
invalid permissions, etc.). This is systematically signalled by raising an exception. For
instance, reading beyond the end of a file raises the predefined exception
End_of_file.

 Marshalling

Besides characters, it is possible to use channels to read and write OCaml values of
arbitrary types. This is known as marshalling. The function output_value writes a
value of an arbitrary type to an output channel.

 # let c = open_out "foo" in
 output_value c (1, 3.14, true);
 close_out c;;
 - : unit = ()

The format used is specific to OCaml (and even to its version). The function that
performs the inverse operation is input_value. When you read a marshalled value
with the function input_value, its type is inferred according to how it is used. It is
good practice to indicate the type of the value that is read with a type annotation.
Below, we read back the value written to the file "foo", specifying that its type is
int * float * bool:

 # let c = open_in "foo";;
 val c : in_channel = <abstr>
 # let v : int * float * bool = input_value c;;
 val v : int * float * bool = (1, 3.14, true)

There is no type information in the marshalled value itself. In particular, runtime type
safety is not guaranteed if we use a marshalled value in a way that is incompatible
with the type of the value that was actually marshalled. In the above example, we
could pretend that the value read is a pair whose first component is also a pair. This
leads to a fatal program error.

 # let c = open_in "foo";;
 val c : in_channel = <abstr>
 # let v = input_value c in fst (fst v);;

 Process caml-toplevel segmentation fault

 This error is not an exception that we could have caught. It is, rather, a
lower-level error corresponding to an unrecoverable illegal memory access.

 Exceptions

Certain operations are partial, that is, they are not defined for all possible values of
their arguments. For instance, integer division by zero is not defined. If you try,
nevertheless, to perform this operation, an exception is raised.

 # 1/0;;
 Exception: Division_by_zero.

 The evaluation of the expression does not result in a value; it fails when the
exception is raised, as the message beginning with Exception indicates. Here,
Division_by_zero is a predefined exception. Another predefined exception in OCaml,
Invalid_argument, is often used to signal the use of a function outside its domain of
definition.

 # Random.int (-4);;
 Exception: Invalid_argument "Random.int".
 # Char.chr 257;;
 Exception: Invalid_argument "Char.chr".

 As is clear from these examples, a string is associated with the exception
Invalid_argument, which specifies the name of the function that raised the
exception.

 Raising an exception interrupts the calculation, as we can see by evaluating the
following expression.

 # print_endline "before"; print_int (1/0); print_endline "after";;
 before
 Exception: Division_by_zero.

It is, nonetheless, possible to catch an exception, so as to continue the evaluation with
another expression. You use the construction try with for this, as follows:

 # let test x y =
 try let q = x / y in Printf.printf "quotient = %d\n" q
 with Division_by_zero -> Printf.printf "error\n";;
 val test : int -> int -> unit = <fun>
 # test 4 0;;
 error
 - : unit = ()

 Here, we attempt to calculate x / y and display its value. In case of failure, that is,
when the division triggers the exception Division_by_zero, we catch the exception
and display an error message. The evaluation of the function test therefore always
ends with a value of type unit.

 In general, the expression try e1 with E -> e2 is evaluated as follows:

 	The expression e1 is evaluated first. If it does not raise an exception, the
 calculation is complete, and its value is that of e1.

 	
 If, however, the expression raises an exception, then there are two possibilities:

 	if the exception is E, then evaluation continues with e2;

 	if the exception is something other than E, then it is propagated,
 without evaluating e2.

In the expression try e1 with E -> e2, the two sub-expressions e1 and e2 must have the same
type, which is also the type of the expression as a whole.

 Users may define their own exceptions with the declaration exception followed by
the exception’s name, which must begin with a capital letter. The exception need not
take any arguments, for example, Division_by_zero:

 # exception Stop;;
 exception Stop

Alternatively, the exception may have one or more arguments, for example,
Invalid_argument:

 # exception Error of string;;
 exception Error of string

 To raise an exception, you use the construction raise. This construction takes an
exception as argument.

 # let f x =
 if x < 0 then raise (Error "negative argument");
 123 mod x;;
 val f : int -> int = <fun>

Here, the exception is constructed by applying the constructor Error to the string
"negative argument". You can observe the exception being raised by calling f with a
negative argument.

 # f (-1);;
 Exception: Error "negative argument".

Exceptions are, in fact, values like any other and belong to the predefined type exn. This
type can be seen as a concrete type with an unbounded number of constructors.
Predefined exceptions are merely predefined constructors of this type. Each
exception declaration adds a new constructor. You can construct a value of type exn
and pass it as an argument to raise:

 # let e = Error "invalid argument";;
 val e : exn = Error "invalid argument"
 # raise e;;
 Exception: Error "invalid argument".

The construction raise is simply a function that takes an argument of type
exn. The expression raise e can take any type. In the previous example,
the expression raise (Error "invalid argument") takes the type unit, but
can equally take the type int if we wish to write the function f with an
else:

 # let f x =
 if x < 0 then raise (Error "invalid argument") else 123 mod x;;
 val f : int -> int = <fun>

 Exceptions can be used to signal exceptional behaviors (as in the preceding
examples), as well as to change the program’s control flow. A typical example is that
of an infinite loop that you exit using an exception. For example, this is the case of
interactive programs that you exit by pressing a key. With the library Graphics, such
a loop can be written as follows:

 try
 while true do
 let st = wait_next_event [Key_pressed] in
 if st.keypressed && st.key = ’q’ then raise Exit;
 ...
 done
 with Exit ->
 close_graph ();
 ...

Raising the exception Exit interrupts the infinite loop while true. We catch the
exception, close the graphical window with close_graph, and then continue the
program. Other examples of the use of exceptions to change the flow of control are
given in exercises 2.15 and 5.7.

 Finally, note that the OCaml standard library provides two functions, failwith
and invalid_arg. When called with a string s, these raise the exceptions Failure s
and Invalid_argument s, respectively. OCaml also provides a specific construction
assert e, which evaluates an expression e of type bool and raises the exception
Assert_failure if e is false.

 2.8 Reversing the Order of Lines in a Text

[image: PIC] Ideas introduced

 	lists

 	pattern matching

 	call stack, tail call

Our next program, tac.ml, reads lines of text from standard input and then
displays them in reverse order. It is easy to use. Having compiled the program,
we execute it and enter, for example, the following three lines on standard
input:

 first line
 second line
 third line

Once we signal the end of input (for example, by pressing the keys ctrl and D), the
program displays the lines in reverse order:

 third line
 second line
 first line

To achieve this, the program must store all the lines read before it is able to
display them, since the first line to be displayed is the last one to be
read. We therefore need a data structure to store the lines that have been
read. An array is not suitable since we do not know the total number of
lines2 .
We will therefore use a list.

 OCaml provides a built-in type for lists. These are constructed from the empty
list, represented by [], and by adding an element x at the front of an existing list l,
represented as x :: l. Lists in OCaml are immutable: once a list is constructed, it is
no longer possible to modify it.

Program 8 [tac.ml] — Reversing the Order of Lines in a Text
__

let lines = ref []

let () =
 try
 while true do lines := read_line () :: !lines done
 with End_of_file ->
 ()

let rec print l =
 match l with
 | [] -> ()
 | s :: r -> print_endline s; print r

let () = print !lines

 Our program begins by introducing a reference, lines, that will contain the list of
lines that have been read. Initially, this list is empty.

 let lines = ref []

We then proceed to read the lines, using the library function read_line, which reads a
line of text from standard input and returns it as a string. To read all the lines, we
write an infinite loop:

 while true do lines := read_line () :: !lines done

Each line read using read_line is added to the list contained in the reference lines.
More precisely, we construct a new list whose first element is the most recently read
line, followed by the elements already present in lines, that is, !lines.
Next, we set the value of the reference lines to this new list. When there
are no more lines to be read, the function read_line raises the exception
End_of_file.

 We catch this exception just outside the loop:

 try while true do ... done
 with End_of_file -> ()

With this, we are done with the reading. The reference lines now contains the list of all
the lines read. By construction, this list is in reverse order, the most recently read line
having been added at the head of the list. This is convenient since this is precisely the
order in which we wish to display the lines. To display the lines, we begin by
writing a recursive function print, which displays a list l of strings, one per
line.

 let rec print l =

This function examines the list l, treating the case of an empty list and that of a list
containing at least one element separately. We discriminate between the two cases
using the OCaml construct match-with, as follows:

 match l with
 | [] -> ...case 1...
 | s :: r -> ...case 2...

This pattern matching construct is read as follows: If the list l is of the form [], that is,
if it is the empty list, then we evaluate the code denoted above by ...case 1.... If,
however, the list l is of the form s :: r, that is, if it contains a first element s and is
followed by other elements forming a list r, then we evaluate the code denoted above
by ...case 2.... Here, the variables s and r take the value of the first
element and the rest of the elements of l. In the function print, we do nothing
in the first case. In the second case, we display the string s and then call
print recursively on the list r. Therefore, the body of the function print
is:

 match l with
 | [] -> ()
 | s :: r -> print_endline s; print r

All that remains to complete our program is to apply this function to the list contained in
the reference lines, that is:

 let () = print !lines

 Additional Information

 Lists

The type of lists is predefined in OCaml; it is list. This type is “generic,” in the sense
that we can construct lists of values of any type at all, provided that all the elements
of a given list are of the same type.

 # 1 :: 2 :: 3 :: [];;
 - : int list = [1; 2; 3]

 # 1 :: ’a’ :: 3 :: [];;
 Error: This expression has type char but an expression
 was expected of type int

As we see in the first example, the toplevel displays a list in the form [1; 2; 3]. This
notation can also be used to construct a list given its elements.

 # [’a’; ’b’; ’c’];;
 - : char list = [’a’; ’b’; ’c’]

 Pattern Matching

When we presented n-tuples, we explained that pairs can be destructured using the
construction let (x,y) = e1 in e2. In fact, that pattern matching is identical in every
way to the one we discussed above in relation to lists. The construction let is merely
a shorthand for the expression match e1 with (x,y) -> e2. In general, the construct let
may be used with an arbitrary pattern as its first argument, even if the latter is often
reduced to a variable.

 The function print proceeds by pattern matching on its argument l. Such
functions are so common in OCaml that there is a keyword, function, which
introduces a function that proceeds by pattern matching on its argument. Thus, we
may write:

 let rec print = function
 | [] -> ()
 | s :: r -> print_endline s; print r

In other words, the keyword function is a shorthand for fun x -> match x with. Note also
that function introduces a function with only one argument, where the pattern
matching may have one or more patterns. By contrast, fun defines a function with
several arguments, where each argument is matched by a single pattern. Thus, we
may write:

 fun x (y, z) -> x + y * z

 List Traversals

The function print that we wrote to display all the elements of the list !lines is an
example of a list traversal, where all the elements of the list are treated the same way,
in the order in which they appear. Such traversals are so frequent that a library
function exists for them, namely, List.iter. This is a higher-order function, like
Array.init or Array.sort, which we presented earlier. List.iter takes as argument
the function to be applied to each element. Thus, we can rewrite print quite simply
as:

 let print l = List.iter print_endline l

We can even replace the last five lines by:

 let () = List.iter print_endline !lines

 Call Stack

Suppose we want our program to display the total number of lines that have been
read and reversed, in a message of the form:

 113 lines read

For this, we write a function length that calculates the length of a list. As with
print, we write it in the form of a recursive function that proceeds by pattern
matching:

 let rec length = function
 | [] -> 0
 | _ :: r -> 1 + length r

Note the wildcard pattern _ used in place of the first element of the list in the second
pattern. This value does not need to be named because it is not used in the
calculation of the length of the list. All that remains now is to display the length thus
calculated:

 let () = Printf.printf "%d lines read\n" (length !lines)

If we run the program several times, we would observe that it does indeed give the expected
result. However, if we were to attempt feeding the program a very large number of
lines—say, 700,000 lines—we would be in for a nasty surprise: The program would give us
an error3
even though everything worked just fine up until the point where we tried to display
the number of lines:

 seq 700000 | ./tac
 Fatal error: exception Stack_overflow

To explain this phenomenon, it is necessary to understand the principle behind the
execution of a recursive function like length.

 Consider as an example the execution of the call length [1; 2; 3]. We can
“symbolically” unroll this call as follows:

 length [1; 2; 3] = 1 + length [2; 3]
 = 1 + (1 + length [3])
 = 1 + (1 + (1 + length []))
 = 1 + (1 + (1 + 0))
 = 1 + (1 + 1)
 = 1 + 2
 = 3

Each call to length allocates a memory cell to store the function’s argument. In
general, a function call, whether recursive or not, allocates the memory space
necessary for its arguments and its local variables. This memory space is freed
once the function call ends. In case of the recursive function length, the call
does not end until the recursive call completes and the addition 1 + ... is
performed. In particular, the call length [1; 2; 3] will require up to four nested
function calls to reach the final call length []. Thus, four memory cells will be
needed to store the arguments of each of the four calls, as represented in
figure 2.6.

 [image: PIC]

Figure 2.6: Representation of a call stack.

 As is clear in the diagram, the nesting of function calls allows us to organize the
memory required for them as a stack. Hence the term call stack. Each call
to a function pushes the memory space required for its variables (here, the
single variable l) onto the call stack, and removes this space when the call
ends.

 The error Stack_overflow triggered earlier when calculating the length of a list of
700,000 elements is due to a limit on the size of the call stack. This limit depends on
the operating system and the compiler. It is generally fairly low, of the order of
several MB. When the stack reaches this limit, we call it a stack overflow. The
program is then interrupted. This is signaled either by the exception Stack_overflow
in OCaml or by a fatal crash of the program. If, on the other hand, the size of the
stack is large (or even unlimited), the program will not trigger a stack overflow, but
will consume more and more memory, which could eventually cause the machine to
crash.

 Tail Calls

You may wonder why the call print !lines does not provoke a stack overflow, unlike
length !lines. The difference between the two functions is that, in the function
print, the recursive call is the very last expression evaluated in the body of the
function. This is not the case in the function length, where an addition
remains to be performed after the recursive call. In the case of print, the
compiler performs an optimization, which consists in removing the current call
from the call stack, before performing the recursive call. Thus, the call stack
only ever contains the final call to print and, therefore, does not increase in
size.

 In general, when a function call is the last expression to be evaluated in the body
of a function, we say it is a tail call. Note that this notion applies to both
recursive and non-recursive functions. In the former case, if every recursive

call is a tail call, the function is said to be tail recursive. Thus, print is
tail recursive and length is not. Note that a recursive function can contain
both tail calls and non-tail calls. This is the case of McCarthy’s famous 91
function.

 let rec f91 n =
 if n > 100 then n - 10 else f91 (f91 (n + 11))

 We can avoid the stack overflow in the function length by writing it differently,
using an additional argument that represents the number of elements already
traversed. Thus, we can write:

 let rec length_term acc = function
 | [] -> acc
 | _ :: r -> length_term (1 + acc) r

In this version, the recursive call to length_term is a tail call. To calculate the length of
a list, it suffices to call length_term with 0 as the first argument.

 let length l = length_term 0 l

We can even define the function length as the result of the partial application of
length_term to 0.

 let length = length_term 0

 2.9 Converting Integers from an Arbitrary Base

[image: PIC] Ideas introduced

 	iterators

 	polymorphism

 	function exit

Our next program (see page 144), radix.ml, takes numbers written in some base B,
where 2 ≤ B ≤ 36, and converts them to base 10. The base is passed on the command
line. The program then reads numbers from standard input and displays them in base
10.

 Here is a first example in base 16:

 > radix 16
 7FFF
 -> 32767
 A0
 -> 160

After launching the program with the given base, we enter the number 7FFF on
standard input, and the program displays the result of the conversion, namely 32767.
Next, we enter the number A0 and obtain 160.

 Here is a second example, with numbers written in base 36:

 > radix 36
 ZORRO
 -> 59942292

 As you see in these examples, the numbers are written using the characters
0 to 9, and A (for 10) to Z (for 35).

Program 9 [radix.ml] — Converting Integers from an Arbitrary
Base
__

let base = int_of_string Sys.argv.(1)

let list_of_string s =
 let digits = ref [] in
 for i = 0 to String.length s - 1 do
 digits := s.[i] :: !digits
 done;
 !digits

let digit_of_char c =
 match c with
 | ’0’..’9’ -> Char.code c - Char.code ’0’
 | ’A’..’Z’ -> 10 + Char.code c - Char.code ’A’
 | c -> Printf.eprintf "invalid character %c\n" c; exit 1

let check_digit d =
 if d < 0 || d >= base then begin
 Printf.eprintf "invalid digit %d\n" d; exit 1
 end

let () =
 while true do
 let s = read_line () in
 let cl = list_of_string s in
 let dl = List.map digit_of_char cl in
 List.iter check_digit dl;
 let v = List.fold_right (fun d acc -> d + base * acc) dl 0 in
 Printf.printf " -> %d\n" v
 done

 Let us now pass to the implementation of the program. To begin, we retrieve the
base from the command line and store it in a variable base.

 let base = int_of_string Sys.argv.(1)

It is good practice to verify that the integer does indeed lie between 2 and 36, and to fail
otherwise.

 We continue by defining a function, list_of_string, which converts a string (of
type string) to a list of characters (of type char list).

 let list_of_string s =
 let digits = ref [] in
 for i = 0 to String.length s - 1 do
 digits := s.[i] :: !digits
 done;
 !digits

We traverse the string s, beginning with its first character, so as to construct a list in
which the last character of s—that is, the least significant digit of the number—is
found at the head of the list.

 Next, we write a function digit_of_char to convert a character representing a
digit into the corresponding integer.

 let digit_of_char c =
 match c with
 | ’0’..’9’ -> Char.code c - Char.code ’0’
 | ’A’..’Z’ -> 10 + Char.code c - Char.code ’A’
 | c -> Printf.eprintf "invalid character %c\n" c; exit 1

The first pattern matching case | ’0’..’9’ -> treats the case of a character c
between ’0’ and ’9’. Its numeric value is obtained simply as the difference
between the ASCII code of c and that of the character 0. The second case
proceeds in the same manner, for the characters between ’A’ and ’Z’. For all
other characters, the last case displays a message on standard error using
Printf.eprintf and terminates the program using the predefined function
exit.

 We then write a function check_digit that verifies that d is a valid digit for the
given base, that is, that it lies between 0 and base− 1.

 let check_digit d =
 if d < 0 || d >= base then begin
 Printf.eprintf "invalid digit %d\n" d; exit 1
 end

This function does not return a result. It interrupts the program if the digit d is not
valid.

 The main part of the program is an infinite loop that reads a string s from
standard input and converts the corresponding number to base 10.

 let () =
 while true do
 let s = read_line () in
 ...
 done

 We begin by converting the string s into a list of characters cl using the function
list_of_string.

 let cl = list_of_string s in

 In order to convert the list cl into a list of digits, we apply the function
digit_of_char to each element of cl. For this, we use the library function List.map,
which constructs a new list by applying a given function to all the elements of a
list.

 let dl = List.map digit_of_char cl in

For example, if cl is the list [’A’; ’0’], then dl is the list [10; 0]. More generally, given
a function f and a list l [e1;e2;...;en], we have:

[image: List.map f l = [f e1;f e2; ...;f en]]

 We then verify that each digit of the list dl is valid by applying the function
check_digit successively to each element of dl.

 List.iter check_digit dl;

In this case we do not wish to construct a new list but rather to apply check_digit. The
whole program will be interrupted if check_digit detects an invalid digit. In general,
given a function f and a list l equal to [e1;e2;...;en], the application List.iter f l
is equivalent to the following sequence:

[image: List.iter f l = f e1;f e2; ⋅⋅⋅ ;f en]

 Finally, we will calculate the base 10 notation and display it. The list dl is of the
form [d0;d1;…;dn−1], where d0 is the digit corresponding to the last character in the
string, that is, the least significant digit. It is therefore necessary to calculate the
following value:

[image: n∑−1 di × basei i=0]

 The most efficient method to minimize the number of multiplications (in
particular to avoid the expensive calculation of basei) is Horner’s rule, which rewrites
the preceding sum as follows:

[image: d0 + base × (d1 + base × (...(dn− 2 + base × (dn−1 + base× 0))...))]

 We can easily program the above using the library function List.fold_right,
which allows us to traverse the list dl from the last element dn−1 to the first element
d0, applying a function f to each element as follows:

[image: List.fold_right f l acc = f d0 (...(f dn−2 (f dn−1 acc) ...))]

The value computed for each element of the list is systematically passed to the
function f as the second argument, called the accumulator. Its initial value, used
when calling f on the last element dn−1 of the list, is the third argument of
List.fold_right, here called acc. To obtain Horner’s formula, it suffices to let
f be the function fun d acc -> d + base * acc. Thus, the end of the program is
simply:

 let v = List.fold_right (fun d acc -> d + base * acc) dl 0 in
 Printf.printf " -> %d\n" v

 Additional Information

 Polymorphism

To be useful, the functions of the library List, such as iter, map, or fold_right,
must be generic with respect to both the type of the elements of the list to which they
are applied, and the operation performed on them. This genericity is called
polymorphism. The notion may be illustrated using the function length to calculate
the length of a list:

 let rec length l =
 match l with
 | [] -> 0
 | _ :: r -> 1 + length r

 This function may, of course, be applied to a list of integers. For example:

 # length [1; 6; 2; 8; 3] ;;
 - : int = 5

 However, this function does not directly use the elements of the list l passed as
argument (as indicated by the pattern matching _ :: r). Therefore, this function may
in fact be applied to any list, be it a list of strings or one of floating-point numbers.
For example:

 # length ["hello"; "world"; "!"] ;;
 - : int = 3
 # length [[3.4; .2]; []; [1.2]; [5.]] ;;
 - : int = 4

 For the above to be possible, the function length must accept arguments of type
int list, string list, and even float list list. This function is, in fact, applicable
to lists of any type. In OCaml, it is given the type:

’a list -> int

where the type variable ’a represents any type. A type such as that of length, which
contains at least one type variable, is said to be polymorphic.

 Apart from representing any type, type variables are also useful in establishing
relations between the generic parts of a polymorphic type. For example, in the
function f, defined by let f g x = (g x) + 1, the types of the arguments g and x must be
related because the function g is applied to x. Nevertheless, x (and hence g) remains

polymorphic, because there is no other type constraint involving this value in the
body of f. Thus, in the type of f, that is, (’a -> int) -> ’a -> int, the variable ’a
relates the type of the argument of g with the type of x, without adding any extra
constraints. Similarly, the function iter of the library List has a polymorphic
type:

 	 iter 	 : 	 (’a -> unit) -> ’a list -> unit

This relates the type of the function passed as argument to that of the elements of the
list that the function iterates over.

 A polymorphic type can contain several type variables, to represent unrelated
generic types. Thus, consider the function make_pair, defined by:

 let make_pair x y = (x, y)

Here, the arguments x and y may be of any type, and they need not be related. Hence
this function has a polymorphic type with two variables, that is, ’a -> ’b -> ’a * ’b.

 In the same way, the functions map and fold_right of the library List have the
following polymorphic types:

 	 map 	 : 	 (’a -> ’b) -> ’a list -> ’b list

	 fold_right 	 : 	 (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

These types are the most general possible.

 Right-to-Left and Left-to-Right Iterators on Lists

Combining higher-order functions and polymorphic types allows us to define
iterators, that is, functions that traverse generic data structures, such as
lists.

 For example, the iterator fold_right used in the program radix.ml can be
defined as follows:

 # let rec fold_right f l e =
 match l with
 | [] -> e
 | x :: r -> f x (fold_right f r e);;
 val fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b = <fun>

 As we have seen in the program radix.ml, the use of such an iterator allows us to
avoid writing recursive functions. Suppose, for example, that we wish to multiply
all the elements of a list of floats. We can simply write a function mult as
follows:

 # let sum l = fold_right (fun x y -> x *. y) l 1. ;;
 val mult : float list -> float = <fun>

 The reason for calling this iterator fold_right is that it treats the elements of the
list from right to left. The list is, in fact, traversed from left to right, but the recursive
call is performed before applying the function passed as argument. This means
that the rest of the list is treated before its first element. We can confirm
this behaviour by applying fold_right to a function that prints its first
argument:

 # fold_right (fun x () -> print_int x) [1;2;3;4] ();;
 4321- : unit = ()

 It is natural at this point to consider the other iterator, which traverses and treats
elements from left to right. It is naturally called fold_left and is written as
follows:

 # let rec fold_left f e = function
 | [] -> e
 | x :: r -> fold_left f (f e x) r;;
 val fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a = <fun>

It is clear that the elements are effectively treated from left to right:

 # fold_left (fun () x -> print_int x) () [1;2;3;4];;
 1234- : unit = ()

We can write the function mult with fold_left as we did with fold_right:

 # let mult l = fold_left (fun x y -> x *. y) 1. l ;;
 val mult : float list -> float

There is, nevertheless, a slight difference. On a list containing hundreds of thousands of
elements, the function mult written with fold_right may trigger a stack overflow,
which results either in an exception Stack_overflow or in the sudden halt of the
program. This is because the recursive call to fold_right is not a tail call. (Since the
call must be carried out before performing the operation, it is necessary to save the
value of the first element of the list.) By contrast, in the case of fold_left, the
recursive call is a tail call. (The stack is not needed since the value x is used before
the recursive call to fold_left).

 It is important to note that an iterator like fold_left or fold_right
traverses all the elements of the list passed as argument. If we wish
to stop the calculation at a specific element, we have at least two
possibilities4 :
Either we write a recursive function that traverses the list and stops when we want it
to. Alternatively, we can use an iterator and raise an exception to interrupt the list
traversal. Consider again the example of the function mult. We may wish to stop the

calculation when the value 0 is encountered. The version with the exception may be
written as follows:

 let mult l =
 try
 List.fold_left
 (fun x y -> if y = 0. then raise Exit else x *. y) 1. l
 with Exit -> 0.

However, in this case, writing a recursive function that terminates when it encounters 0 is
simpler and more elegant.

 2.10 Breakout without Bricks

[image: PIC] Ideas introduced

 	compilation unit, separate compilation

 	module, interface

Our tenth program (see page 160) is a simplified version of the game Breakout,
without the bricks. The game consists in making a ball bounce within a frame, by
means of a paddle that is controlled using the mouse.

[image: PIC]

Figure 2.7: Breakout without bricks.

 Graphically, the game window is as shown in figure 2.7, represented by a gray
frame, with a black circle representing the ball, and a black rectangle at the base of
the game window representing the paddle.

 Programming such a game involves three main ingredients. First, we must define
the constants of the game, that is, the dimensions of the window (its height and
width, in pixels), the dimensions of the ball (that is, the radius of the circle), and the
paddle (the height and width of the rectangle). Next, we must determine the state of
the game, that is, the set of values that characterize it at any instant. Here, these are
the coordinates of the center of the ball, its velocity, and the position of the paddle,
which can be specified by the coordinates of its bottom-left corner. To simplify
matters, we may use the same coordinate system as that of the library Graphics.
That is, the point with coordinates (0,0) is located at the bottom left of the window,
and the x- and y-axes are respectively the window’s bottom and left edges.
Finally, the game is played using an algorithm that executes the following
steps:

	Initialize the state of the game (the position and velocity of the ball, the
 position of the paddle).

	Erase the graphical window.

	Calculate the position of the paddle as a function of the x-coordinate of
 the mouse.

	Display the ball and the paddle.

	
 Calculate the new state of the game, that is:

 	the new position of the ball, as a function of its current position and
 velocity vector;

 	the new velocity vector of the ball, as a function of its bouncing off
 the sides of the window and the position of the paddle.

	Return to step 2.

 As you can see, the actions performed in these steps are of two types:
those that are purely graphical (steps 2, 3, 4) and those that manipulate the
state of the game (steps 1, 5, 6). We choose to divide the OCaml code into
two files: draw.ml and breakout.ml. The first contains all the constants
and graphical functions of the game; the second maintains the current state
and implements the algorithm. In general, to clarify the structure of larger
programs, it is a good idea to divide them into several files, called compilation
units.

Program 10 [draw.ml] — Breakout without Bricks (1/2)

open Graphics

let left = 0.
let right = 300.
let down = 0.
let up = 200.

let ball = 5
let paddle = 50
let thick = 8

let gray = rgb 220 220 220

let init () =
 let s = Printf.sprintf " %dx%d" (truncate right) (truncate up) in
 open_graph s;
 auto_synchronize false

let clear () =
 set_color gray;
 fill_rect 0 0 (truncate right) (truncate up)

let get_paddle_pos () =
 let x = fst (mouse_pos ()) in
 max 0 (min x (truncate right - paddle))

let game x y =
 clear ();
 set_color black;
 fill_circle (truncate x) (truncate y) ball;
 let x = get_paddle_pos () in
 fill_rect x 0 paddle thick;
 synchronize ();
 x

 To compile this program, which is divided into two files, we use the following
command line:

 > ocamlc -I ‘ocamlfind query graphics‘ -o breakout graphics.cma \
 draw.ml breakout.ml

As we will see shortly, the order of file names on the command line matters.

 The graphical part (file draw.ml, program 10), begins by defining the dimensions
of the game window, with the declaration of four constants: left, right, down, and
up.

 let left = 0.
 let right = 300.
 let down = 0.
 let up = 200.

These constants are values of type float, as we will later be using floating-point numbers
in trajectory calculations so as to guarantee a high degree of precision.

 The following three constants define respectively the radius of the ball, the length
of the paddle, and its width (in pixels).

 let ball = 5
 let paddle = 50
 let thick = 8

Finally, we declare a color gray, obtained by specifying the values of its three
components—red, green, and blue—using the function rgb.

 let gray = rgb 240 240 240

 The function init initializes the game window by opening a graphical canvas of
dimensions right×up.

 let init () =
 let s = Printf.sprintf " %dx%d" (truncate right) (truncate up) in
 open_graph s;
 auto_synchronize false

Since the constants right and up are values of type float, we use the predefined
function truncate from the standard library to truncate their values and convert
them into integers. The call auto_synchronize false activates the double buffering
mode of the graphical device. When this mode is activated, all display operations
(drawing a circle, a rectangle, etc.) are performed in a memory zone called the backing
store, and not directly on the screen. The function synchronize must then be
used explicitly to copy the contents of the backing store to the screen. As
this copy is instantaneous, it eliminates any “flickering” effects during the
animation.

 We now write a function for each graphical step of the algorithm. Step 2 is
implemented by a function clear that erases the canvas by drawing a gray rectangle
of the same dimensions as the graphical window.

 let clear () =
 set_color gray;
 fill_rect 0 0 (truncate right) (truncate up)

Step 3 of the algorithm is implemented by a function get_paddle_pos. It begins by
retrieving the x-coordinate of the current position of the mouse (with the function
mouse_pos). To ensure that the paddle does not go outside the game window
on the right side, we take the minimum between the value obtained and
truncate right - paddle.

 let get_paddle_pos () =
 let x = fst (mouse_pos ()) in
 max 0 (min x (truncate right - paddle))

 The main graphical function, game, takes as arguments the x- and y-coordinates of
the ball and implements steps 2, 3, and 4 of the algorithm.

 let game x y =
 clear ();
 set_color black;
 fill_circle (truncate x) (truncate y) ball;
 let x = get_paddle_pos () in
 fill_rect x 0 paddle thick;
 synchronize ();
 x

 The second file, breakout.ml (see page 166), implements steps 1, 5, and 6 of the
algorithm. The state of the game is encoded as two pairs of floating-point numbers:
(x, y) and (vx, vy), which represent respectively the coordinates of the ball and its

velocity.

 The first function of this file, bounce, calculates the new velocity of the ball,
taking into account that the ball may bounce off the sides of the window or the
paddle. The function bounce therefore also takes the position xp of the paddle as an
argument.

 let bounce (x, y) (vx, vy) xp =
 ...

To calculate the new component vx, the x-coordinate of the ball must be compared with
the left and right edges of the game window. The constants left and right having
been defined in the file draw.ml, the dot notation Draw.left and Draw.right
must be used to refer to them. Each compilation unit effectively defines a
module bearing the same name as the file, but with the first letter in upper
case.

 let vx =
 if x <= Draw.left || x >= Draw.right then -. vx else vx in

 In the same way, to calculate the new component vy, we must compare the
y-coordinate of the ball with the top of the window Draw.up. The direction of the
ball’s velocity also changes if the ball hits the paddle, that is, if the x-coordinate lies
between xp and xp +. float Draw.paddle, and if the y-coordinate is less than the
paddle thickness Draw.thick.

 let vy =
 if y <= float Draw.thick && x >= xp &&
 x <= xp +. float Draw.paddle || y >= Draw.up
 then -. vy else vy
 in
 (vx, vy)

 The following function returns the ball’s new position by adding the x- and
y-coordinates, respectively, to the velocity’s coordinates vx and vy.

 let new_position (x, y) (vx, vy) = x +. vx, y +. vy

Program 11 [breakout.ml] — Breakout without Bricks (2/2)

let bounce (x, y) (vx, vy) xp =
 let vx =
 if x <= Draw.left || x >= Draw.right then -. vx else vx in
 let vy =
 if y <= float Draw.thick && x >= xp &&
 x <= xp +. float Draw.paddle || y >= Draw.up
 then -. vy else vy
 in
 (vx, vy)

let new_position (x, y) (vx, vy) = x +. vx, y +. vy

let rec play (x, y) (vx, vy) =
 if y <= Draw.down then begin
 Printf.eprintf "Game over!\n";
 exit 0
 end;
 let xp = Draw.game x y in
 let vx, vy = bounce (x, y) (vx, vy) (float xp) in
 let x’, y’ = new_position (x, y) (vx, vy) in
 play (x’, y’) (vx, vy)

let () =
 Draw.init();
 let speed = 0.1 in
 let vx = speed *. Random.float 1. in
 let vy = speed *. Random.float 1. in
 play (Draw.right /. 2., float Draw.thick) (vx, vy)

 The function play implements the loop between steps 2 and 6. Starting from the
current state of the game, passed as argument, we begin by verifying that the ball
does not go beyond the bottom of the game window, by comparing the y-coordinate
to the constant Draw.down. If the ball does so, the game ends with a call to the
function failwith of the standard library:

 let rec play (x, y) (vx, vy) =
 if y <= Draw.down then failwith "game over";

If the game has not ended, we display the ball and the paddle using the function
Draw.game, which returns the x-coordinate of the paddle.

 let xp = Draw.game x y in

 Next, we calculate the new coordinates of the velocity vector, and then those of
the ball.

 let vx, vy = bounce (x, y) (vx, vy) (float xp) in
 let x’, y’ = new_position (x, y) (vx, vy) in

We return to step 2 by a recursive call to the function play with the new state of the
game as argument.

 play (x’, y’) (vx, vy)

The main part of the program opens the game window by a call to Draw.init.

 let () =
 Draw.init();

It then creates a random velocity vector (vx, vy):

 let speed = 0.1 in
 let vx = speed *. Random.float 1. in
 let vy = speed *. Random.float 1. in

Finally, the game begins with a call to the function play, placing the ball on top of the
paddle and at the center of the window:

 play (Draw.right /. 2., float Draw.thick) (vx, vy)

 Additional Information

 Separate Compilation and Linking

The command line given above to compile Breakout can be decomposed into
several commands. We can begin by compiling the file draw.ml alone, with the
command:

 > ocamlc -I ‘ocamlfind query graphics‘ -c draw.ml

 The compiler option -c specifies that we do not wish to construct an executable,
but only to compile the code. The result consists of two files, draw.cmi and draw.cmo.
The first contains typing information, and the second contains code. This code is not
self-contained. In particular, it references functions from the module Graphics, which
are not included in this file.

 We can then compile the second file, with a similar command.

 > ocamlc -c breakout.ml

 Since this file references the module Draw, we had to compile the file draw.ml first.
The information needed for the type-checking of breakout.ml is contained in the file
draw.cmi. Here, too, the code obtained is not self-contained; the file breakout.cmo
references values and functions of the module Draw that are contained in
draw.cmo.

 To obtain an executable, we must perform a linking operation, which consists in
putting together several pieces of code while verifying that every reference can be
resolved. Here, the three pieces involved are those of the OCaml library graphics.cma
(which groups a set of cmo files together) and the two files, draw.cmo and
breakout.cmo.

 > ocamlc -I ‘ocamlfind query graphics‘ -o breakout graphics.cma \
 draw.cmo breakout.cmo

 As we explained above, the order of file names on this command line is significant.
In particular, it must be compatible with the dependencies between compilation units.
Here, breakout.cmo depends on draw.cmo, which itself depends on graphics.cma.
Furthermore, it must be understood that an OCaml program does not have a specific
entry point. The code obtained after linking simply executes the code of
the different files passed on the command line, in the order in which they
appear.

 Interfaces

The file draw.cmi produced by compilation contains the typing information of all the
values defined in the file draw.ml. This same information can be obtained using the
compiler option -i.

 > ocamlc -I ‘ocamlfind query graphics‘ -i draw.ml
 val left : float
 val right : float
 ...
 val game : float -> float -> int

We may, however, wish to make some of these values inaccessible to the
rest of the program. For example, we may wish to hide the function clear.
To this end, we can define an interface for draw.ml, in the form of a file
draw.mli.

Program 12 [draw.mli] — Interface for Module Draw

__

val left : float
val right : float
val down : float
val up : float

val paddle : int
val thick : int

val init : unit -> unit
val game : float -> float -> int

 Such a file is given in program 12. We write it using the same syntax as
that used by the compiler option -i. We compile draw.mli before compiling
draw.ml.

 > ocamlc -c draw.mli
 > ocamlc -I ‘ocamlfind query graphics‘ -c draw.ml

The first command produces the file draw.cmi. The second produces draw.cmo and
verifies that it is compatible with draw.cmi, that is, that it defines values having the
names and types specified in the file draw.cmi. When there is a file draw.mli, the
compiler refuses to compile draw.ml until draw.mli has been compiled. If we then try
to use a value in breakout.ml that is not mentioned in draw.mli, for example clear,
an error is triggered.

 > ocamlc -c breakout.ml
 Error: Unbound value Draw.clear

 Interfaces are not only a means of limiting the visibility of values defined in a
compilation unit. They also enable separate compilation. This means that the code of
each compilation unit may be compiled independantly of the code of other units,
because it depends only on their interfaces. Once draw.mli is compiled,
we can compile either draw.ml or breakout.ml, in any order. Notably, this
makes it possible to divide the work amongst several developers once the
interfaces are in place. Furthermore, separate compilation helps avoid unnecessary
recompilation of code. For example, a change in the code of the function
Draw.clear would only call for recompiling draw.ml, and then redoing the linking
operation. No other unit using Draw needs to be recompiled (for example,
breakout.ml).

 Separate Compilation with dune

To compile our program with dune, we write the following configuration
file:

 (executable
 (name breakout)
 (modules draw breakout)
 (libraries graphics))

The line (modules draw breakout) lists the modules necessary for the compilation of
the program. The tool dune will successively compile the modules Draw and Breakout,
as we did manually above. In particular, if an .mli file exists, it is compiled before the
corresponding .ml file. Furthermore, the line (libraries graphics) indicates that
the files must be compiled with the library Graphics.

 Modules

We have used various modules thus far, including those of the standard library, like
Array and List, and the modules Draw and Breakout of the preceding example.
These modules always corresponded to compilation units, that is, to pairs of .ml and
.mli files. The notions of module and interface are, in fact, more precise than the
notion of file; they correspond to constructs of the language. Thus, we can define an
interface I that contains a constant a and a function f with the following
syntax:

 module type I = sig
 val a: int
 val f: int -> int
 end

 We can then define a module M having this interface, with the following
syntax:

 module M : I = struct
 let a = 42
 let b = 3
 let f x = a * x + b
 end

The compiler then performs the same operations as if we had written the interface I in a
file m.mli and the module M in a file m.ml. In particular, we access the constant a with
the notation M.a, while the constant b is not accessible outside the module
M.

 2.11 Logo Turtle

[image: PIC] Ideas introduced

 	abstract types

 	private types

 	encapsulation

 	functors

Our next program, turtle.ml, is a simplified version of the Logo turtle. Although the

programming language Logo has fallen into disuse today, conceptually, it remains as
interesting as ever. Its most salient feature is a turtle that can be displaced using
instructions of the form “forward 3 units” or “turn right 30 degrees,” and whose path
is then displayed on the screen.

 [image: PIC]

Figure 2.8: Example of a drawing using the Logo turtle.

 We can thus easily trace a square by repeating the sequence “forward, then turn
left 90 degrees,” or even draw figure 2.8 through several repetitions of the sequence
“trace a square, then turn by 20 degrees.”

 Our aim here is to implement some of the basic turtle operations, such as moving
forward, turning, and lifting the pen.

 The following question arises naturally when writing the code of the turtle: how
do we represent the angle that determines the turtle’s direction?

 We may choose to represent the angle in degrees or in radians, as an integer or a
floating-point number, and so forth. Here, we decided not to choose amongst these
options, and instead to parametrize the code by a module A that provides the type of
angles.

 We begin accordingly by creating a signature for such a module, namely:

 module type ANGLE = sig
 type t
 val of_degrees: float -> t
 val add: t -> t -> t
 val cos: t -> float
 val sin: t -> float
 end

The type t is that of angles. It has no definition; we say it is an abstract type. We
can, nevertheless, use it in the implementation of our turtle because we are
provided with the following: a function of_degrees, to convert an angle
expressed in degrees to a value of type t; a function add, to add two angles;
and, finally, sin and cos functions, to calculate the sine and cosine of an
angle.

 We can therefore write the Logo turtle as a module Turtle, parametrized by a
module A with signature ANGLE. Such a module is called a functor and is defined
thus:

 module Turtle(A: ANGLE) = struct

Inside the module Turtle, the module A of signature ANGLE is visible and may be used
like any other module. For example, we can introduce a reference angle, containing
the current direction of the turtle, using:

 let angle = ref (A.of_degrees 0.)

 We can also write a function rotate_left to make the turtle turn d degrees to the
left:

 let rotate_left d = angle := A.add !angle (A.of_degrees d)

 The complete code of the parametrized turtle is given in program 13 (see below).
There, we find references tx and ty which keep track of the the current position of the
turtle, and a function advance to make the turtle move forward. The boolean
reference draw indicates whether the turtle’s pen is up or down, and is modified using
the functions pen_up and pen_down.

Program 13 [turtle.ml] — A Logo turtle

module type ANGLE = sig
 type t
 val of_degrees: float -> t
 val add: t -> t -> t
 val cos: t -> float
 val sin: t -> float
end

module Turtle(A: ANGLE) = struct

 let draw = ref true
 let pen_down () = draw := true
 let pen_up () = draw := false

 let angle = ref (A.of_degrees 0.)
 let rotate_left d = angle := A.add !angle (A.of_degrees d)
 let rotate_right d = rotate_left (-. d)

 open Graphics
 let tx = ref 400.
 let ty = ref 300.
 let () = open_graph " 800x600"; set_line_width 2;
 moveto (truncate !tx) (truncate !ty)

 let advance d =
 tx := !tx +. d *. A.cos !angle;
 ty := !ty +. d *. A.sin !angle;
 if !draw then lineto (truncate !tx) (truncate !ty)
 else moveto (truncate !tx) (truncate !ty)

end

 To use the functor Turtle, we must begin by providing a specific module with
interface ANGLE. If we choose to represent angles in radians and floating-point
numbers, one such module Angle may be defined as follows:

 module Angle: ANGLE = struct
 type t = float
 let add = (+.)
 let pi_over_180 = atan 1. /. 45.
 let of_degrees d = d *. pi_over_180
 let cos = Stdlib.cos
 let sin = Stdlib.sin
 end

We then obtain a module T by applying the functor Turtle to the module Angle, which
is written thus:

 module T = Turtle(Angle)

 Finally, we can use the module T to trace the figure 2.8 by writing, for example:

 let square d =
 for k = 1 to 4 do T.advance d; T.rotate_left 90. done
 let squares d a =
 for k = 1 to truncate (360. /. a) do
 square d; T.rotate_left a
 done
 let () = squares 100. 20.

Here, square d traces a square of side d and squares d a, a set of squares of side d, with a
rotation of a degrees between any two successive squares.

 The reason for writing the module Turtle as a functor, parametrized by the
representation of angles, is that we can then apply it to other modules of
signature ANGLE, and thus obtain other turtles where the angles are represented
differently.

 Additional Information

 Abstract Types

In the above example, the type of angles A.t is an abstract type, because we do not
yet know how it will be implemented. We may equally use the notion of abstract
types to hide a concrete implementation, even when it is already known. This is what
we call encapsulation. Suppose, for example, that we wish to define a module to
manipulate integers between 0 and 30, and ensure that all the integers we use
lie within this interval. We begin by defining a signature INT31 for such a
module:

 module type INT31 = sig
 type t
 val create : int -> t
 val value : t -> int
 end

This signature declares an abstract type t, and two functions create and value. We note
that, by virtue of the abstract nature of the type t, a value of this type can only be
constructed using the function create. Next, we can construct a module Int31 with
this signature.

 module Int31 : INT31 = struct
 type t = int
 let check x = if x < 0 || x > 30 then invalid_arg "Int31.create"
 let create x = check x; x
 let value x = x
 end

 Inside this module, we give a definition to the type t, namely, int. Outside the
module Int31, by contrast, the type t remains abstract, that is, we do not know that
the values of type Int31.t are integers. In particular, we can enforce the
invariant that any value of type Int31.t lies between 0 and 30. We would
not have been able to do this if we had written type t = int in the interface
INT31.

 The abstract nature of type t is illustrated by the way in which the values are
displayed by the OCaml interpreter:

 # let x = Int31.create 7;;
 x : Int31.t = <abstr>

 Here, the value displayed for x is <abstr>, which denotes the value of an abstract
type. Thus, x cannot be used like an integer:

 # x + 10;;
 Error: This expression has type Int31.t
 but an expression was expected of type int

 The type system therefore distinguishes the two types Int31.t and int.
Nevertheless, the value of x (namely, the integer 7) is exactly the same as if x had
type int. Using an abstract type does not introduce any extra cost at runtime. If we
wish to add the value of x to 10, it is necessary to apply the function Int31.value to
x in order to get back a value of type int.

 # Int31.value x + 10;;
 - : int = 17

 Private Types

As we have seen with the type Int31.t, an abstract type can be used to enforce an
invariant. Let us consider the example of a module Polar, used to represent complex
numbers in polar coordinates, with the type:

 type t = { rho : float; theta : float; }

If we wish to enforce the invariant 0 ≤rho on this type, or to ensure that
0 ≤theta < 2π, one solution is to define an abstract type. However, in that
case, we would no longer be able to access the fields rho and theta from
outside the module Polar, and would therefore have to provide two accessor
functions:

 val rho : t -> float
 val theta : t -> float

A more elegant solution consists in making the type t a private type. We give the
module a signature in which the definition of the type t is qualified with
private.

 type t = private { rho : float; theta : float; }

The definition of the type t inside the module remains unchanged. The private nature of
the type t entails that it is no longer possible to construct a record of type Polar.t
outside the module. Thus, if we write the expression { Polar.rho = 1.;
Polar.theta = 0. }, the following error is triggered:

 Error: Cannot create values of the private type Polar.t

 However, it remains possible to construct values of this type inside the module
Polar. We may therefore provide one—or several—functions to create values of type
t, for example:

 val create : float -> float -> t

We may implement this function inside the module in a way that enforces the invariant:
We may either choose to fail if the values of rho and theta do not satisfy the
invariant, or normalize the values so that they do. Private types are useful because
their definition is not hidden, so that the structure of their values is accessible, but
the construction of these values is still disallowed. In our example, we can
access the fields rho and theta with the usual notation in an expression
or a pattern matching. Furthermore, it would not be possible to modify a
mutable field of a private record. The notion of privacy is not limited to record
types.

 Iterators and Abstract Types

Iterators allow the traversal of a data structure (see section 2.9 Converting Integers
from an Arbitrary Base). In case of concrete types, such as lists, we always have the
option of directly defining a recursive function. By contrast, in case of abstract types,
this is no longer possible. It is therefore a good idea to provide an iterator as well, in

the form of a function iter or fold. If, for example, a module S provides an
abstract type for sets of integers—let us call it set—it could also provide a
function:

 fold: (int -> ’a -> ’a) -> set -> ’a -> ’a

We can use this function to calculate the sum of the elements of a given set, even though
we do not know its representation.

 Functors

Functors allow us to construct data structures parametrized by other data structures.
The OCaml standard library contains four examples of data structures defined as
functors: Hashtbl.Make, Set.Make, Map.Make, and Weak.Make. Part II of this book
also contains numerous such examples. Functors can also help us write algorithms
parametrized by data structures or even by other algorithms (see the various
examples in Part III). In general, functors are an elegant way of reusing code, by
writing it in the most generic way possible. Despite numerous differences, they are
comparable to C++ templates.

 2.12 Playing a Musical Score

[image: PIC] Ideas introduced

 	algebraic types

 	pattern matching

Our next program (see page 202), music.ml, plays a musical score. The simple scores
that we are going to play are represented grapically as in figure 2.9.

 [image: PIC]

Figure 2.9: Musical score.

 There are several types of signs here:

 	Notes are determined by their pitch (or position) on the score and their
 duration. We are only interested in notes of two specific durations: half
 notes and quarter notes. Half notes are twice as long as quarter notes.

 	Silences, for which we similarly consider only those that have the durations
 of half and quarter notes.

To these signs, we add the tempo, which determines the number of quarter
notes per minute. In the example above, the tempo is 60 quarter notes per
minute.

 To play the notes, we need to know their respective frequencies (in Hz). To
facilitate this calculation, we represent the pitch of a note not by its position on the
score, but rather by using the following two pieces of information:

 	a main note—do, re, mi, fa, sol, la, or si;

 	an octave 0, 1, 2, 3, etc.

This representation allows us to determine the frequency of a note easily, using the
following formula:

[image: o f = f0 × 2]

 Here, f0 is the frequency of its main note in the octave 0 and o is its octave.
Table 2.10 gives the frequencies in octave 0 for the main notes.

[image: Note Frequency (Hz) ----------for-octave 0---- do 33 re 37 mi 41 fa 44 sol 49 la 55 si 62]

 Figure 2.10: Frequencies for octave 0 of the main musical notes.

Program 14 [music.ml] — Playing a Musical Score

type note = Do | Re | Mi | Fa | Sol | La | Si
type pitch = { note : note; octave : int }
type duration = Half | Quarter
type symbol = Note of pitch * duration | Rest of duration
type score = { symbols : symbol list; metronome : int }

let frequency { note = n; octave = o} =
 let f0 =
 match n with
 | Do -> 33
 | Re -> 37
 | Mi -> 41
 | Fa -> 44
 | Sol -> 49
 | La -> 55
 | Si -> 62
 in
 f0 * truncate (2. ** float o)

let millisecondes d t =
 let quarter = 60000 / t in
 match d with
 | Half -> quarter * 2
 | Quarter -> quarter

let sound t s =
 match s with
 | Note (p, d) ->
 let f = frequency p in
 Graphics.sound f (millisecondes d t)
 | Rest r ->
 Graphics.sound 0 (millisecondes r t)

let play_score { symbols = l; metronome = t } =
 List.iter (sound t) l

 In order to represent all the elements of a score, our program begins by defining
several types. The main notes are represented by the type note as follows
5:

 type note = Do | Re | Mi | Fa | Sol | La | Si

This is an enumerated type, which defines a finite domain made up of seven elements (Do,
Re, etc.), called constructors. Syntactically, OCaml requires that the name of a
constructor begin with an uppercase letter.

 Once we have defined this type, we may manipulate values of type note by simply
using the names of their constructors:

 # Re;;
 - : note = Re

 The pitch of the notes is represented using records of type pitch with two fields,
note and octave, which must contain non-negative integers.

 type pitch = { note : note; octave : int }

 The durations, which are of type duration, are represented by the two
constructors Half (half notes) and Quarter (quarter notes).

 type duration = Half | Quarter

 To represent the two kinds of signs that may appear on musical scores, we define
the type symbol as follows:

 type symbol = Note of pitch * duration | Rest of duration

This is an algebraic type, which allows us to distinguish between notes and silences by
means of two constructors, Note and Rest. Unlike the constructors of enumerated
types note and duration, the constructors Note and Rest have arguments. In case of
Note, the arguments are of type pitch and duration. Rest has an argument of
type duration. For example, to create a silence of quarter-note duration, we
write:

 # Rest Quarter;;
 - : symbol = Rest Quarter

Similarly, to create a note re in octave 1 of half-note duration, we write:

 # Note ({ note = Re; octave = 1 }, Half);;
 - : signe = Note ({note = Re; octave = 1}, Half)

 Finally, scores are represented by the record type score, composed of a list of
signs and a tempo that gives the number of quarter notes per minute.

 type score = { symbols : symbol list; metronome : int }

 The first function of the program calculates the frequency associated with
the pitch of a note based on the formula and the table of frequencies given
above.

 let frequency { note = n; octave = o } =

Given a note n of type note and an octave o, the function frequency begins by
determining the frequency f0 of the main note n using the pattern matching construct
match n with as follows:

 let f0 =
 match n with
 | Do -> 33
 | Re -> 37
 | Mi -> 41
 | Fa -> 44
 | Sol -> 49
 | La -> 55
 | Si -> 62
 in
 ...

This construct returns different values depending on the constructor used to create n.
Thus, if n is the constructor Do, the construct match n with returns the integer 33.
Else, if n is the constructor Re, it is the integer 37 that is returned, and so
forth. The main frequency f0 is then used to calculate the frequency of the
note:

 f0 * truncate (2. ** float o)

 The second function calculates the time (in milliseconds) corresponding to a
duration d (a half or quarter note), for a given tempo t.

 let milliseconds d t = ...

We begin by calculating the time of a quarter note, (quarter), for the given
tempo:

 let quarter = 60000 / t in

 Next, depending on the duration d, we return quarter * 2 milliseconds for a
quarter note, and quarter milliseconds for a half note:

 match d with
 | Half -> quarter * 2
 | Quarter -> quarter

 The following function, sound, either plays a musical note or a silence:

 let sound t s = ...

Given a tempo t and a symbol s, sound pattern matches on s to determine if it is a
musical note or a silence:

 match s with
 | Note (p, d) ->
 ...
 | Rest r ->
 ...

This pattern matching construct allows us not only to discern the constructor used
to create s, but also to retrieve the arguments of this constructor. Thus,
if s corresponds to the first pattern Note (p,d), the two variables p and d
represent, respectively, the pitch and duration associated with this constructor. In
the second pattern, the variable r represents the silence associated with the
constructor Rest. In both cases, the variables introduced by the patterns
have a scope limited to the expression on the right-hand side of the arrow
->.

 When s is of the form Note (p, d), we calculate the frequency f associated
with the pitch p of the note using the function frequency. Then, we use the
function Graphics.sound to emit a sound of frequency f for a duration of
(milliseconds d t):

 | Note (p, d) ->
 let f = frequency p in
 Graphics.sound f (millisecondes d t)

 When s is a silence of the form Rest r, we emit a sound of zero frequency during
(milliseconds r t) milliseconds.

 | Rest r ->
 Graphics.sound 0 (millisecondes r t)

Finally, the last function plays the notes of a score one by one, using the function
sound:

 let play_score { symbols = l; metronome = t } =
 List.iter (sound t) l

 Additional Information

 Pattern Matching

In general, the pattern matching construct match v with generalizes what we
saw earlier in case of lists (section 2.8 Reversing the Order of Lines in a
Text). It contains k branches, each branch associating a pattern with an
expression:

 match v with
 | pattern_1 -> e_1
 | pattern_2 -> e_2
 | ...
 | pattern_k -> e_k

The value v is first evaluated and is then compared, from top to bottom, with each
pattern. The only expression evaluated by this construct is the e_i corresponding to
the first pattern compatible with the shape of v.

 The syntax of patterns is very expressive. It allows us to decompose complex
values with ease, for example values defined using the following types t and
u:

 type t = A of int * float | B of string
 type u = { a : t; b : int * t }

Thus, the pattern { b = (_, A (x, _)) } allows us to retrieve the integer 1 passed as
argument to the constructor A in the following value:

 { a = B "foo"; b = (10, A(1, 4.5)) }

Informally, the pattern { b = (_, A (x, _)) } is read as “a record whose field b
contains a pair, the second component of which is a value constructed using A with
two arguments, the first of which is named x.”

 OCaml can also verify the exhaustivity of pattern matching, ensuring that all
possible cases are indeed covered. Thus, for any value v of type u, the compiler detects
that the following pattern matching is not exhaustive:

 match v with
 | { a = A(_, x); b = (_, B y) } -> ...
 | { a = A(_, x); b = (_, A (y, _)) } -> ...
 | { a = B x; b = (_, B y) } -> ...

It even indicates that values of the form { a=B _; b=(_, A (_, _)) } are not handled
by this pattern matching, which could lead to a runtime error. By contrast, the
compiler verifies that the following construct is exhaustive, although this is not
obvious a priori:

 match v with
 | { a = A(_, x); b = (_, B y) } -> ...
 | { a = A(_, x); b = (_, A (y, _)) } -> ...
 | { a = B x; b = (_, B y) } -> ...
 | { a = _; b = (_, A(_, y)) } -> ...

 The pattern matching construct also allows us to associate the same expression
with several patterns. These patterns, called or patterns, take the following
form:

 match v with
 | pattern_1 | pattern_2 | ... | pattern_k -> e
 | ...

The only syntactic constraint is that each pattern must introduce the same variable
names, and these must have the same type. For example, we may write the following
or pattern on values of type u:

 match v with
 | { a = A(x, _) } | { b = (x, _) } -> ...
 | ...

It is equally possible to associate variable names to the sub-parts of a pattern using the
as notation, as in the following example:

 match v with
 | { a = B _ ; b = (_, (A (y, _) as z)) } -> (y, z)
 | ...

Here, the variable z references the value that is matched by the (sub-)pattern A (y, _).
Thus, the application of this pattern matching to { a = B "foo"; b = (10, A(1,
4.5)) } will construct the pair (1, A(1, 4.5)).

 Finally, pattern matching may be extended with arbitrary boolean conditions,
using the when notation as follows:

 match v with
 | pattern_1 when e -> e_1
 | ...

For example, we can match values of type u having a field a of the form A(x, _), with x
greater than 10, as follows:

 match v with
 | { a = A(x, _) } when x > 10 -> ...
 | ...

It is important to note that the exhaustivity analysis does not take into account these
boolean conditions and that all patterns constrained by such expressions are simply
ignored.

 Algebraic Types

It is also possible to define polymorphic algebraic types. To do so, we must indicate
the list of type variables (or parameters) that appear in the definition. Consider the
following example:

 type (’a, ’b) t = C of ’a * int | D of ’b | E of int

Here, the type t is parametrized by two variables ’a and ’b. The constructors C and D
are polymorphic. Thus, as in the case of a polymorphic function, these constructors
may be applied to arguments of any type:

 # let v = C(3, "foo");;
 val v : (int, string) t = C(3, "foo")

 The type ’a list of polymorphic lists predefined in the OCaml standard library is
an example of a polymorphic algebraic type. If the syntax allowed it, it could be
defined by:

 type ’a list = [] | :: of ’a * ’a list

Another example of a polymorphic algebraic type is the type option of the standard
library defined by:

 type ’a option = None | Some of ’a

It serves in particular to represent a value not yet initialized, or an optional result. For
example, the following function returns either None, when it is not possible to divide x
by y, or else Some (x/y):

 let division x y = if y = 0 then None else Some (x / y)

 # division 2 0;;
 - : int option = None

 2.13 Quadtrees

[image: PIC] Ideas introduced

 	trees, binary trees

 	sharing

Our next program (page 219), quad.ml, manipulates black-and-white square images
of size 2n × 2n. If the image is completely black or white, it is represented using a
constant denoting its color. Otherwise, it is decomposed into four sub-images, each of
size 2n−1 × 2n−1, following the order indicated in figure 2.11.

 [image: PIC]

Figure 2.11: Breaking up an image.

 The image is the union of the four sub-images. In our program, the type quad
corresponds to this representation.

 type quad = White | Black | Node of quad * quad * quad * quad

The constants White and Black respectively denote an image that is either completely
white or completely black. The constructor Node corresponds to an image decomposed
into four sub-images, which are the four arguments of this constructor.

 Consider the image in figure 2.12. It is represented by the following value of type
quad:

 Node (Node (Black, Black, Black, White),
 Black,
 Node (Black, Black, Black, White),
 White)

 [image: PIC]

 Figure 2.12: An image of size 4 × 4.

 Graphically, we may also represent this value as follows:

 [image: PIC]

This is why we speak of trees in relation to such values.

 Let us now write a function checker_board, which constructs a quadtree
corresponding to a 2n × 2n checkerboard. Thus, checker_board 3 corresponds to the
image in figure 2.13.

 [image: PIC]

Figure 2.13: An 8 × 8 checkerboard.

 We proceed by recursion on n. If n is 0, we make an arbitrary choice and return a
black square.

 let rec checker_board = function
 | 0 -> Black

If n = 1, we return a checkerboard of size 2 × 2:

 | 1 -> Node (White, Black, White, Black)

Finally, if n > 1, we construct a 2n−1 × 2n−1 checkerboard that we use four times over to
construct a checkerboard of size 2n × 2n.

 | n -> let q = checker_board (n - 1) in Node (q, q, q, q)

Program 15 [quad.ml] — Quadtrees

type quad = White | Black | Node of quad * quad * quad * quad

let rec checker_board = function
 | 0 -> Black
 | 1 -> Node (White, Black, White, Black)
 | n -> let q = checker_board (n - 1) in Node (q, q, q, q)

let rec draw x y w = function
 | White ->
 ()
 | Black ->
 Graphics.fill_rect x y w w
 | Node (q1, q2, q3, q4) ->
 let w = w / 2 in
 draw x y w q1;
 draw (x + w) y w q2;
 draw (x + w) (y + w) w q3;
 draw x (y + w) w q4

let () = draw 0 0 256 (checker_board 3)

 Let us now write a function draw that draws the image represented by a quadtree.
This function takes as arguments the coordinates of the square in which we wish to
draw the image: the position (x,y) of the bottom-left point of the image, and the
side length w of the square. We proceed recursively on the structure of the
quadtree.

 let rec draw x y w = function

If the tree consists of only one leaf, we distinguish between two cases: For a white leaf,
we do nothing; for a black leaf, we shade the square defined by x, y, and
w.

 | White -> ()
 | Black -> Graphics.fill_rect x y w w

If, however, we are in the case of the constructor Node, we begin by calculating the side
length of the four sub-images, namely, w∕2.

 | Node (q1, q2, q3, q4) ->
 let w = w / 2 in

Then, we draw the sub-images with four recursive calls to draw. In each case, we pass the
coordinates of the bottom-left corner of the corresponding sub-image.

 draw x y w q1;
 draw (x + w) y w q2;
 draw (x + w) (y + w) w q3;
 draw x (y + w) w q4

In this way, we can draw an 8 × 8 checkerboard in a square of side 256 by calling
draw 0 0 256 (checker_board 3).

 Additional Information

 Constructors with Records

With the type quad of quadtrees, it is easy to make a mistake in the order of the
sub-trees of the constructor Node. We have to be very careful and constantly keep in
mind the figure 2.11. An alternative consists in naming the four sub-trees, as we do
with record types:

 type quad =
 | White
 | Black
 | Node of { sw: quad; se: quad; ne: quad; nw: quad }

Both within a pattern and when constructing a value, we use the syntax of records to
manipulate the arguments of the constructor Node. Thus, we construct a node as
follows:

 Node { nw = a; sw = b; se = c; ne = d }

As we see here, the declaration order of the fields is not important. As in case of records,
we can use pattern matching to retrieve their values:

 match q with
 | ...
 | Node { sw; se; ne; nw } -> ...

However, we cannot write the following:

 match q with
 | ...
 | Node r -> ...

This is because there is no record as such, only a syntax to name the four arguments of
the constructor Node.

 To understand the difference, let us compare the constructor Node above with the
constructor C of the type t below:

 type r = { a: int; b: bool; c: int }
 type t = C of r | ...

Here, the constructor C has a single argument of type r, which is a record. This value can
be retrieved and, for example, passed to a function which takes a value of
type r:

 match ... with
 | C r -> f r

This, however, has a cost. The constructor C contains a pointer to a record allocated
previously, which means two allocations are needed instead of one. And accessing the
components of the constructor C requires two memory accesses, the first to access the
record and the second to access the field.

 Invariants

We may wish to guarantee the property that a quadtree is never made up of four
leaves of the same color, since that would be an unnecessarily complicated
representation. To enforce this invariant, we must make quad either an abstract or a
private type. As alternatives to the constructors Black, White, and Node, we must
then provide two constants black and white, and a function node, defined so as to
guarantee the invariant.

 let node = function
 | White, White, White, White -> White
 | Black, Black, Black, Black -> Black
 | q1, q2, q3, q4 -> Node (q1, q2, q3, q4)

We is known as a smart constructor.

 Sharing

The attentive reader will have noticed that the function checker_board
makes a single recursive call, reusing its result four times. What we have
constructed is thus not a tree, but rather a DAG. A depiction of the result of
checker_board 3 that more accurately reflects its memory representation is
therefore:

 [image: PIC]

 In particular, checker_board n executes in O(n) time and space. By contrast,
drawing its result takes O(4n) time because the function draw traverses the four
sub-images successively. In other words, the function draw traverses a tree without
taking into account the sharing that exists in memory. Section 11.4 Hash-consing
explains how to exploit such sharing.

 Binary Trees

In a binary tree, each internal node contains exactly two sub-trees. The leaves, like
the nodes, can be labeled. For example, binary trees with internal nodes labeled by
integers correspond to the type:

 type tree = Leaf | Node of tree * int * tree

Similarly, trees with leaves labeled by strings correspond to the type:

 type tree = Leaf of string | Node of tree * tree

The reader will find numerous examples of such trees in the pages that follow.

 n-ary Trees

The number of sub-trees of an internal node is not necessarily fixed. It may vary and
can even be unbounded. In this case, we may represent the sub-trees of a node by a
list of trees. Thus we write:

 type tree = Node of tree list

It is interesting to note that we no longer need a specific constructor to represent
leaves because the value Node [] fulfills this role. Of course, we may label the
nodes of such a tree if we wish. An example may be found in section 5.4 Prefix
Trees.

 2.14 Solving the N-Queens Problem

[image: PIC] Ideas introduced

 	backtracking

 	persistence

We are interested here in the classic N-queens problem: N queens are to be placed on
an N × N chessboard such that none of them are threatened by the others.
Figure 2.14 shows one of the 92 solutions when N = 8.

 [image: PIC]

Figure 2.14: One solution of the 8-queens problem.

 More precisely, we are interested in the problem of enumerating all solutions,
without taking into consideration the symmetries of the problem. We proceed in a
relatively brute fashion by exploring all possibilities, noting nevertheless that a
solution must necessarily have one and only one queen on each line of the
chessboard. In light of this, we try to fill the chessboard line by line, placing
a queen each time in such a way that it is not threatened by the queens
already placed. Thus, if we have placed three queens on the first three lines of
the chessboard, we then search for a valid placement on the fourth line as
follows:

 [image: PIC]

If we find one, we place a queen there and continue the search on the following line.
Otherwise, we go back one step and begin again. A solution is obtained each
time we manage to place a queen on the last line. By proceeding in such a
systematic manner, we are sure to find all solutions. This technique is called
backtracking.

Program 16 [queens.ml] — The N-Queens Problem

module S = Set.Make(struct type t = int let compare = compare end)

let map f s = S.fold (fun x s -> S.add (f x) s) s S.empty

let rec upto n = if n < 0 then S.empty else S.add n (upto (n-1))

let rec count cols d1 d2 =
 if S.is_empty cols then
 1
 else
 S.fold
 (fun c res ->
 let d1 = map succ (S.add c d1) in
 let d2 = map pred (S.add c d2) in
 res + count (S.remove c cols) d1 d2)
 (S.diff (S.diff cols d1) d2)
 0

let () =
 let n = int_of_string Sys.argv.(1) in
 Format.printf "%d@." (count (upto (n - 1)) S.empty S.empty)

 For each line of the chessboard, our program will keep track of the columns in
which a queen may be placed. Thus, instead of trying all the N columns of the
current line, we would be able to examine far fewer than N and would therefore
backtrack sooner. We illustrate this idea for N = 8.

 Let us suppose that we have already placed
queens on the first three lines. Only five
columns need be considered in the fourth line
(at the bottom of the chessboard).

[image: PIC] (1)

Furthermore, three positions in the fourth line
are threatened by queens already placed along
a left diagonal. These three positions need not
be considered.

[image: PIC] (2)

Similarly, two positions in the fourth line are
threatened by queens already placed along a
right diagonal. These two positions need not
be considered.

[image: PIC] (3)

There are thus six positions on the fourth line
that cannot be used, leaving only two to be
consider, rather than eight.

[image: PIC] (4)

 Our program will proceed recursively, keeping track at each instant of three sets of
columns: the set cols of columns that remain to be considered; the set d1 of columns
that should be avoided since queens placed there would be threatened along a left
diagonal; and the set d2 of columns that should be avoided since queens placed there
would be threatened along a right diagonal. In our example, numbering the columns
starting from the right, we have cols = {0,2,5,6,7}, d1 = {3,5,6}, and
d2 = {0,3}, as shown in the figures above (respectively in (1), (2), and (3)). The
set of columns where queens can be placed is obtained by calculating the

set-theoretic difference cols∖d1∖d2, which gives the set {2,7}, as shown in
figure (4).

 To manipulate such sets of integers, we use the module Set.Make of the OCaml
standard library. This is a functor that we instantiate with a type equipped with a
total order. (The code of such a functor will be explained later in this book, in the
section AVL of chapter 5.)

 We choose here the usual order on the integers, provided by the function compare
of the library Stdlib.

 module S = Set.Make(struct type t = int let compare = compare end)

The resulting module S provides a data structure S.t that represents a set of integers, a
constant S.empty corresponding to the empty set, and operations such as S.add
(adding an element), S.remove (removing an element), S.diff (set-theoretic
difference), etc. An important property of this data structure is its persistence. This
means that the operations applied to this data structure do not modify it, but instead
return new data structures. Thus, if we have a set s of type S.t, then the expression
S.add 4 s denotes a new set (containing 4 and all the elements of s), while the set s
remains unmodified.

 Let us now write our program using a recursive function count that takes as
arguments the three sets cols, d1, and d2 described above:

 let rec count cols d1 d2 =

This function returns the number of solutions that are compatible with these arguments.
The search ends when cols is empty. We then indicate that a solution has been
found.

 if S.is_empty cols then 1 else

 Otherwise, we calculate the set of columns in which queens can be placed using

the expression S.diff (S.diff cols d1) d2, as explained above. Then, we traverse the
elements of this set using the iterator S.fold, where the accumulator is the current
number of solutions found.

 S.fold
 (fun c res -> ...)
 (S.diff (S.diff cols d1) d2)
 0

For each column c where a queen can be placed, it suffices to call count recursively with
the three sets adjusted accordingly. To adjust cols, it suffices to remove the element
c, using S.remove. To adjust d1 and d2, we use S.add to add the column c to each of
them, and then shift their elements by one unit as appropriate. To do this, we define a
function map that applies a function f to all the elements of a set s, that
is, it constructs the set {f(x)∣x ∈ s}. We may write it, for instance, using
S.fold.

 let map f s = S.fold (fun x s -> S.add (f x) s) s S.empty

Given this function, the set d1 may be adjusted using map succ, where succ is the
predefined function fun x -> x + 1. Likewise, the set d2 is adjusted with map pred, where
pred is the predefined function fun x -> x - 1. The function passed as argument to
S.fold therefore has the following form:

 (fun c res ->
 let d1 = map succ (S.add c d1) in
 let d2 = map pred (S.add c d2) in
 res + count (S.remove c cols) d1 d2)

With this, the function count is complete. It is important to note here the key role played
by the persistence of the sets cols, d1, and d2. Indeed, these sets are reused for each
value of c, and must therefore not be modified by the operations S.add and
S.remove.

 To solve the N-queens problem, it suffices to call count with cols equal to the set
{0,1,…,N − 1}, and d1 and d2 each equal to the empty set. To this end, we define a
function upto that constructs the set {0,1,…,n}.

 let rec upto n = if n < 0 then S.empty else S.add n (upto (n-1))

The main part of the program retrieves the value of N from the command line and then
displays the result obtained by count.

 let () =
 let n = int_of_string Sys.argv.(1) in
 Format.printf "%d@." (count (upto (n - 1)) S.empty S.empty)

We can thus enumerate the 365,596 solutions of the 14-queens problem in less than a
minute.

 Additional Information

The data structures that you find in the literature on algorithms are, for the most
part, imperative in nature: They are modified in-place by the operations they
provide. Arrays and linked lists are the first examples that come to mind.
Thus, writing to an array’s cell replaces the previous value by a new one.
Something similar occurs when we add an element to a linked list such as:

 [image: PIC]

The operation consists in modifying two of the pointers, as follows:

 [image: PIC]

As in case of the array, we have modified the structure of the list in-place. In both cases,
it is possible to return to the previous state, but it requires another in-place
modification.

 A persistent data structure, by contrast, is a data structure whose operations
never modify their arguments; new values are returned instead. Of course, we could
render a data structure persistent by making a copy of it systematically, but this
would be grossly inefficient. There are other, more efficient means of rendering an
imperative data structure persistent. See, for instance, section 4.4 Persistent
Arrays.

 There is an entire class of data structures for which persistence is both
possible and efficient, namely, immutable data structures, which cannot be
modified once constructed. For such data structures, it is possible to avoid
unnecessary copies through sharing. This is easiest to illustrate in case of
lists.

 If we define a list l by let l = [1; 2; 3], then, in terms of its memory representation,
l is a pointer. It points to a first block that contains 1 and a pointer to a second
block, and so on and so forth:

 [image: PIC]

 If we now define a list l’ by adding another element to the list l, with the
declaration let l’ = 0 :: l, we have the following situation:

 [image: PIC]

 The application of the constructor :: has the effect of allocating a new block,
whose first element is 0 and whose second element is a pointer having the same value
as l. The variable l continues to point to the same blocks as before. In general, any
function that we may write on lists has the property of not modifying the lists passed
as arguments.

 It is very important to understand that the above involves sharing. The
declaration of l’ allocates a single block (because only one constructor is applied),
and the blocks forming l are reused without modification. We have two lists of three
and four elements respectively, namely [1;2;3] and [0;1;2;3], but only four
memory blocks. In particular, no copy is made. In general, OCaml never makes copies
of values, unless you explicitly write a function to do so. Such a function would be
useless in case of lists because a list cannot be modified in-place. Functions that
make copies of values are not useful unless the data structures involved are
mutable.

 It is now clear why it is harder to add an element to the end of a list rather than
to its head. This is because an in-place modification of the list l would be required:

 [image: PIC]

 To add an element to the end of a list, we must make a copy of every block of the
list. This is in fact what is done by the following function append, which concatenates
two lists (see exercise 2.24):

 let rec append l1 l2 = match l1 with
 | [] -> l2
 | x :: l -> x :: append l l2

We observe that this function creates as many blocks as there are in l1 and shares only
those of l2. Thus, if we declare let l’ = [4; 5] and concatenate l and l’ with
let l’’ = append l l’, we will have the following situation:

 [image: PIC]

Copies of the the blocks of l have been made and those of l’ have been shared.

 Accordingly, lists must be used whenever the relevant operations are addition and
removal from the front (stack structure). When we need to access and/or
make modifications at arbitrary positions, it is preferable to use another data
structure.

 Crucially, the elements of the list are not themselves copied by the function
append. In fact, the variable x in the code of append denotes an element of an
arbitrary type and is not itself copied. This does make a difference when dealing with
lists of integers. However, if we have a list l with three elements of a more complex
type, for example the list [(1,2,3); (4,5,6); (7,8,9)], then these will be shared
between l and append l [(10,11,12)]:

 [image: PIC]

 All this may appear unnecessarily expensive if we are used to lists that are
modified in-place, which is the traditional approach in the context of imperative
languages. However, this would be to underestimate the practical advantages of
persistence. Besides, it is important to note that the concept of persistence can be
easily implemented in an imperative language. We only have to manipulate linked
lists exactly as the OCaml compiler does. Conversely, we can certainly manipulate
lists that are modifiable in-place in OCaml, for example by defining the following
type:

 type ’a mlist = Nil | Cons of ’a * ’a mlist ref

Here, the second argument of the constructor Cons is a reference. Unlike imperative
languages, OCaml provides the possibility of defining immutable data structures in a
natural manner that is also safe. (Even if we code a persistent data structure in C,
the type system cannot prevent in-place modification, since all data in C is
mutable).

 Finally, we must not forget that unused memory is automatically recovered.
Consider for instance an expression such as:

 let l = [1;2;3] in append l [4;5;6]

The three blocks of l are effectively copied during the construction of the list
[1;2;3;4;5;6] but may be recovered immediately as they are no longer referenced
anywhere. (Chapter 3 offers more details on memory management.)

 The Practical Advantages of Persistence

Persistence has many practical advantages. To begin with, it aids reasoning about the
code and its correctness: Since the values manipulated by the program are
immutable, we can reason mathematically about them. We can use equational
reasoning without even worrying about the evaluation order. It is thus easy to
verify the correctness of the function append once we have stated what it is
supposed to do (namely, that append l1 l2 constructs the list formed from
the elements of l1, followed by the elements of l2). A simple recursion on
the structure of l1 suffices. If, however, we are dealing with lists that are
modifiable in-place and a function append that modifies the last pointer of
l1 to make it point to l2, then the correctness argument is clearly more
difficult. The contrast is even more flagrant when a list is to be reversed.

The correctness of a program is important and must always take precedence
over its efficiency. After all, nobody would want a program that is fast but
incorrect.

 Persistence is not only useful for correctness, it is also a powerful tool in contexts
where backtracking is necessary. Suppose, for example, we write a program to find the
way out of a maze using a function find that takes as argument a persistent state and
returns a boolean indicating a successful search. A function possible_moves returns
the possible moves from a particular state as a list. As the datatype is persistent,
another function, move, returns the state resulting from a move and the current state.
We also assume that a boolean function is_exit returns whether a particular state
corresponds to the exit. We can then write the function find in the following
way:

 let rec find e =
 is_exit e || try_move e (possible_moves e)
 and try_move e = function
 | [] -> false
 | d :: r -> find (move d e) || try_move e r

Here, try_move is a function that tries the possible moves in a list, one by one. It is the
persistence of the data structure encoding the state that allows us to write such
concise code. If the state was a global data structure modified in-place, we would have
to perform the move before calling find recursively in try_move. We would also have
to undo this move in case of failure before trying other possible moves. The code
would then look something like this:

 let rec find () =
 is_exit () || try_move (possible_moves ())
 and try_move = function
 | [] -> false
 | d :: r -> (move d; find ()) || (undo_move d; try_move r)

This is indubitably less clear and more error-prone. Note that this is not an artifical
example; backtracking is a programming technique regularly used when implementing
graph traversals, coloring, enumeration of solutions, etc.

 Consider a second example of the usefulness of persistence. Imagine a program
that manipulates a database. At any moment, there is only one instance of this
database. A priori, there is therefore no need to use a persistent data structure
for it. Let us assume that the modifications performed on the database are
complex, that is, involving a large number of operations, some of which can fail.

We then find ourselves in a difficult situation if we need to undo the effects
already performed before the failure. Schematically, the code could look like
this:

 try
 ... perform modifications ...
 with e ->
 ... restore the database to a coherent state,
 then handle the error ...

If we use a persistent data structure for the database, it may be stored in a reference. Let
us call it db. The operation that modifies the database sets the value of this
reference:

 let db = ref (... initial database ...)
 ...
 try
 db := ... operation that modifies the database !db ...
 with e ->
 ... handle the error ...

From then on, there is no need to undo anything. The modification, however complex it
may be, constructs a brand new database. Only once this construction is complete is
the reference db modified so that it points to the new database. This final
modification is atomic and cannot fail. If any exception is raised during the
modification itself, the reference db remains unchanged. The automatic memory
manager will then recover the memory that was unnecessarily allocated during the
modification.

 Interfaces and Persistence

The datatype of lists is obviously persistent because it is a type with a known
definition, that is, it is concrete and immutable. When an OCaml module implements
a data structure, declared as an abstract type, its persistent or imperative nature is
not evident. Of course, the programmer can be informed of this fact by means of an
appropriate comment in the interface. In practice, however, it is the types of the
operations that provide this information. Consider the example of a persistent data
structure that represents finite sets of integers. The interface of such a module looks
like this:

 type set
 val empty : set
 val add : int -> set -> set
 val remove : int -> set -> set
 ...

The persistent nature of sets is implicit in the interface: The operations add and remove
return a value of type set, that is, a new set. The fact that the empty set empty is a
constant and not a function makes the persistence even clearer. All occurrences of
empty will be shared irrespective of its representation. This would not be possible
with a mutable data structure.

 A data structure for sets of integers that are modified in-place would instead have
an interface of the form:

 type set
 val create : unit -> set
 val add : int -> set -> unit
 val remove : int -> set -> unit
 ...

Here, the function for addition, add, does not return anything because it adds
an element in-place to the data structure, and it is the same for the other
operations. The value empty is replaced by a function create that takes an
argument of type unit. Each call to create must construct a new instance of the
data structure so that the in-place modifications of one do not affect the
others.

 Unfortunately, the type system of OCaml does not prevent the mixing of both
kinds of data structures. Thus, you can give the type int -> set -> set to a function
that adds an element to a set through side effects, for example by returning the set
passed as argument. Conversely, you can give the type unit -> set to a function empty
that returns a persistent empty set. In both cases, it is useless and potentially
dangerous.

 This does not mean, however, that a persistent data structure must necessarily be
coded without any side effects. The good definition of persistent is:

persistent = observationally immutable

In other words, it is not purely applicative, in the sense of an absence of side effects. We
only have an implication in one direction:

purely applicative ⇒persistent

The opposite is false: There are persistent data structures that make use of side effects.
This book contains several examples of such data structures. The situation is
illustrated in figure 2.15.

 [image: PIC]

Figure 2.15: Different classes of data structures.

 2.15 Exercises

 Drawing a Cardioid

2.1 Modify program 2 to plot the set of points in figure 2.1.

2.2 Write a program that draws the figure below.

 [image: PIC]

 The Mandelbrot Set

2.3 Modify the drawing of the Mandelbrot set by coloring points that are not in the
set based on the first value of i for which xi2 + yi2 > 4. The color may be chosen, for
example, by linearly interpolating between two predefined colors, and then using the
function Graphics.rgb (see section 2.10 Breakout without Bricks) and a simple rule
of three.

2.4 Modify the code of the preceding exercise as follows: Once the drawing is done,
choose a point in the set using the mouse. Redo the drawing centered around this
point and at one-tenth the scale.

2.5 Write a program that draws a Koch snowflake. The snowflake is obtained by
tracing three Koch curves along the three sides of an equilateral triangle. A Koch
curve of depth n between two points A and B is defined as follows: For n = 0, it is the
segment linking A and B.

 [image: PIC]

For n > 0, the segment [A,B] is divided into three segments of equal length, [A,C],
[C,E], and [E,B]. A point D is defined as the third vertex of an equilateral triangle
CED:

 [image: PIC]

We then draw four Koch curves of depth n − 1 along the four segments [A,C], [C,D],
[D,E], and [E,B].

 By choosing an initial depth that is sufficiently large, we get a drawing of the
following shape:

 [image: PIC]

2.6 Let u0 be an integer greater than 1 and (un) the sequence defined
by:

[image: { u ∕2 if u is even un+1 = n n 3un + 1 otherwise]

 Write a program that reads the value of u0 using read_int and displays the
successive values of the sequence (un) as long as un > 1. (The Collatz conjecture
states that for any value of u0, we always reach the cycle 1 → 4 → 2 → 1 →… . Stated
in 1928, this conjecture continues to defy the best efforts of mathematicians.)

2.7 The problem of the tower of Hanoi consists in shifting n discs of decreasing
diameter, stacked one on top of the other, from one location to another, by using
a third location temporarily. Only one disc may be moved at a time, by
taking it off the top of a stack, and it may only be placed over a larger disc.

 [image: PIC]

Write a program hanoi that reads the value of n and then displays a valid sequence of
moves to solve the problem, for example as follows:

 > ./hanoi
 4
 moving disk from 1 to 3
 moving disk from 1 to 2
 moving disk from 3 to 2
 moving disk from 1 to 3
 ...

 Sieve of Eratosthenes

2.8 Write a function sum: int array -> int that calculates the sum of the elements of
an array, first with a for loop, then with a recursive function.

2.9 Write a function occurs: int array -> int -> bool that, for an array of
integers a and an integer value v, determines if v appears in a. Write two
variants of the program, one with a while loop and the other with a recursive
function.

2.10 Write a function binary_search: int array -> int -> bool that, for an array of
integers a sorted in increasing order, and an integer value v, determines if v appears
in a. Use binary search so as to have complexity O(log n), where n is the length of the
array a.

2.11 Write a function shuffle: int array -> unit that randomly shuffles the
elements of an array using the following algorithm, called the “Knuth shuffle,” where n
is the size of the array:

 	 for i from 1 to n − 1

	 let j be a random integer between 0 and i (inclusive)

	 exchange the elements at indices i and j

You may use Random.int k to obtain a random integer between 0 and k − 1. Of course,
this algorithm may be used for arrays of any type.

 Drawing a Curve

2.12 Write a function sum: (int -> int) -> int -> int -> int that takes a function f,
and two integers i and j as arguments, and calculates the following sum:

[image: k=j ∑ f(k). k=i]

2.13 Write a function dicho of type:

dicho : (float -> float) -> float -> float -> float

that searches for the zero of a monotonic function f on an interval [a,b] by dichotomic
search. The idea is as follows: Calculate the midpoint x of [a,b], and compare the
signs of f(a) and f(x). Depending on the result, repeat the calculation on the interval
[a,x] or [x,b]. Stop when a and b are sufficiently close to each other. You can assume
that [a,b] contains a zero of f.

 Copying a File

2.14 Modify program 7 so that it correctly handles the case in which one of the two
files cannot be opened. This triggers an exception of the form Sys_error s, where s
is a string explaining the nature of the error (file does not exist, permission denied,
etc.). This message should be displayed before terminating the program using
exit 1.

2.15 In languages like C and Java, the statement break exits the nearest enclosing
loop, and the statement continue jumps to the next iteration of the loop. Thus, the
following C code displays 124567:

 for (int i = 0; i < 10; i++) {
 if (i == 3) continue;
 if (i == 8) break;
 printf("%d", i);
 }

Explain how to translate these two statements into OCaml. You may use two
exceptions, Break and Continue, to this end.

 Inverting the Lines of a Text

2.16 Write a function mult : int list -> int that calculates the product of all the
elements of a list of integers. Make sure to return 0 at the first occurrence of the
integer 0.

2.17 Redo the previous exercise, this time raising an exception if 0 is encountered,
so as to avoid unnecessarily multiplying the first elements of the list.

2.18 Redo exercise 2.16 by writing the function mult as a tail-recursive
function.

2.19 Write a function insert : int -> int list -> int list that inserts an
integer into a list of integers sorted in increasing order. Avoid making an
unnecessary copy of the part of the initial list that lies beyond the point of
insertion.

2.20 Using the above function insert, write a function insertion_sort : int list -> int list
that sorts a list of integers in increasing order using following algorithm,
known as insertion sort: Beginning with the empty list, insert each element
successively, using the function insert. Insertion sort is described in detail in
chapter 12.

 Converting Integers from an Arbitrary Base

2.21 Write a function mem : ’a -> ’a list -> bool that determines whether an element
is present in a list, using the equality operator =. This function exists in the standard
library, under the name List.mem.

2.22 Write a function count : ’a -> ’a list -> int that counts the number of
occurrences of an element in a list, using the equality operator =.

2.23 Rewrite the function count of the last exercise using an iterator.

2.24 Write a function append : ’a list -> ’a list -> ’a list that concatenates two
lists. If l1 = [x1;…;xn] and l2 = [y1;…;ym], then the result of append l1 l2 must be
the list [x1;…;xn;y1;…;ym] of length n + m. Proceed by recursion on the first
list, thus performing n recursive calls. The OCaml standard library provides
this function both under the name List.append and as the infix operator
@.

2.25 Using the above function append, write a function rev of type
’a list -> ’a list that reverses the order of elements of a list, that is, such that
rev [x1;…;xn] = [xn;…;x1]. In the next section, we will discuss a more efficient
method of implementing this function.

2.26 Write a function subseq: ’a list -> ’a list -> bool that determines if a list w1 is
a sub-sequence of another list w2, that is, if w1 can be obtained by removing
zero or more elements of w2. For example, [1;5;4;1] is a sub-sequence of
[3;1;1;5;0;4;1].

2.27 Write a function exists: (’a -> bool) -> ’a list -> bool that takes a boolean
function p and a list l as arguments and determines if l contains at least one element
x such that p(x) is true.

2.28 Using List.fold_left, write a function forall: (’a -> bool) -> ’a list -> bool
that determines whether all the elements of a list of type ’a list satisfy a condition
given by a function of type ’a -> bool. What is the problem with this solution?
Propose a more efficient version.

2.29 Write a function filter: (’a -> bool) -> ’a list -> ’a list that takes a boolean
function p and a list l as arguments, and returns the list of all the elements x of l for
which p(x) is true. Preserve the order of the elements. This function exists in the
standard library under the name List.filter.

2.30 Using an iterator, write a function max_seq: bool list -> int that
returns the length of the longest sequence of consecutive true values in a given
list.

2.31 Write a function first: (’a -> bool) -> ’a list -> ’a that returns the
first element of the list passed as argument satisfying the given condition.
If such an element does not exist, the function should raise the exception
Not_found.

2.32 Write an iterator fold_pairs of type:

fold_pairs: (’a -> ’b -> ’b -> ’a) -> ’a -> ’b list -> ’a

The iterator takes as argument a function f, a value v, and a list [x1;…;xn], and
returns:

[image: f(f(...f(f(v,x1,x2),x2,x3),...,xn −1,xn),xn,x1)]

 In other words, the function traverses all pairs of consecutive elements (xi,xi+1),
where the list is considered to be circular.

2.33 Propose a function to create a matrix init_matrix, analogous to
Array.init, of type:

 init_matrix: (int -> int -> ’a) -> int -> int -> ’a array array

2.34 Write a traversal function:

 iter_matrix: (int -> int -> ’a -> unit) -> ’a array array -> unit

that applies a given function to all the elements of a matrix. The first two arguments of
the function are the indices of the corresponding element. Explain why it is more
efficient to traverse the matrix row-wise rather than column-wise.

 Breakout without Bricks

2.35 Given a file a.ml that contains let () = Printf.printf "A\n" and a file b.ml
that contains let () = Printf.printf "B\n", compile these two files separately and
verify that different results are obtained depending on the order in which the files are
passed to the linker.

2.36 Given six files a.mli, a.ml, b.ml, c.ml, d.mli, and d.ml, and knowing that A
and B depend on C, and that C depends on D, give all possible ways of compiling
and linking a program containing the four compilation units A, B, C, and
D.

2.37 Rewrite the code of Breakout in a single file with two submodules Draw
and Breakout. Give the module Draw the same interface as that defined in
draw.mli.

 Logo Turtle

2.38 Redo exercise 2.5 that draws a Koch snowflake using the Logo turtle.

 [image: PIC]

Hint: Write a recursive function von_koch: int -> float -> unit whose first parameter
is the number of recursive steps and the second the length of the segment
[A,B].

2.39 Rewrite the functor Turtle so that it is also parametrized by a module of
signature:

 val open_graph: int -> int -> unit
 val draw_line: int -> int -> int -> int -> unit

Here, open_graph w h opens a window of dimensions w ×h and draw_line x1 y1 x2 y2
draws a segment between the points (x1,y1) and (x2,y2). Then, implement a module
with such an interface using Graphics.

2.40 We would like to define a module to represent files endowed with reading and
writing permissions. To this end, we introduce a type permission.

 type permission = Read | Write

Define a module Access to manipulate access rights. This module will provide an
abstract type t, a value of type t, default, representing read and write access,
and two functions get and set that allow, respectively, to get and set a
permission.

 val get : t -> permission -> bool
 val set : t -> permission -> bool -> t

Next, define another module File to represent a file endowed with access rights. This
module will export a private record type t, containing the file name in a field of type
string and the access rights in a mutable field of type Access.t. You will provide a
function create : string -> t taking the file name as argument, a function chmod to
modify the access rights, a function open_in : t -> in_channel to open a file for
reading, and a function open_out : t -> out_channel to open a file for writing. The last

two functions will raise an exception PermissionDenied in case of insufficient
permissions.

2.41 Write multiple modules to manipulate monetary values in different currencies.
All the modules should have the same signature:

 module type MONEY = sig
 type t = private { i : int; f : int }
 val create : int -> int -> t
 val add : t -> t -> t
 end

A monetary value is represented by an integer i and a fraction f, between 0
and 99, representing the number of cents. The integer i is signed. Write a
module Money implementing the signature MONEY. Derive from it two modules
Euro and Dollar, both having the signature MONEY and the structure Money,
but with distinct types Euro.t and Dollar.t. Finally, write a function
euros_to_dollars : float -> Euro.t -> Dollar.t that, given an exchange rate, converts
euros to dollars.

2.42 Write a module to represent sets of integers by lists sorted in increasing order,
with the following signature:

 module type ISET = sig
 type t
 val empty : t
 val add : int -> t -> t
 val union : t -> t -> t
 val mem : int -> t -> bool
 end

What is the advantage of making the type t an abstract type?

2.43 Rewrite the code of the previous exercise in the form of a functor parametrized
by the type of elements and a function defining a total order on them, that
is:

 module type ELT = sig type t val compare: t -> t -> int end
 module Set(E: ELT) : ... = struct ... end

Here, the value of compare x y is strictly negative if x < y, zero if x = y, and strictly
positive if x > y.

2.44 Apply the functor of the previous exercise to obtain sets of even integers,
giving these an arbitrary total order.

2.45 Write a data structure for polynomials of one variable. The idea is to represent
a polynomial using the sorted list of its monomials, each monomial being represented
by a pair of a coefficient and an exponent. Thus, the polynomial X7 − 3X4 + 2 is
represented by the list [(1,7);(−3,4);(2,0)]. In order to be generic with respect to the
ring of coefficients, write the structure of polynomials as a functor Poly parametrized
by a module of signature:

 module type Ring = sig
 type t
 val zero : t
 val one : t
 val add : t -> t -> t
 val mul : t -> t -> t
 val equal : t -> t -> bool
 end

If R designates the argument of the functor Poly, the latter must provide the following
functions:

 type t
 val create: (R.t * int) list -> t
 val add: t -> t -> t
 val eval: t -> R.t -> R.t

Here, t is the type of polynomials, create constructs a polynomial based on a list of
monomials, add adds two polynomials, and eval evaluates a polynomial at a point.
Hint: Begin with the function add (see exercise 2.42) and then use it to write the
function create.

2.46 Continue the previous exercise by adding two constants, zero and one, and
two functions, mul and equal, to the signature of the functor Poly. This yields
polynomials endowed with the structure of a ring. In other words, the signature of the
functor Poly can be written in terms of the signature Ring. The construct
include is a syntactic shortcut to include the definition of one signature in
another:

 sig
 include Ring
 val create: (R.t * int) list -> t
 val eval: t -> R.t -> R.t
 end

It is thus possible to obtain polynomials of several variables by applying the functor Poly
several times in succession. For instance, the structure of polynomials of three
variables and integer coefficients is obtained as:

 module P = Poly(Poly(Poly(Int)))

Here, it is assumed that Int implements the signature Ring for the integers.

 Quadtrees

2.47 Write a function rotate: quad -> quad that turns an image anticlockwise by 90
degrees.

2.48 Write a function mirror: quad -> quad that constructs the mirror symmetry
along the vertical axis of an image represented by a quadtree. Thus, the function
mirror allows switching between the following two images:

 [image: PIC] [image: PIC]

2.49 Write a function fractal: int -> quad that constructs a quadtree representing
a Sierpiński carpet fractal, by iterating the following process of decomposition:

 [image: PIC] [image: PIC] [image: PIC]

 Solving the N-Queens Problem

2.50 Modify program 16 to return the first solution found, in the form of an array
a giving the column a[i] of the queen located on row i. When there is no solution, the
exception Not_found should be raised.

 Chapter 3
OCaml Concepts: A Closer Look

What do you do if your program is ill-typed or consumes too many resources (memory
or time)? To make the right diagnosis, it is necessary to understand the functioning of
the compiler and the code it produces.

 In this chapter, we address problems related to type-checking, memory use, and
execution time.

 3.1 Type-Checking Algorithm

While the compiler automatically infers the types of all values defined in a program, it
may nevertheless be useful for programmers to have at least an intuitive
understanding of the typing rules of OCaml. This would help them understand any
error messages that may arise.

 To compute the type of an expression, it suffices to traverse its definition from left
to right, beginning with the most generic type possible, ’a, and accumulating type
constraints.

 Consider, for example, the following function definition:

 let f x y = if x y then [] else [y + 1]

We begin by rewriting this definition as follows:

 let f = fun x -> fun y -> if x y then [] else [y + 1]

Next, we let:

 val f : ’a

Since f is an expression of the form fun x -> e1, we deduce that ’a must be the type of a
function, ’a1 -> ’a2:

 val f : ’a1 -> ’a2

Similarly, e1 is a function of the form fun y -> e2, so that ’a2 is equal to a type
’b1 -> ’b2:

 val f : ’a1 -> ’b1 -> ’b2

We now extract the type constraints on the variables ’a1, ’b1, and ’b2 originating from
the expression e2, which is equal to:

 if x y then [] else [y + 1]

From the function application x y, we deduce that x is a function. In other words, ’a1 is
equal to a type ’c1 -> ’c2. We therefore get:

 val f : (’c1 -> ’c2) -> ’b1 -> ’b2

Next, since y is passed as argument to x, we deduce that the variable ’c1 is equal to ’b1,
so that the type of f is:

 val f : (’b1 -> ’c2) -> ’b1 -> ’b2

Furthermore, since x y is used as the condition in an if construct, we deduce that ’c2 is
equal to bool:

 val f : (’b1 -> bool) -> ’b1 -> ’b2

 The first branch of the if returns the empty list []. Therefore, ’b2 is equal to
’d list:

 val f : (’b1 -> bool) -> ’b1 -> ’d list

Finally, the second branch [y + 1] provides the last two constraints. From the addition
y + 1, we deduce that y is of type int. The list [y + 1] therefore has the type int list,
and the variable ’d is equal to int. The complete type of the function f is
therefore:

 val f : (int -> bool) -> int -> int list

 Let us now study the case of an ill-typed function. The function g below takes
two arguments, x and y. The type inference algorithm detects the following
error:

 # let g x y = if x y then [x] else [y] ;;
 Error: This expression has type ’a but an expression was expected
 of type ’a -> bool
 The type variable ’a occurs inside ’a -> bool

The initial steps in the typing of g are the same as those in case of f. Thus,
having scrutinized the expression x y, we deduce that g has the following
type:

 val g : (’b1 -> bool) -> ’b1 -> ’b2

The first branch of the if returns the list [x]. Therefore, the variable ’b2 must be equal
to (’b1 -> bool) list. Similarly, the second branch returns the list [y]. So ’b2 must
be of type ’b1 list. Therefore, for g to be well typed, the types (’b1 -> bool) list and
’b1 list must be equal. This would require the equation of types ’b1 = ’b1 -> bool to
have a solution, which is not possible in OCaml (unless we enable the option
-rectypes of the compiler or interpreter). We now understand the above error

message: It indicates that the variable y is of type ’a, whereas it should have type
’a -> bool, which is not possible because the variable ’a appears within the type
’a -> bool.

 In general, to determine the type of a program, or understand its typing errors, it
is necessary to know the type constraints imposed by the constructs of the language.
Here we present a (non-exhaustive) list of these constraints.

 If-then-else

In a conditional if e1 then e2 else e3, the expression e1 must be of type bool,
and the expressions e2 and e3 must be of the same type, whatever that
may be. The type of the conditional is that of e2 (and therefore also that of
e3).

 If-then

A conditional expression if e1 then e2 (without the else branch) has type unit. The
expression e1 must be of type bool and e2 of type unit.

 While

In a loop while e1 do e2 done, the expression e1 must be of type bool and e2 of type
unit. The while loop is of type unit.

 For

In a loop for i = e1 to e2 do e3 done, the expressions e1 and e2 must be of type int and
the expression e3 of type unit. The for loop is of type unit.

 Sequence

In a sequence e1; e2, the expression e1 must be of type unit while e2 may be of any
type. The type of e2 gives the type of the sequence. If e1 is not of type unit, we may
write let _ = e1 in e2 or ignore e1; e2.

 Declaration

In a local declaration let p = e1 in e2, the pattern p and the expression e1 must be of
the same type. The expression e2 may be of any type. This is also the type of the
declaration. In a global declaration let p = e, the type of p must be that of
e.

 Function

A function of the form function p -> e or fun p -> e is of type t1 -> t2, where t1 is the
type of the pattern p and t2 is the type of the expression e.

 Application

The application e1 e2 requires that e1 be of type t1 -> t2 and that e2 be of type t1.
The type of the result of the application is t2.

 Pattern Matching

Consider the pattern matching construct:

 match e with
 | p1 when b1 -> e1
 | ...
 | pk when bk -> ek

The associated constraints are that the expressions e1, …, ek must all have the same type,
and that the expressions b1, …, bk must all be of type bool. The patterns p1, …, pk
must all have the same type as e. The global type of this construct is that of the
expressions e1, …, ek.

 Exception

Consider a try-with block of the form:

 try
 e
 with
 | p1 -> e1
 | ...
 | pk -> ek

Here, the expressions e, e1, …, ek must all be of the same type. The patterns p1, …, pk
must designate exceptions (of the predefined type exn). The type of the try-with
block is that of the expression e.

 3.2 Runtime Model

As a rule, to make the best use of a programming language, it helps to understand its
runtime model. OCaml is no exception in this regard. By runtime model, we
mean the time (see the next section) and space complexity of the different
constructs of the language. Even if we can often ignore these complexities by
remaining at a higher level of abstraction, it is worthwhile to understand
them.

 Value Representation

We begin by explaining the memory representations of OCaml values. An OCaml
value occupies exactly one memory word (32 or 64 bits, depending on the
architecture). If we consider this word as an integer, we may distinguish two cases,
depending on whether the integer is even or odd:

 	if it is an odd integer 2n + 1, we interpret it as the integer value n;

 	if it is an even integer, we interpret it as a pointer.

In short, an OCaml value is either an integer or a pointer. If it is an integer, it can
represent a value of type int, a character, a boolean, or even a constant constructor
like [] or None. Note that this explains the limitation of the type int to 31 bits (63 in
a 64-bit machine), mentioned previously. If the value is a pointer, it points to a block
allocated in memory. A block occupies k + 1 memory words, with k ≥ 1.
The first word of the block, called the header, plays a particular role that
we will explain later. The following k words contain OCaml values, and we

say that k is the size of the block. We will represent a block of size 5 as
follows:

 [image: PIC]

Thus, the pair (1,2) is represented by a pointer to a block containing two values, namely,
the integer values 3 and 5 representing respectively the integers 1 and 2:

 [image: PIC]

More generally, an n-tuple is represented by a pointer to a block of size n. Arrays and
records are also represented in memory by pointers to blocks. Thus, the array
[|1; 2|] and the record {a=1; b=2} have exactly the same representation in memory
as the pair (1,2). We explained previously that a reference was nothing but a
particular case of records, with a single field contents (see the additional
information in section 2.6 Tracing a Curve). We deduce from this that the
value ref 1 is represented in memory in the form of a block of size 1, that
is:

 [image: PIC]

The mutable nature of the field contents means that the value contained in this
block, here 3, can be modified in place. The same is true for the values of an
array.

 Let us now consider the representation of concrete types. The idea is simple:
Constant constructors are represented by integers and other constructors by (pointers
to) blocks. Consider, for example, the type:

 type t = A | B of t * t | C | D of char

The two constant constructors A and C are represented by the integers 1 and 3,
respectively. The two non-constant constructors B and D are represented by pointers
to blocks of size 2 and 1, respectively. Thus, the value B (A, B (D ’a’, C)) corresponds to
three blocks, as follows:

 [image: PIC]

 Here, the value 195 corresponds to 2 × 97 + 1, where 97 is the code of the
character ’a’.

 For faster access, a pointer to a block points to its first field rather than its
header. The latter contains the tag of the constructor, here B or D. This information is
used particularly when pattern matching.

 Consider the type of lists as a second example: The constant constructor [] is
represented by the integer 1. The constructor :: is represented by (a pointer to) a
block of size 2. The list 1 :: 2 :: 3 :: [] is therefore represented in memory as follows:

 [image: PIC]

 We observe that OCaml lists are not fundamentally different from the linked
lists used in C or Java. When an OCaml program manipulates lists (passing
them as arguments of functions, returning them, etc.), it only manipulates
the pointers to the blocks, exactly like a C or Java program would. The
essential difference is that OCaml only permits the construction of well-formed
lists since pointers are not explicit in the language. Where programmers
using C or Java have to think about checking whether a pointer is null,
programmers using OCaml would use a pattern matching construct that
would force them to consider this case, and with a very concise syntax at
that.

 In general, the header contains the tag of the block. Beyond the cases we have
already illustrated, the header can also identify a floating-point number, an array of
floats, a string, an object, a function, etc. Note that the tag provides far less
information than the type of the value. In general, the memory representation of
OCaml values does not include typing information. The OCaml standard library
provides a module Obj that can be used to explore this representation. We can thus
test whether a value is represented as a block and, if so, retrieve its tag, size,
fields, etc. This module must be used with caution given its strongly untyped
nature.

 Notation

In what follows, we will simplify the graphical representation of OCaml values:
Headers will not be drawn, and integer values will not be transformed using n↦2n + 1.
Thus, the list [1;2;3] will be represented simply as:

 [image: PIC]

 Comparison Operators

The equality operator = that we have already used several times may be applied to
any two values, provided that they are of the same type. Thus, we can use it to
compare values of the following type:

 # type ty = D | A of int | B of bool | C;;
 type ty = D | A of int | B of bool | C
 # A 1 = A 1 ;;
 - : bool = true
 # D = B true ;;
 - : bool = false

This operator compares the structures of two values and therefore corresponds to the
usual mathematical notion of equality. It is called the structural equality operator. Its
negation is written as <>.

 OCaml also provides another equality operator, ==. It is called the physical
equality operator. Its negation is written as !=. The operator == compares values as
integers, even if these integers represent memory addresses. Accordingly, we
can observe that two constructor applications allocate two different memory
blocks:

 # A 1 == A 1 ;;
 - : bool = false

 Now that we know how OCaml values are represented, we can further deduce that
= and == coincide on values like integers, characters, and constant constructors. In
case of more complex types, predicting the result of a comparison using physical
equality is more difficult. It would be necessary to have a precise understanding of
how the compiler manages memory allocation.

 The physical equality operator always finishes in constant time, whereas
structural equality can take an arbitrary amount of time and even loop on
cyclic data. Let us illustrate this point with an example. We construct a
cyclic list l using a feature of OCaml that permits us to define a value using
let-rec:

 # let rec l = 1 :: l ;;
 l : int list = [1; 1; 1; ...]

 The evaluation of l == l terminates whereas that of l = l does not.

 # l == l ;;
 - : bool = true
 # l = l ;;

 OCaml provides other structural comparison operators: on the one hand,
<, >, <=, and >= of type ’a -> ’a -> bool; and on the other hand, an order
relation Stdlib.compare of type ’a -> ’a -> int, compatible with the preceding
operators.

 # C < A 1 ;;
 - : bool = true
 # A 1 < B true ;;
 - : bool = true
 # Stdlib.compare (A 1) (B true);;
 - : int = -1

 The comparison operators are based on the uniform representation of
values explained previously. However, their definition remains arbitrary and
entirely linked to the internal representation of values in the language. It
remains, nevertheless, useful to have a “generic ” order relation, even if it is
arbitrary.

 For example, we can use Stdlib.compare to construct complex structures that
require an order relation, such as sets:

 # module S = Set.Make(
 struct type t = ty
 let compare = Stdlib.compare
 end);;

 Here, the definition of Stdlib.compare is not important as long as it is an order
relation. However, if a specific notion of comparison is needed, it would have to be
defined.

 Other Generic Functions

OCaml provides other generic functions, such as:

 	a hash function Hashtbl.hash of type ’a -> int;

 	marshalling
 functions, mentioned previously (see the additional information in section
 2.7 Copying a File).

 Automatic Memory Management

As in other languages, like Lisp and Java, memory management in OCaml is
automated. This means that the programmer explicitly indicates allocations
(by constructing an array or a record, applying a constructor, etc.) but not
deallocations. Deallocation is performed automatically by the garbage collector (GC).
The functioning of the GC is intimately linked with the representation of
OCaml values. On the one hand, the GC can distinguish between pointers and
other values by examining the parity of the value. On the other, in case of a
block, the header contains the information needed by the GC: the tag (as was
explained above), the size of the block, and a few bits to mark the block as
being in use. Thus, in a 32-bit architecture, the header is of the following
form:

 	 31 	 … 	 10 	 9 	 8 	 7 	 … 	 0

								
	 size
 	 GC
 	 tag

								

 As the size of a block is encoded in 22 bits, it is relatively limited (up to 222 − 1,
that is 4194303). This is, for instance, the maximum size of OCaml arrays. It can be
obtained using Sys.max_array_length. The maximum size of strings is four times
larger, because strings have a more compact representation than arrays. Thus,
Sys.max_string_length = 224 − 5 = 16777211. In a 64-bit machine, by contrast,
these limits are well beyond what can be allocated in memory (respectively 254 − 1
and 257 − 9).

 Representation of Functions

Whenever a function may be used as a first-class value (see section 2.6 Tracing a
Curve), it is represented by a pointer to a block. We speak then of closure. A closure
contains two things:

 	a pointer to the code to be executed;

 	the values of variables susceptible of being used by this code, termed the
 environment.

The construction of a closure therefore consists in allocating a block whose size is
determined by that of the environment, that is, by the number of free variables in
the body of the function. Conversely, the application of a closure f to a
value v consists in calling the function indicated by the code pointer of f
and passing two arguments to the function, namely, the environment (in
the form of the closure f itself) and the value v. Consider the following
example:

 let diff_quotient dx f x = (f (x +. dx) -. f x) /. dx
 let derivative = diff_quotient 1e-10
 let my_cos = derivative sin

The value derivative is a function obtained by partially applying the function
diff_quotient. It is represented by a closure whose code pointer corresponds to
fun f -> fun x -> ..., and whose environment contains the value of dx, namely, 1e-10.
Similarly, the value of my_cos is a closure whose code pointer corresponds to
fun x -> ..., and whose environment contains the values of dx (namely, 1e-10) and f
(namely, sin). The value sin is another example of a closure, whose environment is
empty.

 3.3 Analyzing the Execution Time of a Program

From the preceding discussion, we may deduce a certain number of facts concerning
the time complexity of OCaml operations:

 	The application of a non-constant constructor is proportional to the
 number of fields, since it consists in assigning the constructor arguments
 to the fields of a block. As the number of arguments of a constructor is
 known statically, this operation takes constant time and space.

 	The application of a function also takes constant time, irrespective of how
 the function was constructed. Of course, we speak here of the application
 operation only, and not of the cost of evaluating the arguments or the
 function itself; these may be arbitrarily expensive.

In what follows, we offer several practical and theoretical tools to measure and analyze
the execution time of a program.

 Measuring Execution Time

It is easy to measure the total execution time of a program using a watch or, better
yet, with a tool provided by the operating system. The execution time of part of an
OCaml program, can be measured just as easily, and with great precision, using the
function Unix.times of the module Unix. This function returns a record whose field
tms_utime contains the time that has elapsed since the start of the program. This is a
floating-point number, expressed in seconds, with precision greater than a
millisecond. By calculating the difference between the two values returned by
this function at two different points of the program, we deduce the precise
execution time of that part of the code. We would typically write something
like:

 let start = (times ()).tms_utime in
 ...
 let stop = (times ()).tms_utime in

We can then calculate the elapsed time using stop -. start. Exercises 3.3 and 3.4 focus
on writing generic code for such measurements.

 Informal Notions of Complexity

It is useful to measure the execution time of a program to evaluate its efficiency, for
example, to compare it with another program, as well as to determine whether it can
be used to solve a given problem. If we write a program that sorts an array of n
entries, we may measure its execution time for small values of n and then try to
extrapolate to larger values. If, for example, we are able to sort n = 1000

entries in a hundredth of a second, and if we observe that the execution
time is multiplied by a factor of 4 each time that n is doubled, then we may
estimate that we would need over two and a half hours to sort a million
entries.

 The complexity of a program, or more generally of an algorithm, is defined as the
number of elementary operations that it must perform as a function of the size of the
input data. In the above example, the complexity may be expressed as a function f of
the number n of entries: f(n) is the number of elementary operations performed to
sort n inputs.

 							
	 	 f(n) =

	 n 	 log n 	 n 	 nlog n 	 n2 	 n3 	 2n

							
							
	 101 	 – 	 – 	 – 	 – 	 – 	 –

	 102 	 – 	 – 	 – 	 – 	 – 	 ∞

	 103 	 – 	 – 	 – 	 – 	 1 s 	 ∞

	 104 	 – 	 – 	 – 	 – 	 17 m 	 ∞

	 105 	 – 	 – 	 – 	 10 s 	 12 j 	 ∞

	 106 	 – 	 – 	 – 	 17 m 	 ∞ 	 ∞

	 107 	 – 	 – 	 – 	 1 j 	 ∞ 	 ∞

	 108 	 – 	 – 	 2 s 	 116 j 	 ∞ 	 ∞

	 109 	 – 	 1 s 	 21 s 	 ∞ 	 ∞ 	 ∞

							

 Figure 3.1: Execution time of f(n) operations, assuming a billion operations
per second. Note that “–” indicates that the time is less than one second and
“∞” that it is greater than one year.

 By elementary operations, we mean the operations that are atomic for the
machine, for example, addition. If we assume that a machine these days performs a
billion operations per second, figure 3.1 gives the execution time of f(n) operations
for different functions f.

 In practice, the precise nature of the elementary operations and their
respective cost is not important. We can term any operation whose time cost
is constant an elementary operation. This includes arithmetic operations,
function and constructor applications, assignments, etc. It suffices to retain
the following principle: A million elementary operations can be performed
instantaneously, a billion in a few dozen seconds, and a trillion over several
hours.

 Complexity Analysis

Rather than experimental evaluations, we can analyze the code of a program to
calculate the number of elementary operations that it will perform. Let us suppose,
for example, that our sorting program is written as two nested loops, such
as:

 for i = 1 to n - 1 do
 for j = i downto 1 do
 ...

Here, we assume that the omitted code (denoted by ...) contains only a finite number of
elementary operations, say C. We can then deduce that the total complexity is
exactly:

[image: n−1 ∑ n(n−-1)- f(n) = C × i = C 2 . i=1]

 This confirms our experimental observation that doubling n causes f(n) to be
multiplied by approximately four. In practice, it is rarely this simple to analyze the
complexity. Certain operations are only performed in certain cases, depending on
checks performed by the program, which in turn depend on the inputs. We generally
settle for the calculation of the worst-case complexity, which provides an upper bound
on the total number of operations performed. We may also calculate the average
complexity over the set of possible inputs of size n, for a given distribution of these
inputs.

 Big O Notation

In practice, we use the big O notation to bound the complexity of a program. To
express that a function f, defined on the natural numbers, does not grow faster than
another function g, also defined on the natural numbers, we write:

[image: f(n) = O(g(n))]

 This means that there is a constant C such that f(n) ≤ Cg(n) for large enough n,
or, more formally:

[image: ∃C ∃N, ∀n ≥ N, f (n) ≤ Cg (n)]

 If f(n) denotes the complexity of an algorithm in terms of a parameter n, we say
that “the complexity of the algorithm is in O(g(n))” if f(n) = O(g(n)). In the
example involving sorting, the complexity is in O(n2).

 An algorithm whose complexity is in O(1) is executed in constant time,
independently of the size of the data. It therefore involves a constant number of
elementary operations, for example, two additions and a multiplication. An algorithm
is said to be: logarithmic if its complexity is in O(log n); linear if it is in O(n);
linearithmic if it is in O(nlog n); quadratic if it is in O(n2) and, more generally,
polynomial if there is a constant k such that its complexity is in O(nk); and
exponential if it is in O(2n).

 In general, we do not seek to exhibit the constants C and N hidden in the
notation O. We are only concerned with the asymptotic order of magnitude, for
example, when deciding whether one algorithm is better than another. Of
course, for a specific value of n, an algorithm in O(n2) can certainly take less
time to execute than another in O(log n), by virtue of the constants behind
the O’s.

 Amortized Complexity

It is often worthwhile to calculate the total complexity of a sequence of n operations
and then divide by n, in order to obtain the average cost of each operation. This
average cost may prove inferior to the worst-case complexity. We call the
average complexity thus obtained amortized complexity, as opposed to the
worst-case complexity. We give examples of amortized complexity in chapters 4
and 6.

 3.4 Exercises

 Type-checking Algorithm

3.1 Are the following functions well typed? If so, what is their type? If not, explain
why.

 let f1 x = let y = !x + 2 in y
 let f2 n = for i = 1 to n do i + 4 done
 let f3 m n = if n = m then 1 else 2
 let f4 l = match l with [] -> [] | y :: s -> [s]
 let f5 x y = let z = x + 1 in y || z > 10
 let f6 x = let z = ref x in z + 1
 let f7 x y = for i = x to 10 do y := x :: !y done; !y
 let f8 x y z = x y z

3.2 Consider the two functions below:

 let foo x = x.a := (snd x.b) + 1
 let bar x = x.c <- (fst x.b) :: x.c

Define ’a t as a record type so that we have:

 val foo : ’a t -> unit
 val bar : ’a t -> unit

 Analyzing the Execution Time of a Program

3.3 Write a function time: (unit -> unit) -> float that measures the execution time
of the function passed as argument. Use the function Unix.times as explained
above.

3.4 Write a function time5: (unit -> unit) -> float that does the following: executes
the function passed as argument five times, measuring the execution time each time;
eliminates the smallest and largest of the values obtained; and returns the mean of
the three remaining values.

3.5 Write a program that produces the table in figure 3.1.

 Part II
Data Structures

 Chapter 4
Arrays

One of the simplest data structures is the array, represented by the OCaml type
array. In this chapter, we present several variations on this data structure. We show
how to construct resizeable arrays, compact arrays of booleans, arrays with an
efficient concatenation operation, and persistent arrays.

 4.1 Resizeable Arrays

A resizeable array is an array whose size can be increased or decreased at any time by
means of an operation resize. The signature of such arrays is given in program 17.
(We will use resizeable arrays in chapters 5 and 6.)

Program 17 — Minimal Signature for Resizeable Arrays

module type ResizeableArray = sig
 type ’a t
 val length : ’a t -> int
 val make : int -> ’a -> ’a t
 val resize : ’a t -> int -> unit
 val get : ’a t -> int -> ’a
 val set : ’a t -> int -> ’a -> unit
end

 The idea behind the implementation of resizeable arrays is simple: We use a
normal array to store the elements, and if it becomes too small, we allocate a larger
array into which we copy the existing elements. To avoid spending too much time
allocating and copying, we allow the backing array to be larger than needed, with the
elements beyond a certain index left unused.

 The type of resizeable arrays is therefore a record containing an ordinary array in
a field data and the number of elements in use in a field size.

 type ’a t = {
 mutable size: int;
 mutable data: ’a array;
 }

Thus, if v is such a resizeable array, we may represent the situation as follows:

[image: PIC]

Accordingly, we will maintain the following invariant throughout:

[image: 0 ≤ v.size ≤ Array.length v.data]

 If we wish to increase the size of the array v, there are two possibilities to
consider. If the new size does not exceed the capacity of the array v.data, it suffices
to modify v.size. Otherwise, we allocate a new, sufficiently large array and copy

the elements of v.data into it. We then assign this new array to v.data.
Whenever we wish to decrease the size of the array v, it suffices to modify
v.size.

 There is, however, a slight difficulty regarding this last point. Pointers to
elements that are no longer in use should not be retained, so that the GC is
able to collect them whenever possible. We therefore need a value of the
right type to replace the elements that are no longer in use. To this end, we
will require that a default value be provided when the array is created. We
will save it in a third field of the record. We thus arrive at the following
type:

 type ’a t = {
 default: ’a;
 mutable size: int;
 mutable data: ’a array;
 }

 Let us now write the code for the different operations. The length of the resizeable
array is given by the field size.

 let length a = a.size

To create a new resizeable array, it suffices to use Array.make, and to store the size and
the default value.

 let make n d = { default = d; size = n; data = Array.make n d }

In general, we will maintain the following invariant on the type t: Every element beyond
index size, that is, every unused element, contains the value stored in the field
default.

Program 18 — Resizeable Arrays

 type ’a t = {
 default: ’a;
 mutable size: int;
 mutable data: ’a array;
 }

 let length a = a.size

 let make n d = { default = d; size = n; data = Array.make n d }

 let get a i =
 if i < 0 || i >= a.size then invalid_arg "get";
 a.data.(i)

 let set a i v =
 if i < 0 || i >= a.size then invalid_arg "set";
 a.data.(i) <- v

 let resize a s =
 if s <= a.size then
 Array.fill a.data s (a.size - s) a.default
 else begin
 let n = Array.length a.data in
 if s > n then begin
 let n’ = max (2 * n) s in
 let a’ = Array.make n’ a.default in
 Array.blit a.data 0 a’ 0 a.size;
 a.data <- a’
 end
 end;
 a.size <- s

 To access the i-th element of a resizeable array a, it is necessary to verify
that the index is valid, as the array a.data may contain more than a.size
elements.

 let get a i =
 if i < 0 || i >= a.size then invalid_arg "get";
 a.data.(i)

Note that once this verification has been done, we could use Array.unsafe_get to access
a.data for greater efficiency. The assignment operation is analogous:

 let set a i v =
 if i < 0 || i >= a.size then invalid_arg "set";
 a.data.(i) <- v

 All the subtlety lies in the function resize, which modifies the size of a resizeable
array a. Several scenarios are possible. If the new size s is less than or equal
to a.size, it suffices to replace the elements between s and a.size-1 by
a.default.

 let resize a s =
 if s <= a.size then
 Array.fill a.data s (a.size - s) a.default

We could also reallocate the elements into a smaller array (see exercise 4.2). If,
however, s is larger than a.size, it is necessary to check whether the array a.data is
large enough to contain s elements. We therefore compute the size n of the array
a.data and compare it with s.

 else begin
 let n = Array.length a.data in
 if s > n then begin

If s is greater than n, it is necessary to resize the array. Here, we choose the strategy of
doubling the size of the array a.data. (See exercise 4.1 for another strategy.) Since
that may not suffice, we calculate the new size as the maximum of 2 * n and
s.

 let n’ = max (2 * n) s in

To be perfectly safe, it would be necessary to limit the new size to the maximum size of
arrays, that is, Sys.max_array_length, and to fail if the value s is too large. This is
left as an exercise for the reader.

 We then allocate a new array of size n’ into which we copy the elements of a.data
that are in use. For this, we use the function Array.blit, which copies a portion of
one array into another.

 let a’ = Array.make n’ a.default in
 Array.blit a.data 0 a’ 0 a.size;

Then, we replace the array a.data by the new array.

 a.data <- a’
 end
 end;

When s <= n, there is nothing more to be done. Finally, in all scenarios, we end by
updating the field size.

 a.size <- s

This completes the implementation of resizeable arrays. The code is given in full
in program 18 (see page 303).

 Complexity

Resizeable arrays are typically used when the number of elements to be stored is not
known beforehand (see exercise 4.3). Let us suppose that we begin with a resizeable

array of length 0 and increase its length n times by one unit, to end up with an array
of length n. The naive strategy of giving the array data exactly the same length as
the resizeable array entails that each resize with a length i would have cost i. The
total cost would then be quadratic:

[image: n(n+ 1) 1 + 2+ ⋅⋅⋅+ n = --------= O (n2). 2]

 However, the strategy implemented by resize here is more subtle, consisting in
(at least) doubling the size of the array whenever it needs to be increased. The total
cost is then linear, which may be shown as follows: Let us assume, without loss of
generality, that n ≥ 2. Let k = ⌊log 2(n)⌋, that is, 2k ≤ n < 2k+1. Beginning with an
empty array, we will have executed a total of k + 2 resizings to arrive at an array data
of the final size 2k+1. After the i-th resizing, where i = 0,…,k + 1, the size
of the array is 2i. The i-th resizing therefore has cost 2i. The total cost is
then:

[image: k∑+1 2i = 2k+2 − 1 < 4n. i=0]

 In other words, some of the resize operations have constant cost (when resizing is
not actually necessary). Others, by contrast, have non-constant cost, but the total
complexity remains linear. Averaging over the n operations, it is as if each addition
had constant cost. The extension of a resizeable array by one unit therefore has
amortized complexity O(1).

 4.2 Bit Vectors

If a program needs to manipulate a set of integers included within a reasonable
interval, and if persistence is not required, then an array of booleans may be used.
This is what we did, for instance, in section 2.5 Sieve of Eratosthenes. However, given
that a boolean is represented by one memory word (32 or 64 bits depending on the
architecture), a lot of memory is wasted. While a single bit per element would suffice,
an array of booleans occupies 32 or 64 times that amount. The bit vector data
structure is useful precisely in this regard: it enables the use of a single bit per
element.

 The signature of such a data structure is exactly the same as that of arrays,
except that elements are of type bool. The beginning of such a signature is given in
program 19 (see below).

 The implementation consists in using an ordinary array of integers and storing
several booleans in each of the integers: 31 booleans in a 32-bit architecture and 63
booleans in a 64-bit architecture. (Recall that OCaml reserves one bit of each integer
for use by the GC.) We begin by letting bpi be the number of booleans stored in each
integer.

 let bpi = Sys.word_size - 1

The maximum size of a bit vector is therefore given by the following value:

 let max_length = Sys.max_array_length * bpi

 To represent a bit vector, we introduce the following type t:

 type t = {
 length : int;
 bits : int array;
 }

The field length contains the actual number of booleans present in the bit vector, as this
is not necessarily a multiple of bpi. The field bits contains the array of integers. If
b0,b1,…,bbpi−1 are the first bpi elements of an array of booleans, they are
represented in the first cell of the array bits by the integer

[image: b0 + 2b1 + ⋅⋅⋅+ 2bpi−1bbpi−1]

 The following bpi elements are represented in the same manner by the second
integer of the array bits, and so forth. When the number of elements is not a
multiple of bpi, some of the high-order bits of the last integer of the array are not
used. To allow comparing bit vectors structurally, we enforce the following invariant
on the representation:

 	

[image: unused high-order bits are 0]

 	(4.1)

We can thus use the OCaml operations = or <> on bit vectors, irrespective of how they
are constructed.

Program 19 — Minimal Signature of Bit Vectors

module type Bitv = sig
 type t
 val create : int -> bool -> t
 val length : t -> int
 val get : t -> int -> bool
 val set : t -> int -> bool -> unit
end

 Creation

Let us begin with the function create, which constructs a bit vector of size n, where
all the elements have the same value b. Except for the last integer, all the elements of
the array bits will contain the same value: 0 if b is false or −1 if b is true.
This is because in the two’s-complement representation, −1 is written in
binary using only the digit 1, that is, −1 = (1⋯1)2. The function create
therefore begins by defining this initial value, 0 or −1, depending on the value of
b.

 let create n b =
 let initv = if b then -1 else 0 in

The number of elements of the array bits is then determined by the Euclidean division of
n by bpi.

 let q = n / bpi and r = n mod bpi in

 If the remainder r is 0, then all elements of the array are fully used, and it suffices
to construct an array of size q initialized with initv.

 if r = 0 then
 { length = n; bits = Array.make q initv }

If the remainder r is not 0, we need to construct an array of q + 1 integers.
All the elements contain initv, except for the last one, whose high-order
bits must be 0 to respect the invariant. More precisely, if b is true, then
the last element of the array must have exactly r low-order set bits. This is
easily obtained using the expression (1 lsl r) - 1. This completes the function
create:

 else begin
 let a = Array.make (q + 1) initv in
 if b then a.(q) <- (1 lsl r) - 1;
 { length = n; bits = a }
 end

The complete code is given in program 20.

Program 20 — Creation of a Bit Vector

let create n b =
 let initv = if b then -1 else 0 in
 let q = n / bpi and r = n mod bpi in
 if r = 0 then
 { length = n; bits = Array.make q initv }
 else begin
 let a = Array.make (q + 1) initv in
 if b then a.(q) <- (1 lsl r) - 1;
 { length = n; bits = a }
 end

 Reading

To read the n-th element of a bit vector we must first determine the index i of the
corresponding integer in the array, and then the index j of the corresponding bit
within this integer. The values of i and j are obtained from the Euclidean
division of n by bpi. Given the i-th element of the array, in order to extract
the j-th bit, it suffices to shift this integer j positions to the right using
lsr, and then test its least significant bit. We end up with the following
function:

 let get v n =
 let i = n / bpi and j = n mod bpi in
 (v.bits.(i) lsr j) land 1 <> 0

Equivalently, we could also perform a bitwise and operation against the integer
containing a single set bit in the j-th position, which is obtained using the expression
1 lsl j:

 v.bits.(i) land (1 lsl j) <> 0

 Writing

To assign a value b of type bool to the n-th element of a bit vector v, we begin by
determining its position exactly as we did for reading, via the Euclidean division of n
by bpi.

 let set v n b =
 let i = n / bpi and j = n mod bpi in

We then consider the two possible cases separately. If b is true, that is, if the j-th bit of
v.bits.(i) must be set to 1, we perform a logical or against the integer containing a
single set bit in the j-th position.

 if b then
 v.bits.(i) <- v.bits.(i) lor (1 lsl j)

Otherwise, we must set the j-th bit to 0, which can be done using a logical and against an
integer with all bits set, except the j-th.

 else
 v.bits.(i) <- v.bits.(i) land lnot (1 lsl j)

The complete code of the functions get and set is given in program 21. The two
operations clearly have cost O(1).

Program 21 — Reading and Writing in a Bit Vector

let get v n =
 let i = n / bpi and j = n mod bpi in
 (v.bits.(i) lsr j) land 1 <> 0

let set v n b =
 let i = n / bpi and j = n mod bpi in
 if b then
 v.bits.(i) <- v.bits.(i) lor (1 lsl j)
 else
 v.bits.(i) <- v.bits.(i) land lnot (1 lsl j)

 Set-Theoretic Operations

Bit vectors come into their own when they are used to represent sets. In particular,
the union, intersection and complement operations can be implemented efficiently by
the corresponding bitwise operations.

 Consider, for example, the logical and operation of two bit vectors, inter, which
also computes the intersection of the corresponding sets. This operation is only
meaningful when the two bit vectors are of the same size. We begin by verifying
this.

 let inter v1 v2 =
 let l1 = v1.length in
 if l1 <> v2.length then invalid_arg "Bitv.inter";

Once we know that both vectors are of the same size, we implement the logical
and operation itself. For this, we may use the function Array.mapi, which
constructs an array by applying a function to all the elements of another
array.

 let b = Array.mapi (fun i ei -> ei land v2.bits.(i)) v1.bits in
 { length = l1; bits = b }

This completes the function inter. We can similarly write the function union, which
computes the set-theoretic union, by performing a logical or.

Program 22 — Operations and and not on bit vectors

let inter v1 v2 =
 let l1 = v1.length in
 if l1 <> v2.length then invalid_arg "Bitv.inter";
 let b = Array.mapi (fun i ei -> ei land v2.bits.(i)) v1.bits in
 { length = l1; bits = b }

let normalize v =
 let r = v.length mod bpi in
 if r > 0 then
 let s = Array.length v.bits - 1 in
 v.bits.(s) <- v.bits.(s) land (1 lsl r - 1)

let compl v =
 let b = Array.map lnot v.bits in
 let r = { length = v.length; bits = b } in
 normalize r;
 r

 Note that the invariant (4.1) is respected, because and and or preserve the unused
high-order 0s. This is not the case with bitwise operations like negation or exclusive
or. In these cases, it is necessary to re-establish the invariant by zeroing the unused
high-order bits a posteriori. Let us write a function normalize to do this. We
begin by letting r be the number of bits in use in the last integer of the
array.

 let normalize v =
 let r = v.length mod bpi in

If this number is not zero, we must zero out all bits of index r and higher. This can be
implemented using a mask containing exactly r low-order set bits, that is,
1 lsl r - 1.

 if r > 0 then
 let s = Array.length v.bits - 1 in
 v.bits.(s) <- v.bits.(s) land (1 lsl r - 1)

This completes the function normalize.

 We can easily derive from this a function compl that computes the bitwise
negation of a bit vector, that is, the complement of the corresponding set.

 let compl v =
 let b = Array.map lnot v.bits in
 let r = { length = v.length; bits = b } in
 normalize r;
 r

The functions inter and compl are summarized in program 22 (see page 320).
They have cost O(n) in time and space, where n is the size of the bit vectors
concerned.

 Among other useful set-theoretic operations, we may also consider iteration over
all elements. For a bit vector, this boils down to iterating over the set of indices for
which the corresponding boolean is true. Such an iteration may be expressed as a
function of the form:

 val iteri_true : (int -> unit) -> t -> unit

 To implement this function, we iterate over the elements of the array using
Array.iteri. For each element, we iterate over the set bits with a loop that
successively tests each bit. We obtain the following code:

 let iteri_true f v =
 Array.iteri
 (fun i ei ->
 let index = i * bpi in
 for j = 0 to bpi - 1 do
 if ei land (1 lsl j) <> 0 then f (index + j)
 done)
 v.bits

It is not necessary to consider the case of the final element of the array separately,
because the invariant guarantees precisely that the unused bits are 0.

Program 23 — Iteration Over the Set Bits of a Bit Vector

let iteri_true f v =
 Array.iteri
 (fun i ei ->
 let index = i * bpi in
 let rec visit x =
 if x <> 0 then begin
 let b = x land -x in
 f (index + ntz b);
 visit (x - b)
 end
 in
 visit ei)
 v.bits

 Although correct, this solution is relatively inefficient, because it successively tests
all bits of the array. We would like the cost of the iteration to decrease if there are
fewer set bits. In other words, we need an efficient means of iterating over the set bits
of an integer.

 As it so happens, the two’s-complement representation allows extracting the
low-order set bit of an integer x easily by performing a logical and of x and -x (see
exercise 4.5). This gives an efficient means of iterating over the set bits of
an integer, by successively extracting and zeroing each set bit in increasing
order.

 There remains, however, one difficulty: The expression x land -x does not return
the index i of the low-order set bit in x, but instead returns 2i. We therefore need to
calculate the base 2 logarithm of this value or, equivalently, the number of
low-order 0s. For this, let us suppose that we are given a function ntz, for
number of trailing zeros, that calculates the number of low-order 0s of an
integer.

 We may then rewrite the part of the code of iteri_true that examines the set
bits of ei with the help of a recursive function visit instead of a for loop.

 let rec visit x =
 if x <> 0 then begin
 let b = x land -x in
 f (index + ntz b);
 visit (x - b)
 end
 in
 visit ei

The function visit ends as soon as its argument is 0, that is, when it does not contain
any set bit. Otherwise, we extract the low-order set bit, b. We call f on the
corresponding index index + ntz b, and then call visit again on x-b, which is x with
the b-th bit zeroed out. The complete code of iteri_true is given in program 23 (see
page 324). The function ntz is the focus of exercise 4.6.

 Finally, let us write a function cardinal: t -> int, which calculates the number
of set bits in the bit vector, that is, the cardinal of the set. It suffices to
calculate the sum of the number of set bits in each element of the array. If
we assume we are given a function pop of type int -> int that calculates
the number of set bits of an integer, then the function cardinal is easily
obtained.

 let cardinal v =
 Array.fold_left (fun n x -> n + pop x) 0 v.bits

The function pop (short for population count) remains to be written. We can write it
by extracting the bits one by one, again thanks to the expression x land -x:

 let pop x =
 let rec count n x =
 if x = 0 then n else count (n + 1) (x - (x land -x)) in
 count 0 x

We can render this function more efficient by tabulating it (see exercise 4.12).

 Other Operations on Bit Vectors

To be complete, a bit vector library should also provide other operations. On the one
hand, it should provide the same operations that we use for arrays, like append, sub,
fill, and blit. On the other hand, it should also offer arithmetic operations that
interpret a bit vector as an integer of n bits, such as addition, shifts, and conversions
to and from the different integer types of OCaml. Some of these operations are
proposed in exercises 4.8–4.11.

[image: PIC] For Further Information
Warren’s Hacker’s Delight [24] details numerous techniques to
manipulate the bits of an integer, such as the ones we have used to
implement Patricia trees and bit vectors. In particular, the book gives
several variations of the functions ntz and pop.

 4.3 Ropes

This section presents the rope data structure. This data structure was originally
introduced as an alternative to strings, to address the following issues:

 	Strings are not persistent; they are immutable in OCaml, but this is not
 necessarily the case in other languages, like C for instance.

 	Strings are limited in size, especially when OCaml is used on a 32-bit
 machine, where the limit is 224 − 5 characters.

 	Concatenation and substring extraction have a significant cost, particularly
 in space, as they involve copying the contents of the underlying string.

To address these issues, the rope data structure draws on a simple idea: A rope is nothing
but a binary tree whose leaves are (ordinary) strings and whose inner nodes should be
interpreted as concatenations. A rope therefore corresponds to the following type:

 type t =
 | Str of string
 | App of t * t

For example, one possible value by which the string "a very long string" may be
represented is the following:

 [image: PIC]

 Two considerations lead us to refine the proposed type t. On the one hand,
numerous algorithms require efficient access to the length of a rope, particularly to
decide whether to descend along the left or the right subtree of an App node. It is
therefore advisable to decorate each internal node with the length of the rope. On the
other hand, it is important to share substrings between ropes themselves as
well as with the ordinary strings used to construct the ropes. Hence, rather
than having the Str node point to a complete OCaml string, we prefer to
have it designate a substring of an OCaml string. A substring of a string
s is represented by a triple (s,o,n), denoting s[o..o + n − 1], that is, the
portion of s of length n starting at offset o. We thus obtain the following
type:

 type t =
 | Str of string * int * int
 | App of t * t * int

A node App(r1,r2,n) represents the concatenation of the two ropes r1 and r2, whose total
length is n. We could also have stored the sizes of r1 and r2 in the node. However,
retaining only the total size is more economical in terms of memory space, and there
is no loss of efficiency in practice.

 Genericity

We notice that the notion of rope is not related to that of string. Instead of the
type string, we could equally use arrays or lists of characters or, more generally still,
sequences of values of a type other than that of characters. In fact, all we need is a
data structure of sequences of a certain type of characters. We can then construct
ropes whose leaves consist of these sequences.

 The resulting data structure has the same signature as that with which we started,
namely, the signature of sequences for the same type of characters.

 Program 24 gives a minimal signature STRING for a data structure of strings. The
abstract type t is that of strings, and the type char, that of their characters.
This signature contains only the operations that are needed to implement
the rope structure. They are compatible with those of the OCaml module
String.

Program 24 — Generic String Signature

module type STRING = sig
 type t
 type char
 val length : t -> int
 val empty : t
 val make : int -> char -> t
 val get : t -> int -> char
 val append : t -> t -> t
 val sub : t -> int -> int -> t
end

Program 25 — Signature of Ropes

module type ROPE = sig
 module S : STRING
 include STRING with type char = S.char
 val of_string : S.t -> t
 val set : t -> int -> char -> t
 val delete_char : t -> int -> t
 val insert_char : t -> int -> char -> t
 val insert : t -> int -> t -> t
end

 We introduce a signature ROPE for ropes in program 25. This signature includes
the module S of strings that will be the leaves of the ropes. The signature ROPE
provides the same operations as those of strings, for the same type of characters,
which can be translated as follows:

 include STRING with type char = S.char

Ropes are immutable. Update operations (set, etc.) return new ropes.

 The rope structure is naturally implemented as a functor parametrized by a
module X of signature STRING:

 module Make(X : STRING) : (ROPE with module S = X) = struct

 The module obtained by applying this functor has the signature ROPE with module S = X,
which specifies that its module S is the module X passed as argument of the functor.
The code thus begins by defining S to be equal to X:

 module S = X

The type of characters of the rope is the same as that of strings:

 type char = S.char

The type of ropes is as presented earlier:

 type t =
 | Str of S.t * int * int
 | App of t * t * int

We will enforce several invariants on this type. On the one hand, for every rope of the
form Str (s, o, n), we have the inequalities:

[image: 0 ≤ o, 0 ≤ n and o+ n ≤ S.length s]

 On the other hand, for every rope of the form App (u, v, n), we have the
inequalities:

[image: 0 < length u, 0 < length v and n = length u + length v]

 Basic Operations

By definition of the type t, the length of a rope can be computed in constant
time.

 let length = function
 | Str (_,_,n)
 | App (_,_,n) -> n

The construction of the empty rope is straightforward using the empty string:

 let empty =
 Str (S.empty, 0, 0)

More generally, the rope corresponding to a string s is given by:

 let of_string s =
 Str (s, 0, S.length s)

Importantly, the type S.t must itself be persistent in order to guarantee both the
persistent nature of ropes and the correctness of rope operations. This is the case
when S.t is the type string, as strings in OCaml are immutable.

Program 26 — Basic Operations on Ropes

module Make(X : STRING) : (ROPE with module S = X) = struct

 module S = X

 type char = S.char

 type t =
 | Str of S.t * int * int
 | App of t * t * int

 let empty = Str (S.empty, 0, 0)

 let length = function
 | Str (_,_,n)
 | App (_,_,n) -> n

 let of_string s = Str (s, 0, S.length s)

 let make n c = of_string (S.make n c)

 let rec unsafe_get t i = match t with
 | Str (s, ofs, _) ->
 S.get s (ofs + i)
 | App (t1, t2, _) ->
 let n1 = length t1 in
 if i < n1 then unsafe_get t1 i else unsafe_get t2 (i - n1)

 let get t i =
 if i < 0 || i >= length t then invalid_arg "get";
 unsafe_get t i

 To access the i-th character of a rope, it suffices to go down the tree until the
target leaf is reached. We assume that the index is valid. The recursive part of the
operation is then written as follows:

 let rec unsafe_get t i = match t with
 | Str (s, ofs, _) ->
 S.get s (ofs + i)
 | App (t1, t2, _) ->
 let n1 = length t1 in
 if i < n1 then unsafe_get t1 i else unsafe_get t2 (i - n1)

 We see here the importance of being able to retrieve the size of t1 in constant
time. The complexity of this operation is therefore bound by the height of
the tree. As we will see later, ropes can be balanced so as to minimize this
height.

 We define a function get that also checks whether the index is valid, as a wrapper
around unsafe_get.

 let get t i =
 if i < 0 || i >= length t then invalid_arg "get";
 unsafe_get t i

 These basic operations on ropes are presented together in program 26 (see
page 339).

 Concatenation

A priori, the concatenation of two ropes t1 and t2 is as simple as applying the
constructor App and calculating the total length, that is:

 let append t1 t2 =
 App (t1, t2, length t1 + length t2)

We note that this operation thus takes constant time. However, iterated concatenations
may cause the number of nodes, and hence the height of the tree, to increase rapidly,
to the detriment of other operations.

 Two ideas allow us to control the number of nodes and the height of the tree. The
first idea consists in actually concatenating “small” leaves (i.e. short strings) when
they are found side by side in the tree. We may choose, for example, to concatenate
the leaves s1 and s2 in the three situations illustrated in figure 4.1. The first
situation corresponds to the concatenation of a rope whose right branch is the
small leaf s1, with another small leaf s2. The second corresponds to the
concatenation of two small leaves, s1 and s2. The third is the mirror image of the
first.

 [image: PIC]

Figure 4.1: Possible situations with adjacent leaves.

 To determine whether the leaves are small enough to be concatenated, we use a
constant:

 let small_length = 256

 The constant is arbitrary and should be chosen depending on the specific use of
the rope structure. Exercise 4.15 proposes making this constant a parameter of the
functor.

 To implement the concatenation of two leaves, we define the following general
function that concatenates fragments of two strings, s1 and s2:

 let append_string s1 ofs1 len1 s2 ofs2 len2 =
 Str (S.append (S.sub s1 ofs1 len1) (S.sub s2 ofs2 len2),
 0, len1 + len2)

 We now give the code of the function append, which implements the concatenation
of two ropes t1 and t2.

 We begin by considering the case in which one of the two ropes is empty.

 let append t1 t2 = match t1, t2 with
 | Str (_,_,0), t | t, Str (_,_,0) ->
 t

Next, we consider the three possible cases in which two small leaves are found side by
side. The simplest case is that in which t1 and t2 are the leaves in question. We then
use the function append_string:

 | Str (s1, ofs1, len1), Str (s2, ofs2, len2)
 when len1 <= small_length && len2 <= small_length ->
 append_string s1 ofs1 len1 s2 ofs2 len2

 The two other cases are similar:

 | App (t1, Str (s1, ofs1, len1), _), Str (s2, ofs2, len2)
 when ... -> ...
 | Str (s1, ofs1, len1), App (Str (s2, ofs2, len2), t2, _)
 when ... -> ...

Finally, the general case is simply the application of the constructor App, as we discussed
above:

 | t1, t2 ->
 App (t1, t2, length t1 + length t2)

Program 27 — Concatenation of Two Ropes

 let small_length = 256

 let append_string s1 ofs1 len1 s2 ofs2 len2 =
 Str (S.append (S.sub s1 ofs1 len1) (S.sub s2 ofs2 len2),
 0, len1 + len2)

 let append t1 t2 = match t1, t2 with
 | Str (_,_,0), t | t, Str (_,_,0) ->
 t
 | Str (s1, ofs1, len1), Str (s2, ofs2, len2)
 when len1 <= small_length && len2 <= small_length ->
 append_string s1 ofs1 len1 s2 ofs2 len2
 | App (t1, Str (s1, ofs1, len1), _), Str (s2, ofs2, len2)
 when len1 <= small_length && len2 <= small_length ->
 App (t1, append_string s1 ofs1 len1 s2 ofs2 len2,
 length t1 + len1 + len2)
 | Str (s1, ofs1, len1), App (Str (s2, ofs2, len2), t2, _)
 when len1 <= small_length && len2 <= small_length ->
 App (append_string s1 ofs1 len1 s2 ofs2 len2, t2,
 len1 + len2 + length t2)
 | t1, t2 ->
 App (t1, t2, length t1 + length t2)

 let (++) = append

 The entire code of append is given in program 27.

 In the rest of the section, we will use the infix operator ++ to denote rope
concatenation.

 let (++) = append

 The second idea that allows us to control the height of ropes consists in
rebalancing the underlying trees. We could implement balancing incrementally as the
rope is constructed, using for example the same technique as for AVL trees (see
chapter 5). It would then be necessary to modify the last line of the function append,
to invoke a balancing function instead of the constructor App. We may equally
conceive of an a posteriori rebalancing implemented either selectively, when the
height of the tree becomes too large, or explicitly, when the user requests it.
Exercises 4.17–4.20 propose different ways of implementing an a posteriori
rebalancing.

 Subrope Extraction

The next operation consists in extracting a rope fragment, defined by an offset and a
length. Extraction consists in retaining only those parts of the rope that are within
this fragment, possibly reconstructing Str nodes that partially overlap it. It is in fact
preferable to specify the fragment to be extracted as extending from an offset start
(inclusive) to the offset stop (exclusive). We assume that this is a valid and
non-empty fragment, that is:

[image: 0 ≤ start < stop ≤ length t.]

 The extraction function, mksub, begins by considering the particular case in which
the fragment is the whole rope.

 let rec mksub start stop t =
 if start = 0 && stop = length t then
 t

This allows, to the extent possible, the sharing of subropes between the result of the
extraction and the initial rope. Without this special case, these subropes would all be
reconstructed.

 In the general case, we examine the shape of the rope t. If t is a leaf, it suffices to
modify the fragment specification:

 else match t with
 | Str (s, ofs, _) ->
 Str (s, ofs+start, stop-start)

Note that this is a constant-time operation, which does not call S.sub, and that it shares
s between the initial rope and the result of the extraction. For a rope of form
App, there are three cases to be considered. The first is when the fragment is
completely contained in the left subrope. It then suffices to make a recursive call.

 | App (t1, t2, _) ->
 let n1 = length t1 in
 if stop <= n1 then mksub start stop t1

Symmetrically, the fragment may be completely contained in the right subrope.

 else if start >= n1 then mksub (start-n1) (stop-n1) t2

Finally, the fragment may overlap both t1 and t2. It suffices then to concatenate the
fragment of t1 with that of t2.

 else mksub start n1 t1 ++ mksub 0 (stop-n1) t2

Note that neither of these fragments is empty, which respects the invariant of
mksub. Note also that t1 or t2 may be completely contained in the result, in
which case they will be shared by virtue of the first two lines of the function
mksub.

 Next, we define an extraction function sub specified by an offset ofs and a length
len (similar to String.sub or Array.sub). It verifies the validity of the arguments,
and then handles the special case of an empty fragment or calls the recursive function
mksub.

 let sub t ofs len =
 let stop = ofs + len in
 if ofs < 0 || len < 0 || stop > length t then invalid_arg "sub";
 if len = 0 then empty else mksub ofs stop t

The entire code is given in program 28.

Program 28 — Subrope Extraction

 let rec mksub start stop t =
 if start = 0 && stop = length t then
 t
 else match t with
 | Str (s, ofs, _) ->
 Str (s, ofs+start, stop-start)
 | App (t1, t2, _) ->
 let n1 = length t1 in
 if stop <= n1 then mksub start stop t1
 else if start >= n1 then mksub (start-n1) (stop-n1) t2
 else mksub start n1 t1 ++ mksub 0 (stop-n1) t2

 let sub t ofs len =
 let stop = ofs + len in
 if ofs < 0 || len < 0 || stop > length t then invalid_arg "sub";
 if len = 0 then empty else mksub ofs stop t

 Update Operations

We now consider several operations to insert or delete characters in a rope. Since
ropes are persistent, these operations do not mutate them, but instead return new
ropes.

Program 29 — Update Operations on Ropes

 let set t i c =
 let n = length t in
 if i < 0 || i >= n then invalid_arg "set";
 sub t 0 i ++ make 1 c ++ sub t (i + 1) (n - i - 1)

 let insert t i r =
 let n = length t in
 if i < 0 || i > n then invalid_arg "insert";
 sub t 0 i ++ r ++ sub t i (n - i)

 let insert_char t i c =
 insert t i (make 1 c)

 let delete_char t i =
 let n = length t in
 if i < 0 || i >= n then invalid_arg "delete_char";
 sub t 0 i ++ sub t (i + 1) (n - i - 1)

 Let us consider for example the operation set, which inserts the character c at
offset i in a rope t. We begin by verifying that the offset i is valid, that is,
0 ≤ i < length t.

 let set t i c =
 let n = length t in
 if i < 0 || i >= n then invalid_arg "set";

Next, it suffices to extract the subropes to the left and right of the offset i, and use
concatenation to insert the character c.

 sub t 0 i ++ make 1 c ++ sub t (i + 1) (n - i - 1)

We note, however, that this solution is not optimal, since it performs two recursive
traversals of the rope where one would have sufficed. Exercise 4.16 proposes an
improvement in this regard.

 We may similarly define operations insert (which inserts a rope within another at
a given offset), insert_char (which inserts a character into a rope), and delete_char
(which deletes the i-th character of a rope). The entire code of the four operations is
given in program ?? (see previous page). This concludes our discussion of the functor
defining ropes.

 Application: Text Editor

Ropes are an ideal structure for text editors, in particular to support very long
texts, which are rarely handled well by text editors, including the best-known
ones.

 Rather than using a single rope to represent the text to be edited in its entirety,
we will use our functor for greater flexibility. Handling lines of text using a single rope
is awkward: Line breaks have to be found, or their offsets recorded in a table that

must be maintained in sync with the text. Instead, we can use ropes whose elements
are characters to represent lines, and a rope whose elements are lines to represent the
entire text.

 We therefore begin by constructing a rope structure for lines. The argument of the
functor Make is based on the OCaml module String:

 module Str = struct
 include String
 let get = unsafe_get
 type char = Char.t
 let empty = ""
 let append = (^)
 end

Note that we use String.unsafe_get rather than String.get, because every access to
the characters of a string contained in a rope is guaranteed to be valid. We can thus
avoid unnecessary checks. Ropes are obtained by applying the functor Make as
follows:

 module Line = Make(Str)

 Next, we construct another rope structure for the whole text, whose “characters”
are lines. For this, it suffices to apply the functor Make once again, this time using
arrays for the leaves of our ropes.

 module Text = Make(struct
 type char = Line.t
 type t = Line.t array
 let empty = [||]
 let length = Array.length
 let make = Array.make
 let append = Array.append
 let get = Array.unsafe_get
 let sub = Array.sub
 end)

We see here the usefulness of defining ropes as a functor, which allows us to apply it twice
on different arguments.

 Let us assume, for simplicity’s sake, that the text manipulated by the editor is
stored in a reference containing a rope of type Text.t.

 let text = ref ...

To insert a character c at offset ofs in line l of the text, it suffices to retrieve the line
with Text.get, to modify it using Line.insert, and finally to update the text using
Text.set:

 let insert_char l ofs c =
 let line = Text.get !text l in
 let line’ = Line.insert_char line ofs c in
 text := Text.set !text l line’

Similarly, to delete a character:

 let delete_char l ofs =
 let line = Text.get !text l in
 let line’ = Line.delete_char line ofs in
 text := Text.set !text l line’

Finally, to insert a new line at offset ofs in line l of the text, it suffices to cut the line l
at offset ofs with two calls to Line.sub, then insert the prefix in line l using
Text.insert, and to place the suffix in line l+1 using Text.set:

 let insert_newline l ofs =
 let line = Text.get !text l in
 let prefix = Line.sub line 0 ofs in
 let suffix = Line.sub line ofs (Line.length line - ofs) in
 let r = Text.insert_char !text l prefix in
 text := Text.set r (l + 1) suffix

Note that it is not necessary to “shift” all the lines: we use insertion in the rope of lines,
just as we used insertion in the ropes of characters in insert_char.

 Remark

Just as concatenation operations are suspended in ropes, extraction operations too
may be suspended. The resulting OCaml type would be as follows:

 type t =
 | Str of S.t
 | Sub of t * int * int
 | App of t * t * int

Everything then depends on the strategy used to choose between performing the
concatenation and subrope operations immediately or suspending them.

 The extraction operation may, in fact, be suspended “for free,” by applying the
functor Make repeatedly to its own result, as follows:

 module R1 = Make(Str)
 module R2 = Make(R1)
 ...

In the ropes of the module R2, the leaves are ropes of R1. Hence, the function
R1.sub is only called when the leaf becomes sufficiently small. As long as this
is not the case, the operation remains suspended. With a small abuse of
notation, the types R1.t and R2.t could be said to correspond to the following
definitions:

 type R1.t =
 | R1.Str of string * int * int
 | R1.App of R1.t * R1.t * int
 type R2.t =
 | R2.Str of R1.t * int * int
 | R2.App of R2.t * R2.t * int

It is clear that the node R2.Str suspends the extraction on a value of type R1.t. By
iterating this process, we obtain a type equivalent to the preceding type
t.

[image: PIC] For Further Information
The rope data structure was introduced by Boehm, Atkinson, and
Plass [5] in relation to the development of the Cedar language. Their
article notably proposes an a posteriori rope rebalancing algorithm
based on the numbers of the Fibonacci sequence (see exercise 4.18).

 4.4 Persistent Arrays

This section presents a persistent array data structure. Throughout this
section, we use the term “array” in its usual sense, to designate arrays that
may be modified in-place. In all other cases, we use the term “persistent
array.”

 The signature of persistent arrays is given in program 30. This is exactly the same
signature as for arrays, except that the function set returns a new persistent array,

without changing its argument.

 A desirable property of persistent arrays is that they provide operations set and
get with the same efficiency—O(1)—as arrays, at least as long as their persistent
nature is not used. However, we accept that there is a price to be paid for access to
previous versions of the array. This section presents a data structure that has this
property.

 The basic idea consists in using an array for the most recent version of the
persistent array, together with extra information to allow us to go back to
previous versions. To this end, we introduce the following two mutually recursive
types:

 type ’a t = ’a data ref
 and ’a data =
 | Arr of ’a array
 | Diff of int * ’a * ’a t

The type ’a t is that of persistent arrays. It involves a reference to data of type ’a data,
which indicates its nature: either an immediate value Arr a, where a is an array,
or an indirection Diff (i,v,p), representing a persistent array elementwise
identical to the persistent array p, except at index i where the value v is to be
found.

Program 30 — Signature of Persistent Arrays

module type PersistentArray = sig
 type ’a t
 val init : int -> (int -> ’a) -> ’a t
 val length : ’a t -> int
 val get : ’a t -> int -> ’a
 val set : ’a t -> int -> ’a -> ’a t
 val iteri : (int -> ’a -> unit) -> ’a t -> unit
end

 We illustrate the use of this data structure with an example. Consider the
following series of declarations that define a persistent array pa0, then two others, pa1
and pa2, obtained by two successive updates:

 let pa0 = init 7 (fun i -> Char.chr (Char.code ’a’ + i))
 let pa1 = set pa0 1 ’h’
 let pa2 = set pa1 2 ’i’

The situation after these three declarations is the following:

 [image: PIC]

The last constructed persistent array, pa2, is a reference containing the value
Arr [|’a’;’h’;’i’;’d’;’e’;’f’;’g’|]. The persistent array pa1 is a reference
containing Diff (2, ’c’, pa2), and the array pa0, a reference containing
Diff (1, ’b’, pa1). Let us assume now that we construct a fourth array pa3 as
follows:

 let pa3 = set pa1 2 ’j’

We proceed in two steps: We begin by making sure that the persistent array on which we
perform the operation, pa1, is of the form Arr a. For this, we invert the chain of Diff
nodes that leads from pa1 to the array a. We then have the following situation:

 [image: PIC]

In the second step, we create a new reference for pa3, containing Arr a, where a has been
modified to contain ’j’ in the second cell. We finish by modifying the reference pa1
so that it now contains Diff (2, ’c’, pa3). The final situation is therefore as
follows:

 [image: PIC]

 We will now describe the code of the different operations on persistent arrays. The
creation of a new persistent array is straightforward:

 let init n f = ref (Arr (Array.init n f))

For all other operations, we need a function reroot to invert a chain of Diff nodes so as
to ensure that a persistent array pa is of the form Arr a. We write it as a recursive
function reroot : ’a t -> ’a array that ensures this inversion of pointers and returns the
array a. If pa is a reference to a value of form Arr a, it suffices to return
a.

 let rec reroot pa = match !pa with
 | Arr a ->
 a

If, however, pa is a reference to a value of form Diff (i, v, pa’), we begin by calling
reroot recursively on the persistent array pa’.

 | Diff (i, v, pa’) ->
 let a = reroot pa’ in

It is then guaranteed that pa’ is a reference containing Arr a. It now suffices to exchange
the roles of pa’ and pa, that is, to store the value Arr a in pa, after having modified
a in place, and to store a value Diff in pa’, indicating the previous value contained in
a.

 let old = a.(i) in
 a.(i) <- v;
 pa := Arr a;
 pa’ := Diff (i, old, pa);
 a

The definitions of the length and get operations are straightforward if we use their
equivalents in the Array module together with the reroot function.

 let length pa = Array.length (reroot pa)
 let get pa i = (reroot pa).(i)

 The operation iteri is implemented by using the function Array.iteri, which
applies a function to all the elements of an array and to their indices.

 let iteri f pa = Array.iteri f (reroot pa)

 The function set remains to be written. It constructs a new persistent array based
on an existing persistent array pa, an index i and value v. We begin by calling reroot
on pa.

 let set pa i v =
 let a = reroot pa in

 We then proceed as we did in case of the function reroot, except that we
construct a new reference for the result:

 let old = a.(i) in
 a.(i) <- v;
 let res = ref (Arr a) in
 pa := Diff (i, old, res);
 res

Program 31 — Persistent Arrays

type ’a t = ’a data ref
and ’a data =
 | Arr of ’a array
 | Diff of int * ’a * ’a t

let init n f = ref (Arr (Array.init n f))

let rec reroot pa = match !pa with
 | Arr a ->
 a
 | Diff (i, v, pa’) ->
 let a = reroot pa’ in
 let old = a.(i) in
 a.(i) <- v;
 pa := Arr a;
 pa’ := Diff (i, old, pa);
 a

let length pa = Array.length (reroot pa)

let get pa i = (reroot pa).(i)

let iteri f pa = Array.iteri f (reroot pa)

let set pa i v =
 let a = reroot pa in
 let old = a.(i) in
 a.(i) <- v;
 let res = ref (Arr a) in
 pa := Diff (i, old, res);
 res

 Note that at the end of this operation, the persistent array pa is one indirection
away from the array Arr a. The entire code of persistent arrays is given in
program 31.

[image: PIC] For Further Information
The persistent array data structure is attributed to Henry Baker, who
used it to represent environments in Lisp closures efficiently [11, 4].

 4.5 Exercises

 Resizeable Arrays

4.1 Modify the function create so that it takes an argument increment of type
int option specifying a resizing strategy. If this argument is None, the function
resize applies the preceding strategy (doubling the size of the array). If, on the other
hand, increment is Some n, then resize increases the size of the array by n elements
(or more if necessary).

4.2 We may sometimes wish to reduce the size of the array, for example when it is
large compared with the number of elements actually in use or if it occupies a lot of
memory. Modify the function resize so that it halves the size of the array when the
number of elements is less than a quarter of the size of the array. Show that the
amortized complexity remains O(1).

4.3 Use a resizeable array to propose a stack structure with the following
interface:

 module type Stack = sig
 type ’a t
 val make : int -> ’a -> ’a t
 val length : ’a t -> int
 val push : ’a t -> ’a -> unit
 val pop : ’a t -> ’a
 end

The call to make n d creates a stack containing n copies of the value d. The function pop
raises an exception when the stack is empty.

4.4 In the context of the preceding exercise, show that n calls to the operations
push and pop on a given queue have total cost O(n).

 Bit Vectors

4.5 Justify the fact that the expression x land -x extracts the low-order set bit of x
for a non-zero integer x.

4.6 Write a function ntz: int -> int that calculates the number of low-order zero
bits of its argument. Hint: You can tabulate this function over a byte and then use
binary search.

4.7 Write a function blit_bits that copies bits i to i + n− 1 of an integer x to the
position j of a bit vector v, that is, so that we have for every index k in
v:

[image: { (blit_bits x i n v j)k = xi+k−j if j ≤ k < j + n, vk otherwise]

 We will assume that the intervals i..i + n− 1 and j..j + n− 1 are valid for x and v,
respectively.

4.8 Using the previous exercise, derive a function blit that copies the bits
i1..i1 + n − 1 of a bit vector v1 into a bit vector v2 at position i2.

4.9 Using the preceding function blit, write a function sub that extracts the bits
i..i + n − 1 of an array in the form of a new bit vector of size n.

4.10 Still using blit, write a function append that implements the concatenation of
two bit vectors.

4.11 Write a function fill that assigns a constant value (0 or 1, given in the form
of a boolean) to bits i..i + n − 1 of an array. You can reuse the function blit_bits
with x equal to 0 or −1.

4.12 Write a function pop: int -> int that counts the number of set bits of an
integer by tabulating its values for all 8-bit integers. This function will be four times
faster than the one given in section 4.2 Bit Vectors.

4.13 The idea of a bit vector may be exploited to represent a subset of {0,1,…,30}
(respectively, {0,1,…,62} in a 64-bit architecture) by a single integer. This is,
moreover, a persistent data structure. Use this idea to write a module of the following
form:

 module Bitset : Set.S type elt = int

 Ropes

4.14 Add a function to the functor Make that allows you to iterate over all leaves of
a rope in infix order:

iter_leaves : (S.t -> int -> int -> unit) -> t -> unit

Each leaf is a string fragment corresponding to the three arguments of the constructor
Str.

4.15 Add the parameter small_length as an argument of the functor
Make.

4.16 Rewrite the functions set, insert, and delete_char so that they perform
only one recursive traversal of the rope.

4.17 In this and the following two exercises, we propose methods to rebalance ropes
a posteriori, that is, functions of the type:

 val balance : t -> t

A simple method consists in constructing the list of all the leaves of the rope in infix
order and then constructing a complete binary tree based on this list. Write a
function balance following this idea.

4.18 The balancing algorithm proposed in the above exercise minimizes the height
of the rope (as a tree) but does not take into consideration the length of the different
leaves. If a leaf contains a large number of characters, it would be worthwhile to bring
it closer to the root.

 The article introducing ropes [5] proposes the following balancing method: Use an
array a of ropes, verifying the following invariant: if the rope a.(i) is non-empty, its
length belongs to the interval [Fi,Fi+1[, where Fi is the i-th term of the
Fibonacci series, defined by F0 = F1 = 1 and Fn+2 = Fn+1 + Fn for all
n ≥ 0.

 Initially, all the ropes in a are empty. We then successively insert in a every leaf of
the rope to be balanced, in infix order, in the following manner, starting from i = 2:

	Let r be the rope obtained by concatenating the rope to be inserted with
 a.(i).

	If the length of r is in [Fi,Fi+1[, assign r to a.(i) and then stop.

	Otherwise, assign the empty rope to a.(i), increase i, and go back to step 1
 with r as the rope to be inserted.

Once all leaves are inserted, the result is the concatenation of all the ropes in a. Write a
function balance that implements this algorithm.

4.19 Let r be the rope obtained by the algorithm described in the preceding
exercise, n its length, and h its height, where the height of a rope is defined
by h(Str _) = 0 and h(App(r1,r2, _)) = 1 + max(h(r1),h(r2)). Show that
n ≥ Fh+1. (Hint: Show that h(a.(i)) ≤ i − 2 for every i.) From this, deduce that
the average distance of a character to the root of the rope r is less than or
equal to log ϕ(n) + K for a certain constant K, where ϕ is the golden ratio
(1 + [image: √-- 5])∕2.

4.20 This exercise presents an optimal strategy to rebalance a rope c0, known as
the Garsia-Wachs algorithm. The algorithm acts on a list of ropes q equal to
⟨q0,q1,…,qm⟩, as follows:

	Initially, the list q is the list of leaves of c0, in infix order.

	
 As long as the list q contains at least two elements,

	determine the smallest index i, if it exists, such that length qi ≤
 length qi+1; otherwise let i = m;

	remove qi−1 and qi from the list q and form their concatenation c;

	determine the largest index j, if it exists, such that j < i and
 length qj−1 ≥ length c; otherwise let j = 0;

	insert c in the list q just after qj−1.

	Let c1 be the unique element left in q. This rope is optimal, but its leaves are
 not in the same order as in c0. The result is the rope c2 that has the same leaves
 as c0 and c1, in the same order as in c0, and at the same depth as in
 c1.

Write a function balance that implements this algorithm. For more details on this
algorithm, consult The Art of Computer Programming [15, vol. 3, sec. 6.2.2].

 Persistent Arrays

4.21 You may have noticed that the code of reroot and of set unnecessarily
recreates the value Arr a. Modify the two operations to avoid this.

4.22 Simplify the function set in the case of a call set pa i v , where the index i
already maps to v in pa.

4.23 The recursive call in the function reroot is not a tail call. This can create
problems if a persistent array is the result of a large number of modifications. Rewrite
the function reroot so that it contains only tail-recursive calls.

 Chapter 5
Sets and Dictionaries

Sets and dictionaries are the most frequently used data structures. This chapter
presents several ways of implementing sets. In each case, we discuss how they may be
adapted for dictionaries. Some data structures may be used with elements of any type
while others are more specialized, applicable to elements of a particular shape (for
example, lists) or type (for example, integers).

 Some of these data structures are presented in a persistent version and others in
an imperative version. This is an arbitrary choice. Other choices are often possible,
such as persistent hash tables or imperative AVL trees. Some of these variations are
proposed in the exercises.

 The choice of a data structure does not depend solely on its persistent or
imperative character. Other criteria determine this choice, such as the available
operations on the elements (for example, the existence of a total order), the
operations provided by the data structure (for example, a union operation), or their
respective cost (for example, the possibility of constructing a set in linear
time).

 5.1 Binary Search Trees

In this section, we implement persistent sets. A minimal signature for such sets,
PersistentSet, is given in program 32. The type of the elements is elt and that of
the sets is t. The empty set is represented by the value empty. The operations add
and mem respectively add an element and test the membership of an element in a set.
The function min_elt returns the smallest element of a set, if such an element exists,
and raises the exception Not_found otherwise. The function remove removes an
element from a set, if such an element is present, and returns the same set otherwise.
Finally, the operation cardinal returns the number of elements of a set. Of course, a
more realistic signature would contain additional operations, such as union,
intersection, and difference.

 The data structure chosen here to implement this signature is that of a binary

search tree, that is, a binary tree such that every element contained in a node is larger
than every element in its left subtree and smaller than every element in its right
subtree. This organization allows searching for an element in time proportionate to
the height of the tree. This tree structure assumes, however, that the elements can
be compared to one another. For this, we require a comparison function
compare : elt -> elt -> int such as:

[image: ({ < 0 if x is strictly smaller than y, compare x y est = 0 if x is equal to y, (> 0 if x is strictly larger than y.]

Program 32 — Signature of Persistent Sets

module type PersistentSet = sig
 type elt
 type t
 val empty : t
 val add : elt -> t -> t
 val mem : elt -> t -> bool
 val min_elt : t -> elt
 val remove : elt -> t -> t
 val cardinal : t -> int
end

Program 33 — Signature of Ordered Types

module type Ordered = sig
 type t
 val compare: t -> t -> int
end

 We gather the type elt and the declaration of the function compare in a signature
Ordered shown in program 33. The code is then written as a functor parametrized by
a module of signature Ordered:

 module Make(X : Ordered) : PersistentSet with type elt = X.t =
 struct

The signature of the module returned by this functor is PersistentSet, where we specify
that the type elt of the elements is the type X.t.

 Accordingly, in the body of the functor, we begin by introducing the type elt as a
synonym of the type X.t.

 type elt = X.t

 We then define the type t of sets as that of binary trees whose internal nodes
contain a value of type elt:

 type t = Empty | Node of t * elt * t

 Consider the following OCaml value:

 Node (Node (Node (Empty, ’B’, Empty), ’D’, Empty),
 ’E’,
 Node (Empty, ’F’, Empty))

 It corresponds to the left tree in figure 5.1, where only the value of type elt in
each node is shown, and where Empty is represented by ⊥.

 In what follows, we will not draw the children of a node when they are both
empty, as depicted in the right tree of the figure.

 [image: PIC] [image: PIC]

Figure 5.1: Two representations of the same binary search tree.

 The value empty, denoting the empty set, is simply a synonym for the constructor
Empty, that is, the empty tree.

 let empty = Empty

 Smallest Element

The structure of a binary search tree makes it easy to retrieve its smallest element. It
suffices to descend along the left branch as long as possible. The function min_elt
implements this traversal.

 let rec min_elt = function
 | Empty -> raise Not_found
 | Node (Empty, v, _) -> v
 | Node (l, _, _) -> min_elt l

Rather than the predefined exception Not_found, we could have declared and used an
exception specific to binary search trees.

 Searching for an Element

Searching for an element x in a binary search tree proceeds recursively as follows: If
the tree is empty, we return false.

 let rec mem x = function
 | Empty ->
 false

Otherwise, we compare x with the element v situated at the root of the tree. If they are
equal, the search finishes successfully. If x < v, we continue recursively down the left
subtree and, otherwise, down the right subtree.

 | Node (l, v, r) ->
 let c = X.compare x v in
 c = 0 || if c < 0 then mem x l else mem x r

 Inserting an Element

Inserting an element x in a binary search tree t consists in finding the location of x in
t, following the same principle as when searching for an element. If t is empty, it
suffices to construct a tree that contains only x.

 let rec add x t =
 match t with
 | Empty ->
 Node (Empty, x, Empty)

Otherwise, we compare the element x with the root v of t. If they are equal, we return
the tree t unchanged to avoid introducing a duplicate.

 | Node (l, v, r) ->
 let c = X.compare x v in
 if c = 0 then t

 Otherwise, we recursively pursue the insertion to the left or to the right,
depending on the result of the comparison.

 else if c < 0 then Node (add x l, v, r)
 else Node (l, v, add x r)

 Of course, this implementation of the insertion function may lead to highly
unbalanced trees. For example, if we successively add F, E, D, and B to the empty tree,
we get the “comb” shown in figure 5.2.

 [image: PIC]

Figure 5.2: A binary search tree shaped like a comb.

 Such shapes degrade the efficiency of subsequent search and insertion operations.
The worst case corresponds to that of the comb where, as shown in the example, each
internal node has only one non-empty subtree. Operations in such trees are then
proportionate to the number of elements. In the following section, we will see that it
is possible to limit the height of a binary search tree so that it remains logarithmic
with respect to the number of elements. The complete code of the insertion function is
given in program 34.

Program 34 — Binary Search Trees (1/2)

 type t = Empty | Node of t * elt * t

 let rec min_elt = function
 | Empty -> raise Not_found
 | Node (Empty, v, __) -> v
 | Node (l, _, _) -> min_elt l

 let rec mem x = function
 | Empty ->
 false
 | Node (l, v, r) ->
 let c = X.compare x v in
 c = 0 || if c < 0 then mem x l else mem x r

 let rec add x t =
 match t with
 | Empty ->
 Node (Empty, x, Empty)
 | Node (l, v, r) ->
 let c = X.compare x v in
 if c = 0 then t
 else if c < 0 then Node (add x l, v, r)
 else Node (l, v, add x r)

 Removing an Element

To remove an element x from a binary search tree t, we proceed in the same
manner as when searching or inserting an element, that is, by recursive descent
towards the possible location of x. If t is empty, it suffices to return the empty
tree.

 let rec remove x = function
 | Empty ->
 Empty

 Otherwise, we compare x to the root v of t. If they are equal, we face a problem:
It is necessary to remove v, that is, to construct a tree from the left and the right
subtrees of t. To implement this operation, we assume that we have written a
function merge that performs this merging.

 | Node (l, v, r) ->
 let c = X.compare x v in
 if c = 0 then merge l r

 If x is different from v, we descend recursively along the left or the right subtree to
remove x. The code is similar to that of an insertion.

 else if c < 0 then Node (remove x l, v, r)
 else Node (l, v, remove x r)

 The function merge, which merges two trees l and r, remains to be written. The
difficulty lies in determining a root for the resulting tree. One way of proceeding
consists in choosing the smallest element of r. Its value is obtained using the function
min_elt written earlier. We must then remove this element from r, but this is
precisely the operation that we are trying to implement.

 Fortunately, the removal of the smallest element of a binary search tree is much
simpler to implement than the removal of an arbitrary element. Let us write a

function remove_min_elt for this. If the tree is empty, there is nothing more to be
done.

 let rec remove_min_elt = function
 | Empty -> Empty

 If not, and if there is no left subtree, then the root is the smallest element, and we
return the right subtree.

 | Node (Empty, _, r) -> r

 Otherwise, we recursively remove the smallest element from the left subtree.

 | Node (l, v, r) -> Node (remove_min_elt l, v, r)

 We are now ready to write the function merge. If one of its two arguments is
empty, we return the other. Otherwise, we use min_elt and remove_min_elt, and
apply the idea mentioned previously.

 let merge t1 t2 = match t1, t2 with
 | Empty, t | t, Empty -> t
 | _ -> Node (t1, min_elt t2, remove_min_elt t2)

Program 35 — Binary Search Trees (2/2)

 let rec remove_min_elt = function
 | Empty -> Empty
 | Node (Empty, _, r) -> r
 | Node (l, v, r) -> Node (remove_min_elt l, v, r)

 let merge t1 t2 = match t1, t2 with
 | Empty, t | t, Empty -> t
 | _ -> Node (t1, min_elt t2, remove_min_elt t2)

 let rec remove x = function
 | Empty ->
 Empty
 | Node (l, v, r) ->
 let c = X.compare x v in
 if c = 0 then merge l r
 else if c < 0 then Node (remove x l, v, r)
 else Node (l, v, remove x r)

 The complete code for removing an element is given in program 35. Exercise 5.7
proposes a slight improvement, which consists in avoiding the reconstruction of the
tree when the element to be removed is not actually present. This optimization is also
applicable in the function add.

 Dictionaries

We do not show here how to adapt this data structure to implement dictionaries since
this will be done in the following section for balanced binary trees.

 5.2 AVL Trees

As we saw in the previous section, the height of a binary search tree can be as high as
the number of elements it contains, which is the case of the comb. The efficiency of
each operation is directly affected by this. The problem can be resolved by
balancing the binary search tree, that is, by trying to make its height as
small as possible. In practice, we look for a solution that is not too costly at
construction time, but which guarantees that the two subtrees of each node
contain the same number of elements up to a small multiplicative factor.
The solution discussed here is that of AVL trees, where the difference in
heights of the left and right subtrees of each node is never allowed to exceed
1.

 We begin by modifying the type of binary search trees to store the height of the
tree as the fourth argument of the constructor Node.

 type t = Empty | Node of t * elt * t * int

 Consider the following tree BDEF:

 [image: PIC]

 It is represented by the following OCaml value:

 Node (Node (Node (Empty, ’B’, Empty, 1), ’D’, Empty, 2),
 ’E’,
 Node (Empty, ’F’, Empty, 1),
 3)

To manipulate the height of an AVL tree, it is convenient to introduce a function to
retrieve it:

 let height = function
 | Empty -> 0
 | Node (_, _, _, h) -> h

It is similarly useful to introduce a function that creates a new node while simultaneously
computing its height:

 let node l v r =
 Node (l, v, r, 1 + max (height l) (height r))

Such a function is what we call a smart constructor. It will be used in what follows
instead of the constructor Node. Of course, the height computed by node is correct
only if the heights stored in l and r are also correct. This will be guaranteed by
making the type of AVL trees abstract.

 Smallest Element and Membership Testing

As an AVL tree is a binary search tree, the functions min_elt and mem remain
identical to those of program 34 (see page 395). The only difference is that they
discard the fourth argument of the Node constructor.

 Balancing

We illustrate the balancing of an AVL tree with the help of an example. If
we insert the element A into the tree BDEF, we obtain the following tree
ABDEF:

 [image: PIC]

 This tree is not balanced since the difference in height between the left and right
subtrees of the node E is two. Nevertheless, it is easy to restore the balance of the
tree. This can be done by performing local transformations that preserve the binary
search tree property. An example of such an operation is right rotation, illustrated in
figure 5.3.

 [image: PIC]

Figure 5.3: Right rotation in an AVL tree.

 This operation replaces the root v by the root lv of the left subtree and shifts the
subtree lr containing the elements between lv and v. Note that this operation
modifies only two nodes in the tree structure. The binary search tree property is
preserved: the subtree ll remains to the left of lv; the subtree r remains to the right
of v; and the subtree lr remains to the right of lv and to the left of v. A left rotation
may be performed symmetrically.

 Thus, the tree ABDEF may be rebalanced by performing a right rotation on the
subtree with root D. We then obtain the following tree, which satisfies the AVL
condition.

 [image: PIC]

 A simple left or right rotation does not necessarily suffice to rebalance the tree.
For example, if we insert C, we obtain the following tree, which is not an AVL
tree.

 [image: PIC]

 We can then try to perform a right rotation at the root E or a left rotation at the
node B. However, neither operation yields an AVL tree.

 [image: PIC] [image: PIC]

 Nevertheless, the tree on the right can be easily rebalanced by performing a
further right rotation at the root E. We obtain the following AVL tree:

 [image: PIC]

 This double operation is called left-right rotation. Needless to say, there is also a
symmetrical right-left rotation.

 These four operations, that is, the two simple rotations and the two double
rotations, suffice to rebalance any AVL tree following an insertion operation. We
gather the rebalancing code in a smart constructor balance with the following
type:

 val balance : t -> elt -> t -> t

It behaves exactly like the function node, except that it also guarantees that the result
will be balanced.

 We begin by calculating the heights hl and hr of the left and right subtrees, and
consider first the case in which the imbalance is due to the left subtree l:

 let balance l v r =
 let hl = height l in
 let hr = height r in
 if hl > hr + 1 then begin

 As illustrated in figure 5.4, a simple right rotation suffices if the left subtree ll of
l is at least as tall as the right subtree lr:

 match l with
 | Node(ll, lv, lr, _) when height ll >= height lr ->
 node ll lv (node lr v r)

 [image: PIC]

Figure 5.4: Simple rotation in an AVL tree.

 [image: PIC]

 Figure 5.5: Double rotation in an AVL tree.

 On the other hand, if ll is shorter than lr, we must perform a left-right double
rotation, as illustrated in figure 5.5.

 | Node(ll, lv, Node(lrl, lrv, lrr, _),_)->
 node (node ll lv lrl) lrv (node lrr v r)

 Here too, the AVL property is guaranteed. Note that the imbalance can be due to
either lrl or lrr, and that in both cases a left-right double rotation suffices to restore
the balance.

 As l and r are both assumed to be AVL trees, there is no other possible cause for
imbalance when l is taller than r. This completes the pattern matching:

 | _ -> assert false

 The case where the imbalance is due to r is handled symmetrically:

 end else if hr > hl + 1 then begin
 match r with
 | Node (rl, rv, rr, _) when height rr >= height rl ->
 node (node l v rl) rv rr
 | Node (Node(rll, rlv, rlr, _), rv, rr, _) ->
 node (node l v rll) rlv (node rlr rv rr)
 | _ ->
 assert false

 Finally, if the heights of l and r differ by at most one, we construct the node
without rebalancing:

 end else
 node l v r

The complete code of the function balance is given in program 36.

Program 36 — Balancing an AVL Tree

 let balance l v r =
 let hl = height l in
 let hr = height r in
 if hl > hr + 1 then begin
 match l with
 | Node (ll, lv, lr, _) when height ll >= height lr ->
 node ll lv (node lr v r)
 | Node (ll, lv, Node (lrl, lrv, lrr, _),_)->
 node (node ll lv lrl) lrv (node lrr v r)
 | _ ->
 assert false
 end else if hr > hl + 1 then begin
 match r with
 | Node (rl, rv, rr, _) when height rr >= height rl ->
 node (node l v rl) rv rr
 | Node (Node(rll, rlv, rlr, _), rv, rr, _) ->
 node (node l v rll) rlv (node rlr rv rr)
 | _ ->
 assert false
 end else
 node l v r

 Insertion and Removal

We can now adapt the code for inserting an element (function add in program 34),
replacing each application of the constructor Node with an application of the function
balance. Similarly, we can adapt the code for removing an element (functions
remove_min_elt, merge, and remove), making the same modification.

 The code thus obtained is given in program 37.

Program 37 — Insertion and Removal in an AVL Tree

 let rec add x = function
 | Empty ->
 Node (Empty, x, Empty, 1)
 | Node (l, v, r, _) as t ->
 let c = X.compare x v in
 if c = 0 then t
 else if c < 0 then balance (add x l) v r
 else balance l v (add x r)

 let rec remove_min_elt = function
 | Empty -> Empty
 | Node (Empty, _, r, _) -> r
 | Node (l, v, r, _) -> balance (remove_min_elt l) v r

 let merge t1 t2 = match t1, t2 with
 | Empty, t | t, Empty -> t
 | _ -> balance t1 (min_elt t2) (remove_min_elt t2)

 let rec remove x = function
 | Empty ->
 Empty
 | Node (l, v, r, _) ->
 let c = X.compare x v in
 if c = 0 then merge l r
 else if c < 0 then balance (remove x l) v r
 else balance l v (remove x r)

 We emphasize that the adaptions above only involve simple substitutions.

 Comparison of Sets

The implementation of a total order on sets is important. It has the following
type:

 val compare : t -> t -> int

In particular, this allows us to easily construct sets of sets by instantiating the functor
Make several times in succession, as follows:

 module Int = struct
 type t = int
 let compare = Stdlib.compare
 end
 module IntSet = Make(Int)
 module IntSetSet = Make(IntSet)

The comparison on sets cannot be done simply by using Stdlib.compare. Indeed, two
binary search trees may contain the same elements without having the same
structure. A simple solution would be to construct the list of elements of each tree in
the infix order and then compare them. This is, however, very inefficient: On the one
hand, constructing the list requires a lot of memory. On the other, this construction
can be wasteful if the lists differ near the beginning. Chapter 9 proposes an efficient
solution to this problem.

 Complexity

To justify the claim that AVL trees are balanced, we now show that the height of such
a tree is always logarithmic in the number of elements.

 Consider an AVL tree of height h. Let us try to estimate the number of its
elements, n.

 If the tree is perfectly balanced, then n = 2h − 1. However, in general, we have
only n ≤ 2h − 1. The smallest possible value of n would be attained in a tree having
one subtree of height h − 1 and the other of height h − 2. (The reason is that,
otherwise, we would still be able to remove elements from one of the two subtrees
while maintaining the AVL property.) Thus, if we let Nh be the smallest number of
elements in an AVL tree of height h, we have Nh = 1 + Nh−1 + Nh−2, which can be
rewritten as Nh + 1 = (Nh−1 + 1) + (Nh−2 + 1). Equivalently, letting Gh = Nh + 1,
we have Gh = Gh−1 + Gh−2. Here, we recognize the recurrence relation that
defines the Fibonacci sequence. As we also have N0 = 0 and N1 = 1, that is,
G0 = 1 and G1 = 2, we deduce that Gh = Fh+2, where (Fi) is the Fibonacci
sequence.

 A mathematical result tells us that Fi > ϕi∕[image: √5--] − 1, where ϕ = [image: √- 1+--5- 2] is the golden
ratio. Hence:

[image: h+2 √ -- n ≥ Nh = Fh+2 − 1 > ϕ ∕ 5− 2,]

 that is,

[image: h+2 √ -- ϕ ∕ 5 < n+ 2.]

 Taking the base 2 logarithm of this inequality, we deduce the desired bound on the
height h as a function of the number of elements n:

[image: √ -- h ≤ --1--log (n + 2)+ log2--5 − 2 log2 ϕ 2 log2ϕ ≈ 1,44 log (n + 2)− 0,33 2]

 An AVL tree therefore has a height that is logarithmic in the number of elements.
This guarantees, in particular, O(log n) complexity for the searching, insertion, and
removal operations. This also guarantees that these operations will not trigger a stack
overflow.

Program 38 — Minimal Signature for Persistent Dictionaries
__

module type PersistentMap = sig
 type key
 type ’a t
 val empty : ’a t
 val add : key -> ’a -> ’a t -> ’a t
 val mem : key -> ’a t -> bool
 val find : key -> ’a t -> ’a
 val remove : key -> ’a t -> ’a t
end

 Dictionary

A minimal signature for a persistent dictionary is given in program 38. It is very
similar to that of a set (program 32, at the start of the chapter). The type key of keys
replaces the type elt of elements, for greater clarity. The type t is now polymorphic,
its argument of type ’a being the type of the values associated with the keys. The
function add takes an additional argument. Finally, a new function find
returns the value associated with a key, and raises the exception Not_found
otherwise.

 The adaptation of the structure of AVL trees to dictionaries consists in adding the
value associated with the key to each node, that is:

 type ’a t = Empty | Node of ’a t * key * ’a * ’a t * int

Program 39 — Searching in an AVL Dictionary

 let rec find k = function
 | Empty ->
 raise Not_found
 | Node (l, k’, v, r, _) ->
 let c = X.compare k k’ in
 if c = 0 then v else if c < 0 then find k l else find k r

 The function mem is unchanged. The function find follows exactly the same
schema as mem, except that the exception Not_found is raised if the key is not present
in the dictionary. Its code is given in program 39. All the other functions on AVL
trees (balance, add, etc.) are unchanged, except that elements are replaced by
key/value pairs.

 Modules Set and Map

The OCaml standard library provides the modules Set and Map, implemented
using AVL trees, that are almost identical to those presented in this section.
The only difference is that the condition on the height of the subtrees is
relaxed (2 for OCaml versus 1 here). This choice is a compromise between the
construction cost and the efficiency of the operations. These libraries provide
all set-theoretic operations, such as union, intersection, inclusion testing,
etc.

[image: PIC] For Further Information
AVL trees were introduced by Georgy Adelson-Velsky[image: ˘ı] and Evgenii
Landis in 1962 [2]. The union and intersection operations on AVL trees
are detailed in an article by Adams [1]. There are other techniques to
balance binary search trees, notably red-black trees [7, 19] and 2-3-4
trees [21].

 5.3 Hash Tables

An imperative data structure for sets can be implemented using an array of booleans

of size n if the elements are integers between 0 and n − 1. However, this idea is not
applicable to other kinds of elements, such as integers in a different range, elements of
a different type, or if the number of elements is unbounded. We could also use a list,
but searching is then costly.

 We present here the hash table data structure, which combines these two
approaches. The idea consists in using a function f that maps each element to an
integer between 0 and n − 1. In general, it is difficult to find an f that is
injective. We will thus have to handle collisions, that is, cases where several
elements map to the same value under f. Rather than using an array of
booleans, we will use an array where each cell contains a “bucket” of elements
represented as a list. Thus, an element x will belong to the set if and only
if it belongs to the bucket at index f(x). If the function f distributes the
elements uniformly across the different buckets, then the search operation will be
efficient.

 Consider, for example, a hash table representing the following set of strings:

[image: {"","we like","the codes ","in","ocaml" }]

 Let us assume the table has n = 7 buckets. We also assume that there is a
function h, called the hash function, which associates a positive integer (or zero) to
each element. We can then define the function f as:

[image: f (s) = h(s) mod n]

 The operation modulo guarantees that the value of f is indeed in the range
0..n− 1. In the case of strings, we can take h to be the length of the string. If we use
lists to represent buckets, we then obtain the structure shown in figure 5.6. Thus, for
example, bucket 2 contains the two strings "the codes" and "in", respectively of
length 9 and 2.

 [image: PIC]

Figure 5.6: A hash table containing strings.

 The choice of the number of buckets n and of the hash function h is
important. For example, if we wish to represent the set of the 80000 words
of the French dictionary, we must choose a value of n that is sufficiently
large, of the same order of magnitude as the number of elements, with a view
to having small buckets. It is also necessary to choose a subtler function
h than simply the length of the string, or else only a few buckets will be
used.

 We will now implement hash tables having the signature given in program 40.
The type elt is that of the elements and the type t is that of hash tables. The
function create returns a new table that is initially empty. The function add adds an
element and the function remove removes an element. The function mem tests for the
presence of an element and cardinal returns the number of elements in the
set.

 To add an element to a hash table, it is necessary to have a hash function hash of
type elt -> int. To search for an element, it is also necessary to have an equality
function equal of type elt -> elt -> bool . Rather than using the OCaml equality
operator =, we prefer to let users choose their own comparison function. The two
functions hash and equal must verify the following condition:

[image: ∀x, y.equal x y ⇒ hash x = hash y]

 It is therefore natural to write hash tables as a functor parametrized by a module
of type HashType, whose signature contains these two functions (see program 41
below).

Program 40 — Signature for Imperative Sets

module type ImperativeSet = sig
 type elt
 type t
 val create : unit -> t
 val add : elt -> t -> unit
 val mem : elt -> t -> bool
 val remove : elt -> t -> unit
 val cardinal : t -> int
end

Program 41 — Signature Required for the Elements of a Hash
Table

module type HashType = sig
 type t
 val hash : t -> int
 val equal : t -> t -> bool
end

 The functor then takes the following form:

 module Make(X: HashType): ImperativeSet with type elt = X.t = struct
 type elt = X.t

 The type t of hash tables could be defined as follows:

 type t = (elt list) array

However, it is also preferable to store the number of elements in the set, so as to be able
to implement the function cardinal efficiently. We therefore use a record type
containing, on the one hand, the number of elements in a field size and, on the other,
the array of buckets in a field buckets

 type t = {
 mutable size : int;
 buckets : (elt list) array;
 }

 The function cardinal is then immediate.

 let cardinal h =
 h.size

 To create a new hash table, it is necessary to choose the size n of the array.
Ideally, this size should be of the same order of magnitude as the number of elements
that will be stored in the table. The user could provide this information, for example
in the form of an additional argument to create, but this is not always possible. For
the present, let us therefore consider a simplified situation in which the size is an
arbitrary constant.

 let array_length = 5003

We will see later how to eliminate the need for this arbitrary choice. The creation of an
empty hash table consists in the creation of an array of size array_length containing
only empty lists, and in initializing the field size to 0.

 let create () =
 { size = 0;
 buckets = Array.make array_length []; }

 Searching for an Element

To search for an element x within a hash table h, we begin by writing a function
bucket_of that returns the bucket corresponding to x in h.

 let bucket_of x h =
 (X.hash x land max_int) mod (Array.length h.buckets)

Since the result of mod has the same sign as its first argument, we
make sure that the latter is not negative by clearing the sign
bit1 .

 To search for an element x in a table h, we begin by determining the index i of
the bucket containing x with the function bucket_of.

 let mem x h =
 let i = bucket_of x h in

Next, we search for x in the list h.buckets.(i). For this we use the equality function on
the type elt, namely, X.equal.

 List.exists (X.equal x) h.buckets.(i)

 The complete code of mem is given below in program 42.

Program 42 — Searching in a Hash Table

 let bucket_of x h =
 (X.hash x land max_int) mod (Array.length h.buckets)

 let mem_bucket x b =
 List.exists (X.equal x) b

 let mem x h =
 let i = bucket_of x h in
 mem_bucket x h.buckets.(i)

 Since the operation of searching within a bucket is reused several times
subsequently, we turn it into a function, mem_bucket.

 Inserting an Element

To insert an element x in a table h, we begin by retrieving the list b of the bucket that
may contain x.

 let add x h =
 let i = bucket_of x h in
 let b = h.buckets.(i) in

If x is present in the bucket, then there is nothing more to be done. Otherwise, we
increase the field size and add x at the head of the list b.

 if not (mem_bucket x b) then begin
 h.size <- h.size + 1;
 h.buckets.(i) <- x :: b
 end

The complete code of add is given below in program 43.

 Note: We could have directly added x to the list b without checking for its
presence beforehand. This would not modify the contents of the set (from the point of
view of mem), and insertion would then happen in O(1) time. On the other hand, it
would have become impossible to keep track of the field size, and the operation
cardinal would have become more costly. Furthermore, repeated insertions of the
same element would have occupied more and more space in the hash table, thereby
reducing the efficiency of search operations. Alternatively, to prevent duplicates,
buckets may be represented using a more efficient data structure than lists. We
could, for example, use AVL trees, presented in the previous section. This
would nevertheless require an additional comparison function on the type
elt.

Program 43 — Inserting an Element into a Hash Table

 let add x h =
 let i = bucket_of x h in
 let b = h.buckets.(i) in
 if not (mem_bucket x b) then begin
 h.size <- h.size + 1;
 h.buckets.(i) <- x :: b
 end

 Removing an Element

Removing an element from a hash table proceeds as in the insertion operation. The
code of remove is given in program 44.

Program 44 — Deletion from a Hash Table

 let remove x h =
 let i = bucket_of x h in
 let b = h.buckets.(i) in
 if mem_bucket x b then begin
 h.size <- h.size - 1;
 h.buckets.(i) <- List.filter (fun y -> not (X.equal y x)) b
 end

 When x is present in the bucket b, it is necessary to decrease the field size and
delete the occurrence of x in b. For this last operation, we use the function
List.filter so as to preserve only the elements of the bucket that are distinct from
x.

 Resizing the Array Dynamically

The efficiency of the code that we presented above is satisfactory when the order of
magnitude of the number of elements of the set is known beforehand. However, our
structure is too simplistic if the number of elements can increase arbitrarily. Efficiency
decreases rapidly once the load factor of the hash table—that is, the ratio between
the number of elements in the table and the size of the array—becomes large. To
remedy this, it is necessary to resize the array dynamically, depending on the load
factor. For example, we may double the size of the array once the load factor is
greater than 1∕2.

 To do this, it is necessary to modify the definition of the type t slightly, so as to
make the field buckets mutable.

 type t = {
 mutable size : int;
 mutable buckets : elt list array;
 }

The initial value of the constant array_length remains arbitrary but will no longer
impact the efficiency of the operations. The user may, nevertheless, continue to
indicate an order of magnitude so as to avoid too many resizings.

 The main modification is to the function add, where the array must be resized
when the load factor becomes too large.

 let add x h =
 let n = Array.length h.buckets in
 ...
 if not (mem_bucket x b) then begin
 ...
 if h.size > n/2 then resize h
 end

 The test h.size > n/2 is done immediately after the insertion of x. If the condition
holds, we call a function resize that will take care of resizing the array. This function
proceeds as in section 4.1 Resizeable Arrays. It begins by allocating a new array a, of
size m = 2 × n.

 let resize h =
 let n = Array.length h.buckets in
 let m = 2 * n in
 let a = Array.make m [] in

The size of the array having changed, the bucket number of an element is no longer
necessarily the same due to the change in the modulus. It is therefore necessary
to reassign each of the elements of h to their respective new buckets. For
this, we introduce a function rehash that adds the element x into its new
bucket.

 let rehash x =
 let i = (X.hash x land max_int) mod m in
 a.(i) <- x :: a.(i)
 in

It then suffices to execute rehash on all the buckets of the previous array h.buckets:

 Array.iter (List.iter rehash) h.buckets;

Finally, we replace the array h.buckets by a.

 h.buckets <- a

The complete code of resize is given in program 45.

Program 45 — Resizing a Hash Table

 let resize h =
 let n = Array.length h.buckets in
 let m = 2 * n in
 let a = Array.make m [] in
 let rehash x =
 let i = (X.hash x land max_int) mod m in
 a.(i) <- x :: a.(i)
 in
 Array.iter (List.iter rehash) h.buckets;
 h.buckets <- a

 As the size of arrays is limited to Sys.max_array_length, it is a good idea to
verify that the length of the array created by the function resize is not too large (see
exercise 5.11).

 Complexity

The complexity of the operations on a hash table obviously depends on the hash
function. If, for example, this function always returns the same value, then the hash
table becomes a simple list, and the operations mem, add, and remove all have cost
O(N) if the table contains N elements. If, by contrast, the hash function distributes
the elements uniformly over the different buckets, and if the number of buckets is
sufficiently large, then we can hope that the size of each bucket will be bounded
by a small constant. In this case, the complexity of each operation will be
O(1).

 The tuning of the hash function is done empirically, for example by measuring
maximal and average bucket sizes. On values such as integers, strings, or even arrays
of integers, we can use the polymorphic hash function Hashtbl.hash, provided by the
OCaml library, which gives good results. In the section 11.4 Hash-consing, we will see
how to define an efficient hash function for more complex values, such as lists or
trees.

 To maintain a bounded load factor, we have shown above how to dynamically
resize the hash table. Each operation that triggers a resizing obviously has cost O(N),
since each element has to be reintroduced individually into the new array. However, if
we follow the above strategy, consisting in doubling the size of the array each time,
then the cost is amortized over the entire sequence of operations, exactly as in section
4.1 Resizeable Arrays. The operations mem, add, and remove therefore have
amortized cost O(1). A hash table is consequently an extremely efficient data
structure.

 Dictionary

To adapt the hash table structure to represent dictionaries, we add the values
associated with the keys into the buckets. The lists become association lists and the
type t becomes:

 type ’a t = {
 mutable size : int;
 mutable buckets : (key * ’a) list array;
 }

 To check for the presence of a key in a list of type (key * ’a) list, we modify the
function mem_bucket slightly, as follows:

 let mem_bucket x b =
 List.exists (fun (y,_) -> X.equal x y) b

 All the other functions are subject to similar minor modifications. The only new
function that needs to be added is find. It looks for the value associated with a key in
the corresponding bucket, which boils down to searching in an association list. We
cannot use the predefined function List.assoc, because here we must use the
equality predicate X.equal. We therefore write a specific function, lookup, for this.
The code of find is given in program 46.

Program 46 — Searching in an Associative Hash Table

 let find x h =
 let rec lookup = function
 | [] -> raise Not_found
 | (k, v) :: _ when X.equal x k -> v
 | _ :: b -> lookup b
 in
 let i = bucket_of x h in
 lookup h.buckets.(i)

 Module Hashtbl

The standard library of OCaml provides dictionaries implemented as hash
tables in the form of a functor Hashtbl.Make, analogous to the one we just
wrote.

 This data structure may be used to associate several values with a single key.
More precisely, it allows us to call the function add several times with the same key,
without losing the values with which the key was previously associated. For example,
if we execute the additions add h x v1 and add h x v2 sequentially for a key x in a table h,
then find h x will return v2. If we then perform remove h x, this has the effect of
deleting the last binding of x, and find h x will then return v1. On the other
hand, if we wish to replace the value v1 by v2, we can use the operation
replace.

 The module Hashtbl also provides a polymorphic hash table data structure that
relies on the polymorphic hash function Hashtbl.hash that has type ’a -> int and
that is compatible with the structural equality operation =. This way, we avoid having
to use the functor Hashtbl.Make when the keys are, for example, values of type int
or string.

 5.4 Prefix Trees

We are concerned in this section with a data structure used to represent
sets of words. By “word,” we mean here any OCaml value that can be seen
as a sequence of letters. The first data type that comes to mind for such
values is obviously the type string of strings, where the letters are values
of type char. However, other values may also be considered as words. For

example, an integer written in base 2 can be understood as a word formed of
the letters 0 and 1. More generally, we will assume that words are of type
L.t list, where L is a module of signature Letter, given in program 47,
containing a type t that represents letters. Apart from this type t, this signature
assumes the existence of a comparison function that we will need in what
follows.

 We use this decomposition into letters to represent sets of words
with the help of a data structure called a prefix tree, also known as
trie2 .
In these trees, each branch is labeled by a letter and each node contains a
boolean indicating whether the sequence of letters leading from the root of the
tree to this node is a word belonging to the set. For example, the prefix
tree corresponding to the set of words {if,in,do,done} is represented in
figure 5.7.

 [image: PIC]

Figure 5.7: Prefix tree for the set {if,in,do,done}.

 This data structure is useful to bound the time needed to search for a word in a
set by the length of the word, independent of the number of words in the
set.

Program 47 — Minimal Signature of Letter Module

module type Letter = sig
 type t
 val compare: t -> t -> int
end

Program 48 — Signature of Persistent Sets

module type PersistentSet = sig
 type elt
 type t
 val empty : t
 val add : elt -> t -> t
 val mem : elt -> t -> bool
 val remove : elt -> t -> t
 val inter : t -> t -> t
 val compare : t -> t -> int
end

 In order to avoid depending on a particular implementation of the module
L, we define the prefix tree data structure as a functor parametrized by L
and returning a persistent set whose signature, PersistentSet, is given in
program 48.

 module Make(L: Letter): PersistentSet with type elt = L.t list =
 struct
 type elt = L.t list

As mentioned earlier, the type elt of elements is defined as a list of letters, that is, a list
of type L.t list.

 The idea behind prefix trees is to represent each node as a dictionary that
associates letters with subtrees, that is, with other nodes. We begin by introducing a
dictionary M, whose keys are letters, by applying the functor Map.Make to the module
L.

 module M = Map.Make(L)

We can then define the type t of nodes as follows:

 type t = { word : bool; branches : t M.t }

The field word contains the boolean value indicating the presence of a word in the set.
The field branches contains the children of the node.

 The empty set is represented by a tree empty consisting of a single node, where
the field word is false, and branches is the empty dictionary:

 let empty = { word = false; branches = M.empty }

The code is given in program 49 along with a function is_empty that tests whether a set
is empty.

Program 49 — Structure of a Prefix Tree

module Make(L : Letter) : PersistentSet with type elt = L.t list =
struct

 module M = Map.Make(L)

 type elt = L.t list
 type t = { word : bool ; branches : t M.t; }

 let empty = { word = false; branches = M.empty }

 let is_empty t = not t.word && M.is_empty t.branches

 let rec mem x t =
 match x with
 | [] ->
 t.word
 | i::l ->
 try mem l (M.find i t.branches)
 with Not_found -> false

 Searching for an Element

Searching for an element x proceeds recursively as follows: If the word x is the empty
list, the search ends, returning the boolean value contained in the root of the tree
t.

 let rec mem x t =
 match x with
 | [] -> t.word

Otherwise, we pursue the search recursively within the subtree associated with the branch
labeled with the first letter i of the word x. If this branch does not exist, the search
ends immediately with a failure.

 | i :: l ->
 try mem l (M.find i t.branches)
 with Not_found -> false

The code of the function mem is given in program 49.

 Inserting an Element

Inserting a word x in a prefix tree t consists in descending along the branches labeled
with the letters of x, as was done when searching for an element.

 If x is the empty word, the insertion ends and returns a tree t with a field word set
to true, indicating that x now belongs to the set.

 let rec add x t =
 match x with
 | [] ->
 if t.word then t else { t with word = true }

We avoid reconstructing the node when t.word is already true.

 If x is a non-empty list of the form i::l, we recursively insert l in the
subtree b associated with the letter i in t. If b does not exist, we perform the
insertion starting with an empty tree. The insertion ends with the creation of
a new node in which we associate the letter i with the subtree obtained
recursively.

 | i :: l ->
 let b = try M.find i t.branches with Not_found -> empty in
 { t with branches = M.add i (add l b) t.branches }

The code of the function add is given in program 50.

Program 50 — Insertion and Removal in a Prefix Tree

 let rec add x t =
 match x with
 | [] ->
 if t.word then t else { t with word = true }
 | i::l ->
 let b = try M.find i t.branches with Not_found -> empty in
 { t with branches = M.add i (add l b) t.branches }

 let rec remove x t =
 match x with
 | [] ->
 { t with word = false }
 | i::l ->
 try
 let s = remove l (M.find i t.branches) in
 let new_branches =
 if is_empty s then M.remove i t.branches
 else M.add i s t.branches
 in
 { t with branches = new_branches }
 with Not_found -> t

 Removing an Element

Removing an element x in a tree t proceeds, once again, with the same recursive
traversal. There is, however, a subtlety. Removing an element can leave the tree in a
state in which one branch is completely empty, that is, where the fields word are all
false. To avoid wasting space in this manner, we will enforce the property that all
leaves of a prefix tree must represent a word belonging to the set. In other words, the
boolean word of a leaf must always be true, with the exception, of course, of
the empty set, represented by a single node with the boolean word set to
false.

 Let us now write the code of the function remove. If the argument x is the empty
list, it is deleted from t by switching the field word to false.

 let rec remove x t =
 match x with
 | [] ->
 { t with word = false }

Otherwise, x is of the form i::l and we begin by recursively deleting the rest of the word
l from the subtree associated with i. If this subtree does not exist, the function ends,
directly returning t.

 | i :: l ->
 try
 let s = remove l (M.find i t.branches) in
 ...
 with Not_found -> t

 Next, if the tree s exists and is empty, we remove the branch associated with i in
t. Otherwise, we create a new binding between i and s.

 let new_branches =
 if is_empty s then M.remove i t.branches
 else M.add i s t.branches
 in

This guarantees that no branch of t will point to an empty tree. Finally, the function
ends by updating t with the new branches.

 { t with branches = new_branches }

The code of the function remove is given above in program 50.

 Intersection of Prefix Trees

The intersection of two prefix trees is implemented with the help of two mutually
recursive functions inter and inter_branches. The function inter computes the
intersection of two trees t1 and t2 that are assumed to correspond to the same prefix
p. The word p belongs to the intersection if the roots of t1 and t2 both contain
the word p. The branches of the intersection are calculated by the function
 inter_branches .

 let rec inter t1 t2 =
 { word = t1.word && t2.word ;
 branches = inter_branches t1.branches t2.branches }

The function inter_branches implements the intersection of two dictionaries m1 and m2.
The idea is to enumerate the branches of m1 while checking, for each branch, if
a corresponding branch exists in m2. For this we use the function M.fold,
starting from an empty dictionary and considering each binding i↦ti of m1 in
turn.

 and inter_branches m1 m2 =
 M.fold
 (fun i ti m -> ...)
 m1 M.empty

 For each binding, we recursively compute the intersection t of ti with the tree
bound to i in m2, if it exists. We add the binding i↦t to m, taking care to verify that t
is not empty. If m2 does not contain the branch i, the intersection is empty and m is
left unchanged.

 (fun i ti m ->
 try
 let t = inter ti (M.find i m2) in
 if is_empty t then m else M.add i t m
 with Not_found -> m)

The complete code of the intersection function is given in program 51. The union
operation is left as an exercise.

Program 51 — Intersection of Prefix Trees

 let rec inter t1 t2 =
 { word = t1.word && t2.word;
 branches = inter_branches t1.branches t2.branches; }
 and inter_branches m1 m2 =
 M.fold
 (fun i ti m ->
 try
 let t = inter ti (M.find i m2) in
 if is_empty t then m else M.add i t m
 with Not_found -> m)
 m1 M.empty

 Comparison

Prefix trees can be compared easily. To compare two trees t1 and t2, we begin by
comparing the two booleans t1.word and t2.word. In case of equality, it is necessary
to compare the two dictionaries t1.branches and t2.branches. For this, we use the
comparison function provided by the module M. This takes as argument a function to
compare the values in the two dictionaries, which corresponds precisely to the
function compare that we seek to define. This function is therefore recursive.

 let rec compare t1 t2 =
 let c = Stdlib.compare t1.word t2.word in
 if c<>0 then c else M.compare compare t1.branches t2.branches

 Complexity

Consider a prefix tree s containing N words in all, and consider a word x of
length M. The search for x in s necessitates at most M recursive calls to the function
mem, each having the same cost as that of searching in the dictionary branches of the
corresponding node. Since our dictionaries use the module Map of the standard library
of OCaml, the cost of searching is logarithmic in the number of elements. The total
cost is therefore proportionate to ∑
 log(Bi), where the Bi are the sizes of the
dictionaries encountered during the search. We can bound each Bi by N,
since the property that each leaf ends with true guarantees that a node
with a dictionary of size B contains at least B different words. Hence the
complexity is at worst O(M log N). However, it can be a lot less. If, for example,
each Bi equals two, then the complexity will be O(M), while N can be as
large as 2M. More generally, if the set of letters considered has a bounded
size, as in case of the 26 letters of the alphabet for example, then searching

has complexity O(M). The insertion and removal operations have similar
complexity.

 For the intersection of two prefix trees containing respectively N1 and N2
elements of length less than M, we can similarly bound the complexity by
O(N1M log N2). If the number of letters is bounded, the complexity reduces to
O(N1M).

 Dictionaries

A prefix tree encodes the presence of an element with a boolean contained in each
node. Adapting this structure to represent dictionaries therefore consists in
replacing the boolean by an optional value. We therefore define the following
type:

 type ’a t = { value : ’a option ; branches : ’a t M.t }

The field value replaces the boolean field word. The necessary adaptations are
immediate: the function mem checks if the field value is different from None; the
function add replaces the current value (if present) by a new value; etc. The code of
the function find is given in program 52.

Program 52 — Searching in a Prefix Tree

 let rec find x t =
 match x, t.value with
 | [], None -> raise Not_found
 | [], Some v -> v
 | i :: l, _ -> find l (M.find i t.branches)

 5.5 Patricia Trees

We presented prefix trees in the preceding section. This data structure can be used to
represent sets of integers by identifying an integer with the word formed by its binary
digits. We call this a Patricia tree. Thus, the set {4,5,17} can be seen as the following
set of three binary words:

[image: {(100)2,(101)2,(10001)2}]

 We can construct a prefix tree for these three words. We have two possible Patricia
trees, depending on whether we begin reading from the high- or the low-order bit. In the
first case, we speak of big-endian Patricia trees and in the second, of little-endian Patricia
trees3 .
In what follows, we consider only little-endian Patricia trees, which means that we
examine the bits starting from the least significant one, that is, from right to left.
Adopting the convention that a 0 bit leads to the left subtree while a 1 bit leads to
the right subtree, the prefix tree obtained for the integers {4,5,17} is represented in

figure 5.8.

 [image: PIC]

Figure 5.8: Prefix tree for the integers {4,5,17}.

 We observe immediately that there is a lot of redundant information. For instance,
the second bit of the three integers is always 0. Yet the prefix tree contains a
branching node at this level. This is also the case for the fourth bit in the right
subtree. We observe equally that it is useless to branch off when there is only one
element left in the tree. To obtain a more compact representation, we will
add a branching node to the tree only when necessary, that is, when there
is a difference in the bits of the two subsets of elements. More precisely, a
node will contain the bit to be tested as well as all the bits situated to its
right. We thus obtain the tree of figure 5.9, where the bit to be tested is
underlined.

 [image: PIC]

Figure 5.9: Patricia tree for the set {4,5,17}.

 This tree signifies that we can begin by testing the first bit. If it is 0, we go to the
left subtree, which contains a single element, 4 = (100)2. If it is 1, we go to the right
subtree, which indicates that the third bit is to be tested, and that the two low-order
bits are (01)2 for this entire subtree. If the third bit is 0, we reach the subtree
containing only 17 = (10001)2. If it is 1, we reach the subtree containing only
5 = (101)2. Note that the order of elements is not preserved in the tree structure.
(This would, however, be the case in big-endian Patricia trees containing unsigned
integers.)

 It is important to note that a branching node such as (101)2 contains two distinct
pieces of information: the bit that must be tested (here the third) and the bits lying
to its right (here (01)2). Only the first piece of information is necessary to search for
an element in the tree. Insertion, however, requires the second piece as well.
We will use two integers to represent a branching node such as (101)2: a
power of two to represent the bit to be tested (here (100)2) and an integer
representing the prefix, that is, the bits of order less than this power of two
(here (01)2). One integer alone would suffice (here (101)2), but since it is not
easy to extract the high-order bit, it is simpler to maintain the two pieces of
information separately. We adopt therefore the following type to represent Patricia
trees:

 type t =
 | Empty
 | Leaf of int
 | Node of int * int * t * t

 The constructor Empty represents the empty tree; Leaf x is a leaf containing an
element x; and, finally, Node (p, b, l, r) represents a branching point, where p is the
prefix, b the bit to test (a power of 2), and l and r the two subtrees. In what follows
we will guarantee the following well-formedness invariant: A tree of the form Node
does not contain a subtree of the form Empty.

 Searching for an Element

To search for an element x in a Patricia tree, it suffices to descend along the tree
according to the branching bits, until a leaf is reached. We begin by writing a function
zero_bit that tests whether the bit b of x is 0, using a logical and and assuming that
the integer b is a power of 2.

 let zero_bit x b =
 x land b == 0

 We can now write the function mem. Its definition is clear if the tree is
empty.

 let rec mem x = function
 | Empty -> false

If we reach a leaf j, we check whether x is equal to j.

 | Leaf j -> x = j

Finally, on a branching node, it suffices to determine if the bit corresponding to x is 0 or
1 by using the function zero_bit.

 | Node (_, b, l, r) -> mem x (if zero_bit x b then l else r)

The code of mem is given in program 53.

Program 53 — Searching in a Patricia Tree

let zero_bit x b =
 x land b == 0

let rec mem x = function
 | Empty -> false
 | Leaf j -> x = j
 | Node (_, b, l, r) -> mem x (if zero_bit x b then l else r)

 Note that this code descends systematically until a leaf is reached, though it could
sometimes stop earlier if the element x does not have the prefix expected by a
branching node. We have chosen here an approach that performs fewer checks, which
privileges situations in which a majority of searches have a positive outcome. Exercise
5.22 considers the other option.

 Inserting an Element

Inserting an element into a Patricia tree consists in descending along the tree until the
insertion position is found. We use an example to illustrate the two cases that may
come up. Let us assume that we are inserting 7 = (111)2 into the tree of figure 5.9.
The first branching node leads to the right subtree, because the low-order bit is 1.
However, in the second branching node, namely, (101)2, the prefix does not
coincide: It is (11)2 in the element to be inserted and (10)2 in the subtree. It
is therefore necessary to create a new branching node, namely, (11)2, with
the previous subtree to the left and the leaf 7 to the right. In the end, we
obtain the left tree of figure 5.10. On the other hand, if we insert not 7 but
13 = (1101)2, then we reach the leaf containing 5, which must be separated into two
distinct leaves, containing 5 and 13, which gives the tree on the right in
figure 5.10.

 	

 [image: PIC]

 	

 [image: PIC]

 Figure 5.10: Insertion of 7 = (111)2 (on the left) or 13 = (1101)2 (on the right)
in the Patricia tree of figure 5.9.

 We begin by implementing a function branch that takes two trees t1 and t2 as
arguments, and creates the corresponding branching node. The prefixes of the two
trees, p1 and p2, are assumed to be different. It is therefore necessary to determine
the lowest-order bit at which p1 and p2 differ. For this, we proceed in two
steps: We begin by determining all the bits that differ, using the operation
p1 lxor p2. Then, we extract the lowest-order set bit, which must exist. We have
already seen how to do this using a logical and between x and -x in section
4.2 Bit Vectors. Accordingly, we introduce a function rightmost_1_bit for
this.

 let rightmost_1_bit x =
 x land -x

Program 54 — Insertion in a Patricia Tree

let rightmost_1_bit x =
 x land -x

let branch p1 t1 p2 t2 =
 let b = rightmost_1_bit (p1 lxor p2) in
 let p = p1 land (b-1) in
 if zero_bit p1 b then
 Node (p, b, t1, t2)
 else
 Node (p, b, t2, t1)

let matches_prefix x p b =
 x land (b-1) == p

let rec add x = function
 | Empty ->
 Leaf x
 | Leaf j as t ->
 if j == x then t else branch x (Leaf x) j t
 | Node (p, b, l, r) as t ->
 if matches_prefix x p b then
 if zero_bit x b then
 Node (p, b, add x l, r)
 else
 Node (p, b, l, add x r)
 else
 branch x (Leaf x) p t

 Let us now write the function branch. We begin by calculating the branching bit
using rightmost_1_bit.

 let branch p1 t1 p2 t2 =
 let b = rightmost_1_bit (p1 lxor p2) in

Then, we calculate the common prefix p of p1 and p2. This is the set of bits of order less
than b, that we extract using a logical and with the mask b-1.

 let p = p1 land (b-1) in

We use p1 here to determine this prefix, but we could have also used p2. The only thing
that remains now is to determine which of the two, t1 or t2, must be placed on the
left, depending on the value of the bit b.

 if zero_bit p1 b then
 Node (p, b, t1, t2)
 else
 Node (p, b, t2, t1)

Let us illustrate how the function branch works with p1 = (011101)2 and p2 = (110101)2.
The result of p1 lxor p2 is (101000)2. The bit b extracted using rightmost_1_bit is
therefore (001000)2. The mask b-1 is then (000111)2, which gives the prefix
p = (000101)2.

 We next define a function matches_prefix that determines if an integer x has the
prefix defined by p and b.

 let matches_prefix x p b =
 x land (b-1) == p

We are now able to write the function add that inserts an element x in a Patricia tree.
The case of an empty tree is clear.

 let rec add x = function
 | Empty ->
 Leaf x

In the case of a leaf j, we begin by checking if j is equal to x. If it is, there is nothing
more to be done. Otherwise, a branching node must be created for the two leaves,
using branch.

 | Leaf j as t ->
 if j == x then t else branch x (Leaf x) j t

Finally, in case of a Node, we determine whether x has the prefix of this tree.

 | Node (p, b, l, r) as t ->
 if matches_prefix x p b then

If this is the case, we pursue the insertion recursively in the left or the right subtree,
depending on whether the bit of x defined by b equals 0 or 1.

 if zero_bit x b then
 Node (p, b, add x l, r)
 else
 Node (p, b, l, add x r)

If, on the other hand, x does not have the prefix p, then it is necessary to create a
branching node with two subtrees, t and the leaf x. The function branch is
made precisely for this.

 else
 branch x (Leaf x) p t

This concludes the function add. The complete code is given in program 54 (see
page 497).

 Removing an Element

Removing an element in a Patricia tree proceeds exactly as in case of insertion, the
only difference being that it is necessary to maintain the well-formedness invariant.
To this end, it suffices to introduce a smart constructor node that behaves
like Node when its arguments are not Empty and performs a simplification
otherwise.

 let node = function
 | (_, _, Empty, t)
 | (_, _, t, Empty) -> t
 | (p, b, l, r) -> Node (p, b, l, r)

By using the function node instead of the constructor Node, the definition of remove is
clear. It is given in program 55.

Program 55 — Removing an Element in a Patricia Tree

let node = function
 | (_, _, Empty, t)
 | (_, _, t, Empty) -> t
 | (p, b, l, r) -> Node (p, b, l, r)

let rec remove x = function
 | Empty ->
 Empty
 | Leaf j as t ->
 if x == j then Empty else t
 | Node (p, m, t0, t1) as t ->
 if matches_prefix x p m then
 if zero_bit x m then
 node (p, m, remove x t0, t1)
 else
 node (p, m, t0, remove x t1)
 else
 t

 Union

One of the advantages of Patricia trees compared to AVL trees is that the former lend
themselves more easily to set-theoretic operations such as union. Indeed, two Patricia
trees that have many elements in common will typically have the same, or similar,
branching structures, thereby allowing an approach that uses recursive descent. This
stands in contrast with AVL trees, where the root depends strongly on the manner in
which the tree was constructed.

 Let us implement the union of two Patricia trees, t1 and t2. We begin by
considering the trivial cases. The simplest is that in which one of the trees is empty.

 let rec union t1 t2 = match t1, t2 with
 | Empty, t | t, Empty ->
 t

 Similarly, we can easily treat the case in which one of the two trees is a leaf, by
calling the function add.

 | Leaf x, t | t, Leaf x ->
 add x t

Next we must consider the general case, where t1 and t2 are both branching
nodes.

 | Node (p1, b1, l1, r1), Node (p2, b2, l2, r2) ->

There are three possible scenarios. The simplest case is that in which the prefixes of t1
and t2 coincide exactly. In this case, it suffices to recursively perform the union of the
left and right subtrees respectively.

 if b1 == b2 && p1 = p2 then
 Node (p1, b1, union l1 l2, union r1 r2)

In the second case, one of the two prefixes is included in the other. Assume for example
that the prefix of t1 is included in the prefix of t2. This means that t1 tests a bit
that is of lower order than that of t2, that is, b1 < b2, and that the bits of p2
below b1 coincide with p1. In this case, all of t2 must be recursively merged
with the left or right subtree of t1, depending on the bit b1 of the prefix
p2.

 else if b1 < b2 && matches_prefix p2 p1 b1 then
 if zero_bit p2 b1 then
 Node (p1, b1, union l1 t2, r1)
 else
 Node (p1, b1, l1, union r1 t2)

 We treat the symmetrical case, when the prefix of t2 is included in that of t1, in a
similar manner.

 else if b1 > b2 && matches_prefix p1 p2 b2 then
 ...

 The last case is that in which the prefixes differ completely, neither being included
in the other. This means that the elements of t1 are disjoint from the elements
of t2, and it suffices to create a new branching node with t1 on one side
and t2 on the other, which is exactly what is done by the function branch.

 else
 branch p1 t1 p2 t2

The complete code of union is given below in program 56.

Program 56 — Union of Two Patricia Trees

let rec union t1 t2 = match t1, t2 with
 | Empty, t | t, Empty ->
 t
 | Leaf x, t | t, Leaf x ->
 add x t
 | Node (p1, b1, l1, r1), Node (p2, b2, l2, r2) ->
 if b1 == b2 && p1 = p2 then
 Node (p1, b1, union l1 l2, union r1 r2)
 else if b1 < b2 && matches_prefix p2 p1 b1 then
 if zero_bit p2 b1 then
 Node (p1, b1, union l1 t2, r1)
 else
 Node (p1, b1, l1, union r1 t2)
 else if b1 > b2 && matches_prefix p1 p2 b2 then
 if zero_bit p1 b2 then
 Node (p2, b2, union t1 l2, r2)
 else
 Node (p2, b2, l2, union t1 r2)
 else
 branch p1 t1 p2 t2

 The intersection, difference, and inclusion test operations are written in a similar
manner (see exercise 5.23).

 Comparison

Patricia trees can be compared easily. Indeed, two Patricia trees containing the same
elements must have the same structure. Hence, the structural comparison functions of
OCaml can be directly used on Patricia trees. In this way, we obtain an
equality and a total order on the type t with the operator = and the function
Stdlib.compare.

 Complexity

The cost of searching, inserting, and removing elements in Patricia trees is
proportionate to the number of bits of the integer considered. The cost is thus
constant. Note, however, that this cost can reach 64 comparisons on a 64-bit machine,
which, in the case of an AVL tree, would correspond to a structure containing more
elements than can be represented in the memory of the computer. We therefore
cannot deduce from this that a Patricia tree is better than an AVL tree in general. A
Patricia tree can require more comparisons than an AVL tree. Indeed, a Patricia tree
containing 30 elements can have a comb structure while the corresponding AVL
tree would be balanced. Nonetheless, Patricia trees remain an interesting
structure when we have to implement operations like union, intersection, or
comparison.

 Dictionaries

It is easy to adapt the type of Patricia trees to make dictionaries out of them. Indeed,
it suffices to add a second argument to the constructor Leaf.

 type key = int
 type ’a t =
 | Empty
 | Leaf of key * ’a
 | Node of int * int * ’a t * ’a t

The adaptations needed for the different functions are clear. Exercise 5.27 proposes
writing the function find.

[image: PIC] For Further Information
Patricia trees were introduced in 1968 by Morrison, [18], who forged
the term Patricia as an acronym for Practical Algorithm To Retrieve
Information Coded In Alphanumeric. More recently, Patricia trees have
been studied in the context of a functional language by Okasaki and
Gill [20].

The technique of hash-consing, presented in chapter 11, allows the
association of unique integers with values of certain types. We can then
exploit Patricia trees to represent sets of values of this type, notably if
we have to implement costly operations like the union or comparison
of sets.

 5.6 Exercises

 Binary Search Trees

5.1 Write a function height that calculates the height of a tree.

5.2 Write a function cardinal: t -> int that returns the number of elements of a
binary search tree.

5.3 Write a function max_elt: t -> elt analogous to min_elt.

5.4 Write a function floor: elt -> t -> elt that returns the largest element of a
binary search tree less than or equal to a given element, if it exists, and raises the
exception Not_found otherwise.

5.5 Write a function iter: (elt -> unit) -> t -> unit that traverses the elements of a
binary search tree in increasing order.

5.6 Write a function elements: t -> elt list that returns the elements of a binary
search tree in increasing order.

5.7 When calling add with an element already present or remove with an element
that is absent, the efficiency of the two functions can be improved by directly
returning the tree passed as argument. Rewrite the functions add and remove using
this idea. You can raise an exception to signal that the tree is unchanged, taking care
not to catch it at every recursive call, but only at the level of the initial
call.

5.8 If you use the idea of the preceding exercise, it becomes easy to keep track of
the cardinal of a binary search tree. You can, for example, use a record that stores the
cardinal next to the tree. Rewrite the type t, and the functions add and remove in
this way.

 AVL Trees

All the previous exercises on binary search trees may be taken up again with AVL
trees.

5.9 Write the function add for a dictionary implemented with an AVL tree. What
should be done if a key is already associated with a value?

 Hash Tables

5.10 The computation of (X.hash x) mod (Array.length h.buckets) would
be incorrect if X.hash x returns a negative value, since the result would be
negative. Explain why (abs (X.hash x)) mod (Array.length h.buckets) is not a
solution.

5.11 Modify the function resize so that the size m of the new array does not exceed
Sys.max_array_length.

5.12 In case of a dictionary, rather than using an association list of type
(key * ’a) list to represent the buckets, you could use a more compact type,
namely:

 type ’a bucket = Nil | Cons of key * ’a * ’a bucket

Show that you would thus economize a third of the memory words. Rewrite the functions
on hash tables using the type ’a bucket.

5.13 Using persistent arrays, implement a data structure of persistent hash
tables.

 Prefix Trees

5.14 Write the function cardinal on prefix trees.

5.15 Write a function min_elt that returns the smallest element of a prefix tree
with respect to the lexicographic order derived from L.compare. You can use the fact
that the iterators of the module Map traverse the bindings in increasing order of the
keys.

5.16 Improve the efficiency of the functions add and remove using the idea of
exercice 5.7.

5.17 The function mem is not tail recursive since the recursive call is contained in a
try-with. Remedy this problem by only catching the exception Not_found at the top
of the function.

5.18 Rather than using the module Map of the OCaml standard library, the functor
Make can take an additional argument M of signature

 Map.S with type key = L.t

Rewrite the functor Make in this manner.

5.19 Write the function union on prefix trees. You can use two mutually recursive
functions as we did in case of the function inter.

5.20 Write a variant of prefix trees where the dictionary branches is implemented
with an array, for example, when words are formed from the characters ’a’..’z’.

5.21 The T9 input method of early mobile phones facilitates typing text on their
numeric keyboards: Instead of pressing several times on a key to produce each letter,
a single press suffices, and the phone proposes the words that correspond to
the sequence of pressed keys, based on a dictionary that the phone has in
memory.

 For example, when you press the keys 2, 6, 6, 7, 8, 8, 3, 7 successively, you
obtain the word computer, assuming the following mapping from keys to
letters,

[image: 2 ↦→ abc,3 ↦→ def,4 ↦→ ghi,5 ↦→ jkl,6 ↦→ mno, 7 ↦→ pqrs,8 ↦→ tuv,9 ↦→ wxyz.]

 A sequence of keys may correspond to more than one word. For instance, the
sequence 2, 2, 5, 3, 7 corresponds to both baker and cakes, and the sequence 3, 3, 2, 7
corresponds to both dear and fear.

 You can use prefix trees to represent such dictionaries. We thus have a data
structure that allows us to search efficiently for all the words in the telephone’s
dictionary that correspond to a given sequence of key presses.

 To this end, it is necessary to modify the data structure presented in
this chapter slightly. First of all, we must assume that the decomposition of
words is not necessarily injective. In other words, two different words may
now be represented by the same sequence of letters. We will assume the
existence of a module implementing this decomposition, with the following
signature:

 module type Word = sig
 type t
 type letter
 val decomposition: t -> letter list
 val compare : t -> t -> int
 end

Next, in order to store all the words whose decomposition corresponds to the same prefix,
we must replace the boolean field word, which indicates a complete word, by a field
containing a set of matching words. The beginning of the module Make will therefore
have the following form:

 module Make(L : Letter)(W : Word with type letter = L.t)
 : PersistentSet with type elt = W.t =
 struct
 module S = Set.Make(W)
 module M = Map.Make(L)

 type elt = W.t
 type t = { words : S.t ; branches : t M.t }

Complete the code of the functor Make.

 Patricia Trees

5.22 Modify the function mem on Patricia trees (program 53) so that it fails as soon
as x does not possess the prefix corresponding to the node Node.

5.23 Write functions inter, diff, and subset on Patricia trees, implementing
respectively the intersection, the difference, and the inclusion test, taking the function
union as a model.

5.24 Write all the operations of big-endian Patricia trees, that is, where the bits
are examined from left to right rather than from right to left. The main
difficulty is writing the function leftmost_1_bit which is not as simple as
rightmost_1_bit.

5.25 Write a library of Patricia trees, independently of the little-endian or
big-endian nature, as a functor parameterized by those elements that differ between
the two implementations.

5.26 Improve the representation of prefix trees by factoring out common prefixes as
is done in Patricia trees. Thus, for the set of words {do, doing, dominate, domino}
will have the following representation:

 [image: PIC]

The root indicates that the first two letters must be do and that the corresponding word,
do, is in the set. We move down the tree according to the value of the third
letter. For i, we reach a leaf containing the word doing. For m, we reach a
new branching node that indicates that the two following letters must be
in and that the corresponding word, domin, is not in the set. According to
the value of the sixth letter, we obtain either the leaf dominate or the leaf
domino.

5.27 Write the function find for dictionaries represented using Patricia
trees.

 Chapter 6
Queues

This chapter presents several data structures known as queues. A queue is a
data structure whose elements are taken out in the order in which they were
inserted, thus corresponding precisely to the usual notion of queue. We can also
associate elements with priorities, in which case the elements are no longer
taken out in the order in which they were inserted. This is called a priority
queue.

 6.1 Imperative Queues

This section presents a data structure of imperative queues based on linked
lists. The signature of this structure is given in program 57 (see following
page).

Program 57 — Minimal signature for imperative queues.

module type ImperativeQueue = sig
 type ’a t
 val create : unit -> ’a t
 val is_empty : ’a t -> bool
 val push : ’a -> ’a t -> unit
 val pop : ’a t -> ’a
end

 The idea is as follows: If a queue q contains the elements 1, 2, 3, inserted in this
order, then it is represented by a circular linked list in which each element points to
the following one in the queue, and the last element points to the first. To be able to
insert and remove elements in constant time, it suffices to keep a pointer to the final
element of the queue, here, 3. We therefore have the following situation:

 [image: PIC]

Thus, to insert a new element, 4, it suffices to insert it after 3, that is, between 3 and 1,
and to shift the pointer to 4.

 [image: PIC]

We access the first element, here 1, by following the pointer contained in the final
element. To remove the first element, it suffices to make the final element
point to the second one, here 2, which is obtained by following two pointers.

 [image: PIC]

 We begin by introducing a type ’a cell to represent the cells of the linked list, in
the usual way.

 type ’a cell = { elt : ’a; mutable next : ’a cell }

We then represent a queue by a reference to the last cell. A problem arises when it
comes to representing the empty queue, for which we would not want to
have any list cells at all. We choose therefore to represent a queue with a
reference to a value of type ’a cell option, where None represents the empty
queue.

 type ’a t = ((’a cell) option) ref

 The implementation of the functions create and is_empty is clear.

 let create () =
 ref None
 let is_empty q =
 !q = None

 Inserting an Element

Inserting an element x into a queue q follows the scheme mentioned above. If q is
empty, we create a circular list of one element and modify q so that it points to this
element. We use here the possibility afforded by OCaml of constructing a cyclic value
with let rec.

 let push x q = match !q with
 | None ->
 let rec c = { elt = x; next = c } in
 q := Some c

If q is not empty, we create a new cell c containing x, that we insert between
the final and first elements, and then modify q so that it points to this new
cell.

 | Some last ->
 let c = { elt = x; next = last.next } in
 last.next <- c;
 q := Some c

 Extracting an Element

To extract the first element of a queue q, we begin by testing whether q is empty. In
this case, we raise an exception.

 let pop q = match !q with
 | None ->
 invalid_arg "pop"

When q is not empty, it is convenient to treat the case in which q contains only one
element separately. Here, the final element points to itself. It thus suffices to empty
the queue, giving it the value None and returning the only element that it
contained.

 | Some last when last.next == last ->
 q := None;
 last.elt

In the general case, when q contains at least two elements, we begin by determining the
first element of the queue, first. We then remove it from the linked list by making
the final element point to the second one. The value to be returned is contained in the
cell first.

 | Some last ->
 let first = last.next in
 last.next <- first.next;
 first.elt

The complete code is given in program 58 (see following page).

Program 58 — Imperative queues using linked lists.

type ’a cell = { elt : ’a; mutable next : ’a cell }

type ’a t = ’a cell option ref

let create () =
 ref None

let is_empty q =
 !q = None

let push x q = match !q with
 | None ->
 let rec c = { elt = x; next = c } in
 q := Some c
 | Some last ->
 let c = { elt = x; next = last.next } in
 last.next <- c;
 q := Some c

let pop q = match !q with
 | None ->
 invalid_arg "pop"
 | Some last when last.next == last ->
 q := None;
 last.elt
 | Some last ->
 let first = last.next in
 last.next <- first.next;
 first.elt

 Complexity

It is clear that the operations create, is_empty, push, and pop all execute in
constant time. A queue containing N elements occupies three words per element in
memory (being a record with two fields, elt and next), plus two words for the
reference.

[image: PIC] For Further Information
The module Queue of the OCaml standard library also uses a singly
linked list, but in a slightly different way. First, it uses a type with
two constructors, Nil and Cons, instead of using the combination of a
record type and an option type. Second, it maintains two pointers, to
the first and last elements, rather than using a circular list.

 6.2 Persistent Queues

In this section, we present a data structure of persistent queues. The signature of such
a structure is given in program 59. We see, in particular, that the operations push
and pop return a modified version of the data structure.

 A naive idea would consist in representing a queue by a list. This solution is
unfortunately very inefficient, because either the insertion or the extraction operation
would have to be performed at the end of the list. To implement these two
operations more efficiently, a simple idea consists in using not one but two lists.
The first list contains the elements at the front of the queue, in order. The
second list contains the elements at the back of the queue, in reverse order. In
this way, both insertion and extraction are done at the head of a list. For

example, the queue containing the elements 1, 2, 3, 4, 5, inserted in this order,
may be represented by the two lists [1; 2] and [5; 4; 3]. However, the queue
could equally be represented by the two lists [1] and [5;4;3;2], or even by
[1;2;3;4;5] and [], which are all equivalent representations of the same
queue.

 We therefore introduce the type of persistent queues simply as a synonym for a
pair of lists.

 type ’a t = ’a list * ’a list

The first list represents the front of the queue. The second represents the back of the
queue. The definitions of the empty queue empty and the function is_empty are
clear.

 let empty = [], []

 let is_empty = function
 | [], [] -> true
 | _ -> false

Program 59 — Minimal signature for persistent queues.

module type PersistentQueue = sig
 type ’a t
 val empty : ’a t
 val is_empty : ’a t -> bool
 val push : ’a -> ’a t -> ’a t
 val pop : ’a t -> ’a * ’a t
end

 To insert an element x, it suffices to add it to the head of the second
list.

 let push x (o, i) =
 (o, x :: i)

 Extraction is a more delicate operation. There are three possible cases. First, when
the queue is empty, we raise an exception.

 let pop = function
 | [], [] ->
 invalid_arg "pop"

Second, when the first list, which represents the front of the queue, contains at least one
element, it suffices to extract this element.

 | x :: o, i ->
 x, (o, i)

Third, when all the elements are in the back of the queue, it suffices to reverse the list i
and proceed as in the previous case, where the element to be extracted was
at the head of the list. The tail of the list thus obtained becomes the new
front of the queue, and the back of the new queue no longer contains any
elements.

 | [], i ->
 match List.rev i with
 | x :: o -> x, (o, [])

Since the list i is not empty, the list List.rev i is also not empty. Rather than write a
non-exhaustive pattern matching, which would trigger a compiler warning, we
indicate explicitly that the case of an empty list cannot occur.

 | [] -> assert false

The complete code is given in program 60.

Program 60 — Persistent queues represented by pairs of lists.
_

 type ’a t = ’a list * ’a list

 let empty =
 ([], [])

 let is_empty = function
 | [], [] -> true
 | _ -> false

 let push x (o, i) =
 (o, x :: i)

 let pop = function
 | [], [] ->
 invalid_arg "pop"
 | x :: o, i ->
 x, (o, i)
 | [], i ->
 match List.rev i with
 | x :: o -> x, (o, [])
 | [] -> assert false

 Complexity

It is clear that the operations is_empty and push execute in constant time. The
operation pop can, however, have cost O(N) for a queue containing N elements. This
is the case when all the elements are at the back of the queue so that the list has to
be inverted. Nevertheless, if we consider a sequence of M successive push and pop
operations, starting from an empty queue, then the total cost cannot be greater than
O(M). Indeed, each element may be involved in, at most, one list reversal. The pop
operation therefore has amortized cost O(1). The space complexity is the
same as in case of imperative queues, with three words per element of the
queue.

 6.3 Imperative Priority Queues

In this section and the next, we will consider queues in which the elements are
associated with priorities. In such queues, called priority queues, the elements
are removed in the order fixed by their priority rather than in the order in
which they were entered. We present here an imperative data structure of
priority queues, whose signature is given in program 61 (see the following
page).

 In this interface, the notion of minimality coincides with the notion of greatest
priority. Unlike with ordinary queues, here we distinguish the access and removal of
the first element using two separate operations. This is for the sake of efficiency, as
will be explained later. Accordingly, the function get_min returns the element of
the queue with the highest priority, and the function remove_min removes
it.

 To implement an efficient priority queue, it is necessary to use a more complex
data structure than in case of ordinary queues. One solution consists in organizing the
elements as a heap. A heap is a binary tree in which the element stored at each node
has a higher priority than the two elements situated immediately below it. The
element with the highest priority is therefore found at the root. Thus, a heap
containing the elements {3,7,9,12,21}, ordered by magnitude, may have the following
shape:

 [image: PIC]

 We note that there are other heaps containing the same elements. However, for the
sake of efficiency, it is preferable to choose a heap of minimal height. Heaps
represented by complete binary trees (in which all levels are filled except, perhaps, the
last one) have minimal height. It turns out that a complete binary tree can
be easily represented using an array. The idea consists in numbering the
nodes of the tree from top to bottom and left to right, beginning from 0.
The result of this numbering of the heap above yields the following labeling:

 [image: PIC]

This numbering permits the representation of the heap in an array of five elements as
follows:

 [image: PIC]

In general, the root of the tree occupies the cell at index 0, and the roots of the two
subtrees of the node stored at cell i are stored in cells 2i + 1 and 2i + 2, respectively.
Conversely, the parent of node i is stored at ⌊(i − 1)∕2⌋.

Program 61 — Minimal signature for imperative priority
queues.
__

module type ImperativePriorityQueue = sig
 type t
 type elt
 val create : unit -> t
 val is_empty : t -> bool
 val add : elt -> t -> unit
 val get_min : t -> elt
 val remove_min : t -> unit
end

 One problem remains: We do not know the size of the priority queue
beforehand and therefore cannot fix in advance the maximum size of the array.
An elegant solution consists in using resizeable arrays. Such arrays were
presented in section 4.1 Resizeable Arrays. It then suffices to write a functor
parametrized by a structure of resizeable arrays. A signature for such arrays,
ResizeableArray, is given in program 17, at the start of chapter 4. As far as the
elements are concerned, we require a type equipped with a total order and a
default value. The corresponding signature, OrderedWithDummy, is given in
program 62.

 The functor of priority queues then takes the following form:

 module Make(X: OrderedWithDummy)(A: ResizeableArray)
 : ImperativePriorityQueue with type elt = X.t =
struct

Module X is then that of elements, and module A that of resizeable arrays.

 The types elt and t are respectively synonyms for X.t and elt A.t.

 type elt = X.t
 type t = elt A.t

In fact, a heap is nothing but a resizeable array. The function create constructs an
empty array with A.make, and the function is_empty tests whether the array is
empty.

 let create () = A.make 0 X.dummy
 let is_empty h = A.length h = 0

Program 62 — Ordered elements with a default value.

module type OrderedWithDummy = sig
 type t
 val compare: t -> t -> int
 val dummy : t
end

 The function get_min returns the root of the heap, if it exists, and raises an
exception otherwise.

 let get_min h =
 if A.length h = 0 then invalid_arg "get_min";
 A.get h 0

The code is given in program 63.

 Inserting an Element

Inserting an element x in a heap h consists in adding x into the tree that represents h
while preserving the heap structure. One approach consists in adding x at the bottom
right and then moving it up the tree as long as is necessary. In our implementation,
this boils down to extending the array by one cell, inserting the value x there, and
then moving x up until it reaches the correct position. For this, we use the following
algorithm: if x is smaller than its parent, we exchange the two values and
repeat.

 For example, let us consider again the following heap:

 [image: PIC]

The insertion of the element 1 in this heap is performed in three steps:

 [image: PIC]

We begin by writing a function move_up that inserts an element x in the heap h, starting
at position i. This function assumes that the tree of root i, obtained by placing x at
i, is a heap. The function move_up first considers the case in which i is 0, that
is, when we have reached the root. It then suffices to insert x at position
i.

 let rec move_up h x i =
 if i = 0 then
 A.set h i x

If, however, we are at an internal node, we calculate the index fi of the parent of i and
the value y stored in this node. If y is greater than x, we need to move x up while
moving y down to position i. We then call move_up recursively beginning from
fi.

 else
 let fi = (i - 1) / 2 in
 let y = A.get h fi in
 if X.compare y x > 0 then begin
 A.set h i y;
 move_up h x fi
 end

If, however, y is less than or equal to x, then x is at its final position, and it suffices to
store it there.

 else A.set h i x

 The function add proceeds in two steps. It increases the size of the array by one
unit, adding a cell at the end of the array. Then it calls the function move_up,
beginning from this cell.

 let add x h =
 let n = A.length h in
 A.resize h (n + 1);
 move_up h x n

The code is given in program 63 (see next page).

Program 63 — An imperative heap data structure (1/2).

module type OrderedWithDummy = sig
 type t
 val compare: t -> t -> int
 val dummy: t
end

module Make(X: OrderedWithDummy)(A: ResizeableArray)
 : ImperativePriorityQueue with type elt = X.t =
struct
 type elt = X.t
 type t = elt A.t

 let create () =
 A.make 0 X.dummy

 let is_empty h =
 A.length h = 0

 let get_min h =
 if A.length h = 0 then invalid_arg "get_min";
 A.get h 0

 let rec move_up h x i =
 if i = 0 then A.set h i x else
 let fi = (i - 1) / 2 in
 let y = A.get h fi in
 if X.compare y x > 0 then begin
 A.set h i y;
 move_up h x fi
 end else
 A.set h i x

 let add x h =
 let n = A.length h in A.resize h (n + 1); move_up h x n

 Removing the Smallest Element

Removing the smallest element of a heap is more delicate. The reason for this is that
we remove the root of the tree and must, therefore, find an element to replace it. The
idea consists in choosing the element at the bottom right of the heap, that
is, the element occupying the last cell of the array, placing it at the root,
and then moving it down the heap until it reaches its place. This is roughly
what we did when inserting an element, where we moved the new element
up.

 Let us assume, for example, that we wish to remove the smallest element of the
following heap:

 [image: PIC]

We replace the root, 1, by the element at the bottom right, 8. Then we make 8 move
down until it reaches its place. For this, we compare 8 with the roots a and b of the
two subtrees. If a and b are both greater than 8, the descent is complete.
Otherwise, we exchange 8 with the smaller of the two nodes a and b, and
continue the descent. In the example, 8 is successively exchanged with 4 and 5:

 [image: PIC]

 We begin by writing a function that compares two nodes, given by their indices l
and r, and returns the smaller of the two.

 let min h l r =
 if X.compare (A.get h r) (A.get h l) < 0 then r else l

Next, we write a function smallest_node that determines if a value x, situated
at node i, needs to move down the heap or not. The value x is not that
of the node i because we do not know yet if this will be its final position.
However, the function smallest_node acts as if the node i had the value x.
The function smallest_node accordingly takes as parameters the heap h,
the value x, and the index i. We begin by calculating the left child l of
node i.

 let smallest_node h x i =
 let l = 2 * i + 1 in

If the node i has no children, we return i.

 let n = A.length h in
 if l >= n then
 i

If, however, the node l is part of the heap, we determine the index j of the smallest child
of i. For this, it is convenient to determine if the right child r = l+1 exists. If it does,
we compare the nodes l and r with the function min. Otherwise, the index j is equal
to l.

 else
 let r = l + 1 in
 let j = if r < n then min h l r else l in

Finally, we compare the value of the node j with that of x.

 if X.compare (A.get h j) x < 0 then j else i

 Moving down the heap is implemented by a recursive function move_down that
takes as parameters the heap h, the value x that is moving down, and the index i of

the candidate node. We begin by calling the function smallest_node to calculate the
index j that should receive the value x.

 let rec move_down h x i =
 let j = smallest_node h x i in

If j = i, the descent is complete and it suffices to store the value x at index i.

 if j = i then
 A.set h i x

Otherwise, we move the value of the node j up to the node i and then continue moving
down from j.

 else begin
 A.set h i (A.get h j);
 move_down h x j
 end

The function for removing the smallest element of a heap h is then the following:

 let remove_min h =
 let n = A.length h - 1 in
 if n < 0 then invalid_arg "remove_min";
 let x = A.get h n in
 A.resize h n;
 if n > 0 then move_down h x 0

We consider three cases: If the heap is empty, we raise an exception. Next, if it contains
only one element, it is not necessary to call the function move_down. Finally, if the
heap contains more than one element, it is worthwhile to resize the array
with A.resize. The complete code is given in programs 63 (see page 542)
and 64.

Program 64 — An imperative heap data structure (2/2).

 let min h l r =
 if X.compare (A.get h r) (A.get h l) < 0 then r else l

 let smallest_node h x i =
 let l = 2 * i + 1 in
 let n = A.length h in
 if l >= n then i else
 let r = l + 1 in
 let j = if r < n then min h l r else l in
 if X.compare (A.get h j) x < 0 then j else i

 let rec move_down h x i =
 let j = smallest_node h x i in
 if j = i then A.set h i x
 else begin A.set h i (A.get h j); move_down h x j end

 let remove_min h =
 let n = A.length h - 1 in
 if n < 0 then invalid_arg "remove_min";
 let x = A.get h n in
 A.resize h n;
 if n > 0 then move_down h x 0
end

 Complexity

It is clear that the functions create, is_empty, and get_min have constant cost. In
case of the functions add and remove_min, their cost is bounded by the height of the
heap. Indeed, in one case, we move from the leaves towards the root, and in the other,
we move from the root towards the leaves. Since the heap is a complete binary tree,
its height is logarithmic in the number of elements. For a priority queue containing N
elements, the functions add and remove_min therefore have cost O(log N). A simpler
way of looking at it consists in noting that the function move_up divides
its argument i by two at each recursive call. Therefore, it cannot be called
more than O(log N) times. Similarly, the function move_down multiplies its
argument by two at each recursive call and, therefore, cannot be called more than
O(log N) times. Of course, all of this applies only in an amortized manner by
virtue of the calls to resize, which are amortized O(1), as we showed in
chapter 4.

 The space complexity depends on the implementation of the resizeable array. If we
use the implementation presented at the start of chapter 4, where the size of the
array was doubled when it had to be increased, the array contains at most two times
more elements than required. A priority queue containing N elements therefore
occupies at most 2N memory words.

 6.4 Persistent Priority Queues

In this section, we present a data structure of persistent priority queues, whose
signature is given in program 65.

 As in the previous section, we use a heap data structure, except that here it is
directly represented by a binary tree. Unlike in case of AVL trees, no extra

information is stored in the nodes for the purposes of balancing. We will see later that
these heaps nevertheless have amortized logarithmic complexity. We say these trees
are self-balancing.

 The functor of persistent priority queues therefore takes the following
form:

 module Make(X: Ordered) :
 PersistentPriorityQueue with type elt = X.t =
struct
 type elt = X.t

The argument X, of type Ordered, defines the type of elements. These must be
equipped with a comparison function corresponding to the priority order (see
program 33 of chapter 5 for the signature Ordered). The type elt of the elements
of the queue is thus a synonym for X.t. The type t is the type of binary
trees.

 type t = Empty | Node of t * elt * t

The definitions of the empty heap and the function is_empty are clear.

 let empty = Empty
 let is_empty h =
 h = Empty

 The structure of the heap gives immediate access to the smallest element.

 let get_min = function
 | Empty -> invalid_arg "get_min"
 | Node (_, x, _) -> x

Program 65 — Minimal signature for persistent priority queues.

__

module type PersistentPriorityQueue = sig
 type t
 type elt
 val empty : t
 val is_empty : t -> bool
 val add : elt -> t -> t
 val get_min : t -> elt
 val remove_min : t -> t
end

 All the subtlety of this structure lies in the function merge that merges two
heaps. Assuming we have already written this function, it is easy to write the
functions add and remove_min. Indeed, the addition of an element x to a
heap h consists in merging the heap containing the single element x with
h.

 let add x h =
 merge (Node (Empty, x, Empty)) h

Similarly, the removal of the smallest element of a heap consists in merging the two child
heaps of the root.

 let remove_min = function
 | Empty -> invalid_arg "remove_min"
 | Node (a, _, b) -> merge a b

 All we have to do now is write the function merge that merges two heaps ha and
hb. If one of the two heaps is empty, how to do so is clear.

 let rec merge ha hb = match ha, hb with
 | Empty, h | h, Empty ->
 h

If, however, none of the heaps is empty, we construct the resulting heap as follows. Its
root is the smallest of the two roots of ha and hb. Assume that the root of ha is
smaller.

 | Node (la, xa, ra), Node (lb, xb, rb) ->
 if X.compare xa xb <= 0 then

We must now determine the two subtrees of Node (_, xa, _). There are several possibilities
that result from recursively calling merge on two of the three trees la, ra, and hb, and
from choosing the result as the left or right subtree. Among these possibilities, we
choose the one that performs a rotation of the subtrees from right to left, so as to
ensure self-balancing. Thus, ra takes the position of la, and la is merged with
hb.

 Node (ra, xa, merge la hb)

The other situation, in which the root of hb is smaller, is symmetrical.

 else Node (rb, xb, merge lb ha)

The complete code of persistent priority queues is given in program 66.

Program 66 — Persistent priority queues.

module Make(X: Ordered) :
 PersistentPriorityQueue with type elt = X.t =
struct
 type elt = X.t
 type t = Empty | Node of t * elt * t

 let empty =
 Empty

 let is_empty h =
 h = Empty

 let get_min = function
 | Empty -> invalid_arg "get_min"
 | Node (_, x, _) -> x

 let rec merge ha hb = match ha, hb with
 | Empty, h | h, Empty ->
 h
 | Node (la, xa, ra), Node (lb, xb, rb) ->
 if X.compare xa xb <= 0 then
 Node (ra, xa, merge la hb)
 else
 Node (rb, xb, merge lb ha)

 let add x h =
 merge (Node (Empty, x, Empty)) h

 let remove_min = function
 | Empty -> invalid_arg "remove_min"
 | Node (a, _, b) -> merge a b
end

 Complexity

The functions empty, is_empty, and get_min clearly have constant cost. The analysis
is subtler in case of the function merge, and hence add and remove_min. In the worst
case, merge can have a cost as large as the total number of elements. However, for a
sequence of add and remove_min operations, executed successively on a heap, this
worst case cannot occur each time. We can show that the amortized cost of each
operation is, in fact, O(log N), where N is the number of elements in the heap. For an
analysis of this complexity, we refer the reader to the article by Sleator and Tarjan
introducing self-balancing heaps [22] or the chapter on heaps by Okasaki in The Fun
of Programming [10].

 6.5 Exercises

 Linked Lists

6.1 Write a function iter : (’a -> unit) -> ’a t -> unit that traverses the elements of a
queue in the order in which they were inserted.

6.2 Write a function transfer : ’a t -> ’a t -> unit that takes two queues q1 and q2 as
arguments, moves all the elements of q1 into q2, and empties the queue q1. Make
sure that this operation executes in constant time.

6.3 Modify the queue structure of program 58 to keep track of the total number of
elements throughout. You can make type t into a record with a mutable field
containing the number of elements of the queue.

 Pairs of Lists

6.4 Consider the case of a queue q, in which the list representing the front is empty.
If the operation pop is performed multiple times, then the reversal of the list i,
representing the back of the queue, will also be performed multiple times. To remedy
this, we can memoize the reversal of i in the original queue q by means of a side
effect. Accordingly, we adopt an equivalent representation of the queue q that is still
persistent. Modify the type ’a t as follows:

 type ’a t = { mutable o : ’a list; mutable i : ’a list }

Reimplement the operations on these queues. The mutable nature of the fields of this
type does not allow defining a polymorphic value empty. It suffices to replace it by a
function create : unit -> ’a t.

6.5 Note that the representation of queues as pairs of lists is symmetrical. We can
therefore perform insertion and removal operations from the two ends of the queue
with equal facility. We call the resulting structure a double-ended queue or dequeue.
We can name the four operations as follows:

 val push_front : ’a -> ’a t -> ’a t
 val push_back : ’a -> ’a t -> ’a t
 val pop_front : ’a t -> ’a * ’a t
 val pop_back : ’a t -> ’a * ’a t

The functions push_back and pop_front correspond to the functions push and pop
already written. Write the functions push_front and pop_back.

6.6 The double-ended queues of the previous exercise may prove inefficient. Indeed,
alternating removals from the two ends of the queue can end up requiring many list
reversals. To remedy this, we can try to balance the lengths of the two lists, so as to
ensure a minimum proportion of elements at each end. For this, we let c ≥ 2 be a
constant and impose the following invariant on the lengths li and lo of the two
lists:

[image: li ≤ c× lo + 1 and lo ≤ c× li + 1]

 Modify the type ’a t as follows, to keep track of the length of each list.

 type ’a t = { li : int; i : ’a list; lo : int; o : ’a list }

Reimplement the operations for double-ended queues. For more details concerning
this structure, and notably for its analysis, you can consult the book by
Okasaki [19, sec. 8.4].

 Heap Structures

6.7 You can use the heap structure to easily implement an efficient sorting
algorithm, called heapsort. The idea is as follows: We insert all the elements to be
sorted in a heap, and then extract them successively with the functions get_min and
remove_min. Add a function sort : X.t array -> unit to the functor Make to sort an
array using this algorithm. If the complexity of the heap operations is logarithmic
(which is the case when you use resizeable arrays of constant amortized complexity),
then the complexity of this sorting algorithm is O(nlog n), that is, optimal. Heapsort
will be described in detail in chapter 12.

6.8 Several different elements of a heap can have the same priority. This is, for
example, the case when the elements are pairs for which the function compare
takes into account only one of the two components. Show that the order of
insertion in a priority queue is preserved, that is, that the elements of equal
priority are extracted from the queue in the same order in which they were
inserted.

6.9 We wish to add an operation remove to remove an element from a priority
queue. Several problems arise. On the one hand, the same element may occur
several times in the queue. On the other, to implement the removal of an
element x efficiently, it is necessary to determine at which index it appears
without traversing the entire array, which is not possible with the current
structure.

 We propose to resolve these two problems as follows. When an element is added
in the priority queue, we return a “pointer” to the user, that may be used
subsequently to remove this element. The signature is accordingly modified as
follows:

 type pointer
 val add: elt -> t -> pointer

Internally, the type pointer contains the index where the corresponding element of the
array is stored. This index is updated when the element is moved within the array. In
practice, it is simplest to also include the value of the element along with the

index:

 type pointer = { elt: elt; mutable index: int }

The resizeable array then contains values of type pointer rather than elt. Modify
the priority queue structure following this idea and provide a function
remove: pointer -> t -> unit. Hint: To remove the element situated at index i, replace
it with the final element of the resizeable array. It suffices then to re-establish the
heap property, by using either move_up or move_down. Show that the complexity of
remove is in O(log n).

6.10 In the context of the above exercise, a value of type pointer may reference an
element that is no longer in the queue. A call to remove could therefore corrupt the
structure. Remedy this problem by invalidating all pointers corresponding to an
element that is no longer in the queue, so that the function remove is able to fail
cleanly.

6.11 It can be interesting to have priority queues that provide an operation
change_priority to modify the priority of an existing element. Reusing the idea of
exercise 6.9, provide the following new operation:

 val change_priority : pointer -> elt -> t -> unit

This operation modifies the value of an element already present in the queue. Show that
the complexity of change_priority is in O(log n).

6.12 In certain cases, we may wish to distinguish the priority of an element from its
value. Modify the implementation of priority queues to give them the following
signature:

 module Make(P: Ordered)(V: WithDummy) :
 sig
 type t
 type priority = P.t
 type value = V.t
 val create : unit -> t
 val is_empty : t -> bool
 val add : priority -> value -> t -> unit
 val get_min : t -> priority * value
 val remove_min : t -> unit
 end

The type P.t is that of priorities and V.t, that of values. As the signatures indicate,
the first is equipped with a function compare and the second with a default
value.

 Self-Balancing Heaps

6.13 Redo exercise 6.7 (heapsort) with self-balancing heaps. What is the
complexity of this sorting algorithm?

6.14 Using a reference, wrap the code of program 66 in a module with the
imperative signature of program 57.

 Chapter 7
Graphs

Graphs are a fundamental data structure in computer science. A graph consists of a
set of vertices linked by edges. We are accustomed to visualizing graphs as illustrated
in figure 7.1.

 [image: PIC]

Figure 7.1: Example of a graph.

 Formally, a graph is a set V of vertices and a set E of edges, which are
unordered pairs of vertices. If {x,y}∈ E, we say that the vertices x and y are
adjacent. As the adjacency relation is symmetric, we speak of an undirected
graph.

 We can also define the notion of directed graph by taking E to be a set of ordered
pairs of vertices rather than unordered pairs. We then speak of arcs rather than
edges. If (x,y) ∈ E, we say that y is a successor of x and write x → y. An example of
a directed graph is given in figure 7.2.

 [image: PIC]

Figure 7.2: Example of a directed graph.

 An arc from a vertex to itself, as in this example, is called a cycle. The indegree
(resp. outdegree) of a vertex is the number of arcs that point towards it (resp. that
point away from it). A path from a vertex u to a vertex v is a sequence x0,…,xn of
vertices such as x0 = u, xn = v and xi → xi+1 for 0 ≤ i < n. Such a path is of
length n; it contains n arcs.

 Vertices, like arcs, may carry information. We then speak of a labeled graph. An
example of a directed, labeled graph is given in figure 7.3.

 [image: PIC]

Figure 7.3: Example of a directed, labeled graph.

 It is important to note that the label of a vertex is not the same as the vertex
itself. In particular, two vertices may bear the same label. Formally, a labeled graph
therefore comprises two additional functions giving, respectively, the label of a vertex
in V and the label of an arc in E.

 In what follows, we will use the term edge for both directed and undirected
graphs.

 Basic Operations on Graphs

Before defining data structures to represent graphs, it is necessary to consider the
operations that these structures should provide. We do this independently of any
particular representation, with a view to constructing generic algorithms. We may
distinguish the following basic operations:

 	construction operations, such as the creation of a graph, the addition or
 removal of a vertex or an edge;

 	access operations, such as testing whether a vertex or an edge belongs to
 a graph, accessing the degree of a vertex, its label, the number of vertices
 or edges;

 	basic traversal operations, such as the traversal of all vertices, of all
 successors of a given vertex, or of all edges.

As we will see shortly, there is no single structure of graphs that provides all these
operations in an optimal manner. At the end of this chapter, we compare different
graph data structures according to the complexity of the different operations
above.

 7.1 Adjacency Matrix

We consider in this section the case in which vertices are represented by integers and,
more precisely, by consecutive integers 0,…,N − 1. In other words, we have
V = {0,…,N − 1}.

 Program 67 (see following page) gives a minimal signature for such graphs. The
type t is that of graphs. It is deliberately made abstract as we are going to present
two different implementations of this signature. The creation function, create, takes
the value N as argument, and the function nb_vertex gives it back. Crucially, we
assume here that the graph contains N vertices from the outset. Consequently, we do
not provide operations to add or remove vertices, or to test whether they belong to
the graph. In case of edges, however, we do have these operations, namely, add_edge,
remove_edge, and mem_edge. Note that the functions to add and remove edges
correspond to an imperative structure. The signature provides only the functions to
traverse the successors of a vertex (iter_succ) and all edges (iter_edge). Traversing
all vertices can be easily achieved with a for loop from 0 to N − 1. Finally,
note that this signature works equally well for both directed and undirected
graphs.

 The signature is deliberately minimal. In particular, graphs are not labeled. Some
of the exercises of this section propose extensions.

Program 67 — Minimal signature for graphs with integer
vertices.

 type vertex = int
 type t

 val create : int -> t
 val nb_vertex : t -> int

 val mem_edge : t -> vertex -> vertex -> bool
 val add_edge : t -> vertex -> vertex -> unit
 val remove_edge : t -> vertex -> vertex -> unit

 val iter_succ : (vertex -> unit) -> t -> vertex -> unit
 val iter_edge : (vertex -> vertex -> unit) -> t -> unit

 A straightforward representation of such a graph is a matrix M of size N × N,
where each element Mi,j indicates the presence of an edge between the vertices i
and j. As the graphs are assumed to be unlabeled, it suffices to use a matrix of
booleans:

 type vertex = int
 type t = bool array array

The definition of the function that creates a graph without any edges is clear: We
construct a square matrix, initialized with false.

 let create n = Array.make_matrix n n false
 let nb_vertex = Array.length

Program 68 — Graphs via adjacency matrices.

 type vertex = int
 type t = bool array array

 let create n = Array.make_matrix n n false
 let nb_vertex = Array.length

 let mem_edge g v1 v2 = g.(v1).(v2)
 let add_edge g v1 v2 = g.(v1).(v2) <- true
 let remove_edge g v1 v2 = g.(v1).(v2) <- false

 let iter_succ f g v =
 Array.iteri (fun w b -> if b then f w) g.(v)
 let iter_edge f g =
 for v = 0 to nb_vertex g - 1 do iter_succ (f v) g v done

 In what follows, we assume that all graphs are directed. Exercise 7.4 indicates the
modifications required for undirected graphs. Adding, removing, or testing for the
presence of an edge can all be done in constant time:

 let mem_edge g v1 v2 = g.(v1).(v2)
 let add_edge g v1 v2 = g.(v1).(v2) <- true
 let remove_edge g v1 v2 = g.(v1).(v2) <- false

 To apply a function f: vertex -> unit to all successors of a vertex v of a graph g,
it suffices to traverse the row g.(v) of the matrix, for example, with Array.iteri.
We test whether an edge is present before applying the function f to the
corresponding vertex.

 let iter_succ f g v =
 Array.iteri (fun w b -> if b then f w) g.(v)

To apply a function f: vertex -> vertex -> unit to all edges of a graph g, we begin by
traversing the vertices of g with a for loop. Then, for each vertex v, we traverse its
outgoing edges using iter_succ. The function passed to iter_succ is obtained by
partially applying f to v.

 let iter_edge f g =
 for v = 0 to nb_vertex g - 1 do iter_succ (f v) g v done

The complete code for graphs via adjacency matrices is given in program 68. The
structure of the adjacency matrix may be adapted to the case of labeled graphs (see
exercise 7.3) and/or undirected graphs (see exercise 7.4).

 Complexity

The table in figure 7.4 summarizes the complexity of the main operations on
adjacency matrices. In general, the cost is expressed as a function of the number N of

vertices and the number E of edges. In the particular case of adjacency matrices,
however, the cost depends only on N.

 		
	 operation 	 cost

		
		
	 mem_edge 	 O(1)

	 add_edge 	 O(1)

	 iter_succ 	 O(N)

	 iter_vertex 	 O(N)

	 iter_edge 	 O(N2)

		

 Figure 7.4: Cost of operations on adjacency matrices.

 Of course, we assume that the functions passed as arguments of iter_succ,
iter_vertex, and iter_edge have constant cost. From this table, we deduce that
adjacency matrices are well adapted to dense graphs, that is, graphs in which the
number of edges E is of the order of N2. Indeed, the outdegree of each vertex is
then of the order of N, so that iter_succ is optimal. Similarly, iter_edge
must traverse a number of edges of the order of N2 and is therefore also
optimal.

 As for the cost in space, an adjacency matrix clearly occupies quadratic space,
namely (N + 1)2 words in case of a boolean matrix (see section 3.2 Runtime
Model). We can reduce this cost by a constant factor by using bit vectors (see
section 4.2 Bit Vectors). Exercise 7.5 proposes such an optimization. It is
important to note that this optimization is only possible if the edges are not
labeled.

 7.2 Adjacency Lists

In case of sparse graphs, an alternative to adjacency matrices consists in using an
array containing the list of the successors of each vertex. We speak of adjacency lists.
The type of graphs follows directly from this definition.

 type vertex = int
 type t = vertex list array

An empty graph is represented by an array containing only empty lists.

 let create n = Array.make n []
 let nb_vertex = Array.length

To test whether an edge is present between vertices v1 and v2 in a graph g, we traverse
the adjacency list g.(v1) in search of v2. We do this here with the function
List.mem.

 let mem_edge g v1 v2 =
 List.mem v2 g.(v1)

We add an edge between v1 and v2 by adding v2 to the list g.(v1). We only do this if
the edge does not already exist, to avoid unnecessary duplicates in the adjacency
list.

 let add_edge g v1 v2 =
 if not (mem_edge g v1 v2) then g.(v1) <- v2 :: g.(v1)

We remove the edge v1 → v2 by removing the possible instance of v2 in the list g.(v1).
We can do this easily using List.filter.

 let remove_edge g v1 v2 =
 g.(v1) <- List.filter ((<>) v2) g.(v1)

Note, nevertheless, that this use of List.filter has two defects: On the one hand, it
does not take advantage of the absence of duplicates in the list to stop early. On
the other, it unnecessarily reconstructs the entire list g.(v1) in the case
where v2 does not appear. Exercise 7.8 proposes a remedy for these issues.
Similarly, the fact that the vertices are integers could be used to optimize
the three preceding operations by keeping the adjacency lists sorted (see
exercise 7.9).

 The traversal of the successors of a vertex v of a graph g is simpler than in case of
adjacency matrices. It is trivially implemented by applying List.iter to the
adjacency list g.(v).

 let iter_succ f g v = List.iter f g.(v)

The code of iter_edge, by contrast, is the same as that for adjacency matrices.

 let iter_edge f g =
 for v = 0 to nb_vertex g - 1 do iter_succ (f v) g v done

The complete code for graphs via adjacency lists is given in program 69.

Program 69 — Graphs via adjacency lists.

 type vertex = int
 type t = vertex list array

 let create n = Array.make n []
 let nb_vertex = Array.length

 let mem_edge g v1 v2 =
 List.mem v2 g.(v1)

 let add_edge g v1 v2 =
 if not (mem_edge g v1 v2) then g.(v1) <- v2 :: g.(v1)

 let remove_edge g v1 v2 =
 g.(v1) <- List.filter ((<>) v2) g.(v1)

 let iter_succ f g v =
 List.iter f g.(v)

 let iter_edge f g =
 for v = 0 to nb_vertex g - 1 do iter_succ (f v) g v done

 Complexity

The table in figure 7.5 summarizes the complexity of the main operations on
adjacency lists. Here, δ denotes the outdegree of a vertex.

 		
	 operation 	 cost

		
		
	 mem_edge 	 O(δ)

	 add_edge 	 O(δ)

	 iter_succ 	 O(δ)

	 iter_vertex 	 O(N)

	 iter_edge 	 O(E)

		

 Figure 7.5: Cost of operations on adjacency lists.

 Note that, unlike in case of adjacency matrices, the operations mem_edge and
add_edge are no longer in O(1) but in O(δ). By contrast, iter_succ and iter_edge
now have optimal complexity.

 As for the cost in space, adjacency lists have optimal complexity O(N + E). To be
precise, the cost is N + 3E + 1 words (see section 3.2 Runtime Model).

 7.3 Adjacency Dictionaries

One clear drawback of the two preceding data structures is the condition that vertices
must be represented by integers and, moreover, by consecutive integers. This
representation is adapted for graphs whose sets of vertices do not change. If, on
the other hand, we wish to add or remove vertices dynamically, we have to
modify the preceding structures. We can, for example, use resizeable arrays
to permit the addition of vertices. To remove vertices, we could imagine
marking them so as to exclude them from the graph, but this would have an
impact on the complexity of the functions iter_succ, iter_vertex, and
iter_edge.

 Ideally, we would like a graph structure whose vertices are not necessarily integers
and can be added or removed dynamically. The structure would also combine the
respective advantages of adjacency matrices and adjacency lists in time and in space.
Such a structure exists: It suffices to combine the structure of a dictionary with
that of a set. A graph is thus nothing but a dictionary in which each vertex
is associated with the set of its successors. In other words, we retain the
idea of adjacency lists, but replace the array with a dictionary, and lists by
sets. We will call this structure an adjacency dictionary. In this way, vertices
are not limited to integers, and may be easily added and removed. As for
efficiency, it suffices to use a hash table for the dictionary to obtain optimal
complexity. We may also use a hash table to represent the set of successors of a
vertex.

 We can therefore parametrize our adjacency dictionary structure by a module H of

hash tables (such as the one in section 5.3 Hash Tables or the module Hashtbl of the
OCaml standard library).

 module Graph(H: HashTable) = struct

 For clarity, we introduce a module V for the dictionary, as a synonym of the
module H. The type of the vertices is then that of the keys of the module
V.

 module V = H
 type vertex = V.key

Similarly, we introduce a module E for the sets of adjacent vertices, also a synonym of the
module H. The idea here is to represent a set of vertices by a hash table, by
associating each element of the set with the value ().

 module E = H

The type of graphs is therefore the following:

 type t = (unit E.t) V.t

If the edges were labeled, it would suffice to associate each successor w of v with the label
of the edge v → w rather than with the value () (see exercise 7.10).

 Creating a graph becomes merely a matter of constructing an empty
dictionary. The number of vertices is obtained simply as the number of keys of the
dictionary.

 let create () = V.create ()
 let nb_vertex g = V.length g

We check if a vertex v belongs to the graph g with V.mem, that is, by testing if it is a key
in the dictionary. We add v by creating a binding associating v with a new hash
table.

 let mem_vertex g v = V.mem g v
 let add_vertex g v = V.add g v (E.create ())

We note that the function add_vertex assumes that v is not yet present in the graph g.
Otherwise, we would have to first verify the presence of v using mem_vertex. The
removal of a vertex v is more delicate: Not only must its binding be removed from the
dictionary, it is also necessary to remove every instance of v from the adjacency sets of
other vertices (here written as s).

 let remove_vertex g v =
 V.remove g v;
 V.iter (fun _ s -> E.remove s v) g

For greater efficiency, we should access only the predecessors of v. Exercise 7.14 proposes
such an improvement.

 To add, remove, or test for the presence of an edge between two vertices v1 and
v2, we begin by retrieving the adjacency set of v1 using V.find g v1. We then use
respectively the functions E.replace, E.remove, and E.mem.

 let mem_edge g v1 v2 = E.mem (V.find g v1) v2
 let add_edge g v1 v2 = E.replace (V.find g v1) v2 ()
 let remove_edge g v1 v2 = E.remove (V.find g v1) v2

These three functions assume that v1 is already present in the graph, that is, that
V.find g v1 does not fail. As for the function add_edge, we use E.replace rather than
E.add, to avoid duplicates in the adjacency set.

Program 70 — Graphs via adjacency dictionaries.

module Graph(H: HashTable) = struct
 module V = H
 type vertex = V.key

 module E = H

 type t = (unit E.t) V.t

 let create () = V.create ()
 let nb_vertex g = V.length g

 let mem_vertex g v = V.mem g v
 let add_vertex g v = V.add g v (E.create ())
 let remove_vertex g v =
 V.remove g v;
 V.iter (fun _ s -> E.remove s v) g

 let mem_edge g v1 v2 = E.mem (V.find g v1) v2
 let add_edge g v1 v2 = E.replace (V.find g v1) v2 ()
 let remove_edge g v1 v2 = E.remove (V.find g v1) v2

 let iter_vertex f g = V.iter (fun v _ -> f v) g
 let iter_succ f g v = E.iter (fun w _ -> f w) (V.find g v)
 let iter_edge f g = V.iter (fun v s -> E.iter (f v) s) g
end

 To traverse the set of vertices of a graph g, it suffices to traverse the set of keys of
the dictionary using V.iter. Similarly, we traverse the successors of a vertex v by
traversing its adjacency set using E.iter.

 let iter_vertex f g = V.iter (fun v _ -> f v) g
 let iter_succ f g v = E.iter (fun w _ -> f w) (V.find g v)

Here too, we assume that iter_succ is called on an existing vertex v. To traverse all
edges, it suffices to compose iter_vertex and iter_succ as we did for adjacency
matrices and adjacency lists. However, it would be unnecessarily costly to access the
adjacency set of v using V.find g v. Instead, it suffices to compose directly V.iter and
E.iter.

 let iter_edge f g = V.iter (fun v s -> E.iter (f v) s) g

The complete code of this graph structure is given in program 70.

 For undirected, labeled graphs or graphs with multiple edges between two vertices,
the reader is referred to exercises 7.10–7.12.

 Complexity

If we assume that dictionaries and sets are implemented by hash tables, we obtain the
performances given in the table of figure 7.6.

 		
	 operation 	 cost

		
		
	 mem_vertex 	 O(1)

	 add_vertex 	 O(1)

	 remove_vertex 	 O(N)

		

 		
	 operation 	 cost

		
		
	 mem_edge 	 O(1)

	 add_edge 	 O(1)

	 remove_edge 	 O(1)

		

 		
	 operation 	 cost

		
		
	 iter_succ 	 O(δ)

	 iter_vertex 	 O(N)

	 iter_edge 	 O(E)

		

 Figure 7.6: Cost of operations on adjacency dictionaries.

 We observe that the complexities are optimal, except in case of remove_vertex
(see exercise 7.14). As for the cost in space, it is necessary to make an assumption
regarding the sizes of the hash tables. If we assume that the number of buckets is at
least twice the number of bindings in each hash table then the cost in space of a hash
table containing K inputs is 6K + 4 words. Hence, for a graph containing N vertices
and E edges, the total cost is:

[image: (6N + 4) + ∑ (6 δ + 4) v v]

 This is 10N + 6E + 4 words in total.

 Persistent Graphs

Graphs implemented using adjacency dictionaries as presented above are imperative
due to the imperative nature of hash tables. We naturally obtain persistent graphs by
substituting hash tables with a persistent data structure. For example, we may use
any dictionary having the signature Map.S of OCaml (see exercise 7.15), in particular
all those discussed in chapter 5.

 7.4 Performance Comparison

We recapitulate here the performance of the different graph structures. The time
complexity of the main operations are summarized in the table of figure 7.7. As we
have already highlighted above, adjacency dictionaries offer the best possible
complexity for each operation.

 				
	 operation 	 adjacency 	 adjacency 	 adjacency

	 	 matrices 	 lists 	 dictionaries

				
				
	 mem_vertex 	 — 	 — 	 O(1)

	 add_vertex 	 — 	 — 	 O(1)

	 remove_vertex 	 — 	 — 	 O(N)

	 mem_edge 	 O(1) 	 O(δ) 	 O(1)

	 add_edge 	 O(1) 	 O(δ) 	 O(1)

	 remove_edge 	 O(1) 	 O(δ) 	 O(1)

	 iter_succ 	 O(N) 	 O(δ) 	 O(δ)

	 iter_vertex 	 O(N) 	 O(N) 	 O(N)

	 iter_edge 	 O(N2) 	 O(E) 	 O(E)

				

 Figure 7.7: Comparison of different graph data structures.

 As for the cost in space, recall the cost in number of words for each graph
structure:

 	adjacency matrix: [image: (N + 1)]2 words;

 	adjacency lists: N + 3E + 1 words;

 	adjacency dictionary: 10N + 6E + 4 words.

It is clear that adjacency lists are more economical in terms of memory than adjacency
dictionaries. The comparison with adjacency matrices is more difficult. Indeed, it
depends on the density of the graph, that is, the ratio between the number of vertices
N and the number of edges E. For a very dense graph, in which E is close to N2, the
adjacency matrix is more economical. In the case of a sparse graph, for example where
E ∼ N, adjacency lists are more economical. In general, lists are preferable
to matrices when E < N2∕3 and, similarly, dictionaries are preferable to
matrices when E < N2∕6. Lists are always preferable to dictionaries in terms of
space.

 Of course, in choosing a structure for graphs, the complexity in space of the
different operations must be weighed against their complexity in time.

 7.5 Exercices

 Adjacency Matrices

7.1 The transposition of a directed graph G, denoted by GR, is the graph having
the same vertices as G and which contains an edge x → y if and only if there exists an
edge y → x in G. Write a function reverse: graph -> graph that calculates the
transposition of a given graph.

7.2 Add an operation nb_edge: t -> int that gives the number of edges in constant
time. Hint: Keep track of the number of edges in the structure of the graph by
updating its value in add_edge and remove_edge.

7.3 Modify adjacency matrices for graphs in which edges are labeled by a given type
label.

7.4 The easiest way to represent undirected graphs is by preserving the same
structure as for directed graphs, but by maintaining the invariant that, for each edge
a → b, there is also an edge b → a. Modify the operations add_edge and remove_edge
of adjacency matrices and lists accordingly. Also modify iter_edge so that it
traverses each edge only once.

7.5 Modify the adjacency matrix structure to use bit vectors (see section
4.2 Bit Vectors) rather than boolean arrays. What is the gain in terms of
space?

7.6 The transitive closure of a graph G is a graph T having the same vertices
as G, and an edge between i and j when there is a path between i and j in G.
When the graph is represented by a boolean matrix, the transitive closure may be
calculated in O(N3) time using the Floyd-Warshall algorithm. The pseudo-code is as
follows:

 	 T ← G
	 for k from 0 to N − 1

	 for i from 0 to N − 1

	 for j from 0 to N − 1

	 Ti,j ← Ti,j or (Ti,k and Tk,j)

The idea consists in determining, for increasing values of k, if there exists a path between
i and j that uses only intermediate vertices smaller than k. The last line of the
pseudo-code considers the two cases of a path between i and j, passing via
k, or not. Write a function transitive_closure: t -> t implementing this
algorithm.

 Adjacency Lists

7.7 Redo exercises 7.2 to 7.4 for adjacency lists.

7.8 Modify the function remove_edge on adjacency lists so that (1) it does not
modify the adjacency list if the edge to be removed does not exist, and (2) it makes
use of the fact that adjacency lists do not contain duplicates to stop once the edge is
found.

7.9 Modify the operations on adjacency lists to maintain the invariant that
adjacency lists are sorted. Make use of this property to optimize some of the
operations.

 Adjacency Dictionaries

7.10 Modify the code of program 70 for graphs whose edges are labeled by values of
any type. More precisely, give graphs the polymorphic type type ’a t = (’a E.t) V.t,
where ’a is the type of labels.

7.11 Modify the adjacency dictionary structure for undirected graphs drawing on
exercise 7.4.

7.12 Modify the adjacency dictionary structure for graphs with multiple
edges, that is, where two vertices may be linked by more than one edge. For
unlabeled multi-edges, the dictionary must associate each vertex with the
multi-set of its successors. For labeled multi-edges, we may distinguish two cases,
depending on whether the edges between v1 and v2 can bear the same label or
not.

7.13 Modify the functor of program 70 so that, instead of taking a module H of
hash tables as argument, it takes:

 	either a module V introducing a type t equipped with hash and comparison
 functions;

 	or two modules, M and S, that respectively implement dictionaries and sets
 on the same type of vertices.

7.14 Modify the adjacency dictionary structure to keep track of the set of
predecessors of a vertex in an efficient manner. In other words, provide an
operation

 val iter_pred: (vertex -> unit) -> t -> vertex -> unit

whose cost is proportionate to the indegree. Use this function to reimplement the
function remove_vertex.

7.15 Modify the functor of program 70 to obtain persistent graphs by replacing the
argument H by a module M of signature Map.S.

 Chapter 8
Disjoint Sets

This chapter presents an imperative data structure that solves the problem of
partitioning a finite set into disjoint subsets, called “classes.” We wish to
determine whether two elements belong to the same class and merge two
classes into one. It is these two operations that give the structure its name:
union-find.

 8.1 The Basic Idea

Without loss of generality, we may assume that the set to be partitioned consists of
the n integers {0,1,…,n− 1}. Program 71 (see page 618) gives the signature of such
a structure. The operation create n constructs a new partition of {0,1,…,n − 1} in
which each element forms a class by itself. The operation find determines
the class of an element by returning one of the integers as a distinguished
representative. In particular, we can determine if two elements are in the same class
by comparing the result given by find for each one. Finally, the operation
union merges two classes of the partition, modifying the data structure in
place.

 The basic idea is to link the elements of a class between themselves. In each class,
these links form a graph in which all paths lead to the representative, which is the
only element linked to itself. Figure 8.1 illustrates a situation in which the set
{0,1,…,7} is partitioned into two classes, whose representatives are respectively 3 and
4.

 [image: PIC]

 Figure 8.1: A partition of {0,1,…,7} into two sets.

 It is possible to represent such a structure using individually allocated nodes
(see exercise 8.5). Nevertheless it is simpler, and often more efficient, to
use an array that links each integer to another integer of the same class.
These links lead to the class representative, which is associated with itself in
the array. Thus, the partition of figure 8.1 is represented by the following
array:

[image: PIC]

 The find operation simply follows the links until the representative is
found. The union operation begins by finding the representatives of both
elements and then links them together. We propose two improvements in the
interest of efficiency. The first involves performing path compression during the
search carried out by find: All the elements found along the path traversed
to reach the representative are linked directly to it. The second consists in
keeping track of the rank of each representative, that is, the maximum length
of a path in its class. This information is stored in a second array and is
used by the function union to choose the representative for the union of the
classes.

Program 71 — Signature of the union-find structure.

module type UnionFind = sig
 type t
 val create : int -> t
 val find : t -> int -> int
 val union : t -> int -> int -> unit
end

 8.2 Implementation

Program 72 — Union-find structure.

type t = {
 rank: int array;
 link: int array;
}

let create n =
 { rank = Array.make n 0;
 link = Array.init n (fun i -> i) }

let rec find t i =
 let p = t.link.(i) in
 if p = i then
 i
 else begin
 let r = find t p in
 t.link.(i) <- r;
 r
 end

let union t i j =
 let ri = find t i in
 let rj = find t j in
 if ri <> rj then begin
 if t.rank.(ri) < t.rank.(rj) then
 t.link.(ri) <- rj
 else begin
 t.link.(rj) <- ri;
 if t.rank.(ri) = t.rank.(rj) then
 t.rank.(ri) <- t.rank.(ri) + 1
 end
 end

We now describe the code of the union-find structure. The type t is a record
containing two arrays: rank, containing the rank of each class; and link, containing
the links between elements.

 type t = {
 rank: int array;
 link: int array;
 }

The information contained in rank is only meaningful for those elements i that are
representatives, that is, for which link.(i) = i. Initially, each element forms a class in
itself (that is, it is its own representative), and the rank of every class is
0.

 let create n =
 { rank = Array.make n 0;
 link = Array.init n (fun i -> i) }

The function find computes the representative of an element i. It is naturally written as
a recursive function. We begin by calculating the element p linked to i in
the array t.link. If it is i itself, i is the class representative, and we are
done.

 let rec find t i =
 let p = t.link.(i) in
 if p = i then
 i

 Otherwise, we recursively compute the representative r of p with find t p.
However, before returning r, we perform path compression, that is, we link i to r
directly.

 else begin
 let r = find t p in
 t.link.(i) <- r;
 r
 end

This way, the next time we call find on i, we will immediately find r.

 The operation union merges the classes of two elements, i and j. We begin by
calculating their representatives, ri and rj, respectively. If they are equal, there is
nothing more to be done.

 let union t i j =
 let ri = find t i in
 let rj = find t j in
 if ri <> rj then begin

Otherwise, we compare the ranks of the two classes. If that of ri is strictly less than that
of rj, we make rj the representative of the union.

 if t.rank.(ri) < t.rank.(rj) then
 t.link.(ri) <- rj

The rank does not have to be updated for this new class. Indeed, only the paths in the
previous class of ri have had their lengths increased by one unit, and this new length
does not exceed the rank of rj. When the rank of rj is smaller, we proceed
symmetrically.

 else begin
 t.link.(rj) <- ri;

When the two classes have the same rank, we choose one of the two representatives
arbitrarily as the representative of the union (here, ri). The rank information must
then be updated, because in this case the length of the longest path in the class may
increase by one unit.

 if t.rank.(ri) = t.rank.(rj) then
 t.rank.(ri) <- t.rank.(ri) + 1
 end
 end

Importantly the function union uses the function find, and therefore performs
path compression even in the case when i and j belong to the same class.
The complete code of the union-find structure is given in program 72 (see
page 621).

 Complexity

We can show that, thanks to path compression and the rank associated with each
class, a sequence of m find and union operations, performed on a structure
containing n elements, is executed in O(mα(n,m)) total time, where α is a function
that grows extremely slowly. In fact, it grows so slowly that we may consider it to be
constant for all practical purposes, given the constraints that memory and time
impose on the values of n and m. We may therefore assume that each operation takes
amortized constant time. This analysis is complex and lies beyond the scope of this
book. A detailed explanation may be found in Introduction to Algorithms [7,
chap. 22].

[image: PIC] For Further Information
The data structure presented in this chapter is attributed to McIlroy
and Morris [3], and its complexity has been analyzed by Tarjan [23].

 8.3 Exercises

8.1 The signature of the union-find structure is constraining because it requires
prior knowledge of the number of elements. For greater flexibility, we may
wish to add new elements dynamically, and without any restriction on the
number of elements. The signature of such a structure could be the following:

 type t
 val create: unit -> t
 val add: t -> int
 val find: t -> int -> int
 val union: t -> int -> int -> unit

The function create creates an empty structure. The function add adds a new element
and returns it. (Elements are always integers). The signatures of find and union
remain unchanged. Implement such a data structure using resizeable arrays (see
section 4.1 Resizeable Arrays).

8.2 Extend the union-find structure with an operation num_classes that returns
the total number of classes.

 val num_classes: t -> int

Ensure that num_classes executes in constant time by keeping track of this value as an
additional field of the record.

8.3 Extend the union-find structure with an operation iter_classes that permits
the traversal of the set of all class representatives.

 val iter_classes: (int -> unit) -> t -> unit

Ensure that iter_classes executes in time proportionate to the total number of
classes.

8.4 If the elements are not consecutive integers, we can replace the two arrays rank
and link by a pair of hash tables. Reimplement the operations create, find, and
union using this idea.

8.5 Instead of using arrays, another way of implementing the union-find structure
consists in representing each class directly as an acyclic graph whose nodes are
records containing the values rank and link. Each node is of the following
type:

 type elt = { mutable rank: int; mutable link: elt }

If we wish to keep track of extra information for each element, we may use the following
type instead:

 type ’a elt =
 { mutable rank: int; mutable link: ’a elt; data: ’a }

It is no longer necessary to keep track of any global information in the union-find
structure, because each node contains all the necessary information. The signature of
the union-find structure is then modified as follows:

 type ’a elt
 val create_node: ’a -> ’a elt
 val find: ’a elt -> ’a elt
 val union: ’a elt -> ’a elt -> unit

The function create_node constructs a class consisting of a single element, that is, a
record whose field link points to itself. Write the operations make, find, and union.
Note: The comparison of values of type ’a elt must be done using physical
equality.

8.6 Replace the arrays rank and link with persistent arrays (see section 4.4
Persistent Arrays), and write a persistent union-find structure with the following
signature:

 type t
 val create: int -> t
 val find: t -> int -> int
 val union: t -> int -> int -> t

Note: To perform path compression, it is convenient to modify the contents of the field
link using side effects. We accordingly define the following type:

 type t = { rank: int A.t; mutable link: int A.t }

Here, the type A.t is the type of persistent arrays, and the mutability of the field link
can be used to record the effect of path compression before returning the result of the
function find. Although the data structure is modified by a side effect, the
modification cannot be observed: the representative of each element remains the
same.

8.7 The union-find structure can be used to efficiently construct a perfect maze,
that is, one in which there is one and only one path between any two cells. Here is an
example of such a maze:

 [image: PIC]

You may proceed as follows: Create a union-find structure whose elements are the
different cells. The idea is that two cells are in the same class if and only if they are
linked by a path. Initially, all the cells of the maze are separated from each other by
walls. Next, consider all pairs of adjacent cells (vertically and horizontally) in random
order. For each pair (c1,c2), compare the classes of the cells c1 and c2. If they are
identical, there is nothing more to be done. Otherwise, delete the wall that separates
c1 and c2, and merge the two classes using union. Write code that constructs a maze

using this method.

 Hint: The easiest way to traverse all pairs of adjacent cells in random order is by
constructing an array containing all pairs, and then mixing them randomly using the
Knuth shuffle (exercice 2.11, page 249).

 Justify that at the end of the construction every cell is linked to every other cell
by a single path.

8.8 The aim of this exercise is to color the connected components of a
black-and-white image using different colors. A connected component is formed by
pixels that have the same color as their neighbors. Two pixels are neighbors if they
have a common border.

 For example, in the following image of 6 × 6 pixels, there are two white connected
components, and four black ones.

 [image: PIC]

 A black-and-white image is represented by a matrix of booleans. To compute its
connected components, we use a union-find structure to group neighboring pixels
having the same color in a single class. Write a function that takes as argument a
matrix of booleans and returns a union-find structure containing its equivalence
classes.

 To assign a different color to each connected component, use a hash table that
associates a different color with each representative. Write a function that displays the
image with its connected components colored. Assume that you are given a
function new_color of type unit -> color and a function draw_pixel of type
int -> int -> color -> unit.

 Chapter 9
Zippers

In this chapter, we present a general technique to traverse data structures. This
technique does not involve a specific traversal order and allows for the possibility of
local modifications (inserting, removing, etc.). It goes by the name of zipper. We
present it here in the context of lists and trees, but it can be adapted to many other
data structures.

 9.1 Zippers on Lists

Suppose we wish to “navigate” within a list of type ’a list, that is, move from
element to element, occasionally performing modifications. The image that comes to
mind here is that of a cursor in a text editor, and the action of the keys of the
keyboard, used to move, insert, delete characters, etc.

 Consider a list containing seven elements, with the cursor placed after the third,
as illustrated in figure 9.1.

 [image: PIC]

Figure 9.1: A cursor on a list.

 We represent this situation with two lists, one containing the elements
situated to the left of the cursor, and another containing the elements situated
to the right. It is convenient to represent the first of these lists in reverse
order, so that the element situated immediately to the left of the cursor is
easily accessible. Figure 9.2 illustrates this representation on the preceding
example.

 [image: PIC]

Figure 9.2: A zipper on a list.

 This structure consisting of two lists is called a zipper. We define it using the
following type:

 type ’a zipper = { left: ’a list; right: ’a list; }

 To construct such a zipper from a list l, with the cursor placed all the way to the
left, we initialize the left list to [] and the right list to l.

 let of_list l =
 { left = []; right = l }

 Let us consider next the navigation and modification operations for the
zipper.

 Navigation Operations

The first navigation operation consists in moving the cursor to the right. This is only
possible if the right list contains at least one element. In this case, we move the first
element of this list to the head of the left list.

 let move_right z = match z.right with
 | [] -> invalid_arg "move_right"
 | x :: r -> { left = x :: z.left; right = r }

The application of the function move_right to the example of figure 9.2 returns the
zipper illustrated in figure 9.3.

 [image: PIC]

Figure 9.3: The zipper after a move to the right.

 We similarly write a function move_left to move the cursor to the left (see
program 73, following page).

 To convert a zipper z into a list, it suffices to concatenate the two lists z.left and
z.right, reversing the former. This is precisely what the function List.rev_append
does.

 let to_list z =
 List.rev_append z.left z.right

Equivalently, we could have moved the cursor all the way to the left and then retrieved
the right list.

Program 73 — Structure of a zipper on a list.

 type ’a zipper = { left: ’a list; right: ’a list; }

 let of_list l =
 { left = []; right = l }

 let move_right z = match z.right with
 | [] -> invalid_arg "move_right"
 | x :: r -> { left = x :: z.left; right = r }

 let move_left z = match z.left with
 | [] -> invalid_arg "move_left"
 | x :: l -> { left = l; right = x :: z.right }

 let to_list z =
 List.rev_append z.left z.right

 let insert z x =
 { z with left = x :: z.left }

 let delete_left z = match z.left with
 | [] -> invalid_arg "delete_left"
 | _ :: l -> { z with left = l }

 let delete_right z = match z.right with
 | [] -> invalid_arg "delete_right"
 | _ :: r -> { z with right = r }

 Modification Operations

To insert an element at the cursor position, it suffices to place that element
at the head of one of the two lists. If we insert it at the head of the left
list, the cursor will be to the right of the new element (as in case of a text
editor).

 let insert z x =
 { z with left = x :: z.left }

If we wish instead to leave the cursor to the left of the inserted element, it suffices to
replace left by right in the code above.

 Another modification operation consists in removing an element. For example, we
may remove the element to the left of the cursor, if such an element exists. (This is
what the backspace key does in a text editor.) This operation is equivalent to
removing the head of the left list.

 let delete_left z = match z.left with
 | [] -> invalid_arg "delete_left"
 | _ :: l -> { z with left = l }

We can similarly write an operation delete_right that removes the element immediately
to the right of the cursor.

 9.2 Zippers on Trees

The technique of the zipper also applies to other data structures, such as trees.
Consider, for example, the case of polymorphic binary trees defined by the following
type:

 type ’a tree = E | N of ’a tree * ’a * ’a tree

 What is the analog of the cursor in case of a tree? It is the designation of a
particular node together with the possibility of navigating within the tree, that is,
moving up, or moving down along the left or right subtrees.

 Consider the tree in figure 9.4, in which we place the cursor on the node
containing 5. The zipper contains the position of the node in question and the subtree
at that position. The former is represented by the path from the root to the node,
that is, the sequence of moves indicating at each step whether we descend along the
left or the right subtree. For example, the path to reach node 5 is the sequence [left;
right].

 [image: PIC]

Figure 9.4: A cursor on a tree.

 We introduce the following type to represent such paths. The constructor Top
represents the empty path, that is, the position of the root of the tree. The
constructors Left and Right indicate, respectively, a move along the left or right
subtrees.

 type ’a path =
 | Top
 | Left of ’a path * ’a * ’a tree
 | Right of ’a tree * ’a * ’a path

For each move, we keep track of the subtree along which we did not descend. This is
necessary in order to be able to move back up the tree. The zipper on binary trees is
then defined by the following type:

 type ’a zipper = { path : ’a path; tree : ’a tree }

The field tree contains the subtree at the cursor. The field path contains the path
leading to this subtree. Just as in case of the zipper on lists, where we chose to
represent the left list in reverse order, we choose here to store the path of the node
towards the root, rather than from the root. Figure 9.5 gives the zipper for the
preceding example.

 [image: PIC]
 { path = Right (N (E, 1, E), 3, Left (Top, 8, E));
 tree = N (N (E, 4, E), 5, E) }

 Figure 9.5: A zipper on a tree.

 The first constructor of the path is Right because the cursor designates a right
subtree. The next step of the path is Left because node 3 is the root of a left subtree.
Finally, the path reaches the root of the tree, 8.

 The zipper with the cursor at the root of a tree is constructed using the empty
path.

 let of_tree t = { path = Top; tree = t }

 Let us now write the navigation functions. We begin with a function down_left to
move down the left subtree. For this, we examine the form of the tree at the cursor.
We fail if it is empty.

 let down_left z = match z.tree with
 | E -> invalid_arg "down_left"

Otherwise, we return the zipper where the subtree at the cursor is the left subtree, and
the path is extended with the constructor Left to signify that we have moved down
the left.

 | N (l, x, r) -> { path = Left (z.path, x, r); tree = l }

The node x and its right subtree r are kept in the path, as arguments of the constructor
Left. We similarly write a function down_right that moves down the right
subtree.

 The function to move up the tree examines the current path. We fail if the path is
empty.

 let up z = match z.path with
 | Top ->
 invalid_arg "up"

Otherwise, we must reconstruct the node of the tree situated above the cursor. For this,

we use the information contained in the path as well as the subtree contained in the
field tree. If we move down the left subtree, the path would be of the form
Left (p, x, r), and the reconstructed node would have z.tree as its left subtree, x as
its root, and r as its right subtree.

 | Left (p, x, r) ->
 { path = p; tree = N (z.tree, x, r) }

If we move down the right subtree, we proceed symmetrically.

 | Right (l, x, p) ->
 { path = p; tree = N (l, x, z.tree) }

Program 74 — A zipper structure on a binary tree.

 type ’a tree = E | N of ’a tree * ’a * ’a tree

 type ’a path =
 | Top
 | Left of ’a path * ’a * ’a tree
 | Right of ’a tree * ’a * ’a path

 type ’a zipper = { path: ’a path; tree: ’a tree }

 let of_tree t = { path = Top; tree = t }

 let down_left z = match z.tree with
 | E -> invalid_arg "down_left"
 | N (l, x, r) -> { path = Left (z.path, x, r); tree = l }

 let down_right z = match z.tree with
 | E -> invalid_arg "down_right"
 | N (l, x, r) -> { path = Right (l, x, z.path); tree = r }

 let up z = match z.path with
 | Top ->
 invalid_arg "up"
 | Left (p, x, r) ->
 { path = p; tree = N (z.tree, x, r) }
 | Right (l, x, p) ->
 { path = p; tree = N (l, x, z.tree) }

 let rec to_tree z =
 if z.path = Top then z.tree else to_tree (up z)

 The function that reconstructs the entire tree from a given zipper moves the
cursor up the tree until it reaches the top. We stop when the path is Top and return
the tree contained in the field tree.

 let rec to_tree z =
 if z.path = Top then z.tree else to_tree (up z)

 The complete code of the zipper on binary trees is given in program 74.

 Note: You may wonder about the commonalities between zippers on lists and
those on trees. Indeed, the zipper on lists seems to be a completely symmetric
structure, its two fields left and right being of the same type. However, you may
also understand it as being asymmetrical, with left playing the same role as path,
and right, that of tree. Thus, we could have defined the following type to represent
a position in a list:

 type ’a path = Top | Right of ’a * ’a path

Since this type is clearly identical to ’a list, we did not consider it worthwhile to
define a new type. Zippers on lists and trees thus embody the very same
idea.

 Application: Comparing Two Binary Search Trees

In chapter 5, we presented binary search trees, which can represent sets of
elements equipped with a total order. If we wish to construct a set of sets, it
is therefore necessary to equip binary search trees themselves with a total
order.

 One solution is to construct the list of elements for the two trees in infix
order and then compare the two lists, for example, lexicographically. This is
nevertheless somewhat naive, since the two trees may contain many elements but

may differ rapidly, in which case we would have constructed the two lists in
vain.

 A more efficient solution is preferable, working directly on the trees. However, this
is not straightforward since two binary search trees can contain the same elements
without having the same structure, as illustrated in figure 9.6. One solution consists
in using the zipper structure to execute a simultaneous infix traversal of the two
trees.

 [image: PIC]

Figure 9.6: Two binary search trees containing the same elements.

 We begin by writing a function that descends all the way to the bottom left of a
tree and returns the zipper corresponding to this position. This amounts to iterating
the function down_left as long as possible.

 Concretely, we write a function leftmost by passing it a zipper as accumulator. If
the tree is empty, we return the zipper passed as argument:

 let rec leftmost z = function
 | E -> z

Otherwise, we move down the left subtree, accumulating the visited node in the
zipper.

 | N (l, x, r) -> leftmost (Left (z, x, r)) l

 If we consider the two trees of figure 9.6, t1 and t2, then the zippers
obtained with leftmost Top t1 and leftmost Top t2 have the following form:

 leftmost Top t1 = Left (Left (..., 3, ...), 1, ...)
 leftmost Top t2 = Left (Left (..., 4, ...), 1, ...)

Figure 9.7 depicts the two zippers. We can verify that both start off with the smallest
value, namely, 1.

 [image: PIC] [image: PIC]

Figure 9.7: The two zippers for the trees of figure 9.6.

 Next, we have to write a function compare to perform the actual comparison. This
function takes as argument two zippers and a function cmp to compare the elements.
If the two zippers are Top, the comparison is over, and we return 0 to indicate
equality.

 let rec compare cmp z1 z2 = match z1, z2 with
 | Top, Top ->
 0

If the two zippers are of the form Left, we compare the elements that they designate
using the function cmp. If they differ, the comparison is over, and the result given by
cmp is returned.

 | Left (z1, x1, r1), Left (z2, x2, r2) ->
 let c = cmp x1 x2 in
 if c <> 0 then c

If they are equal, however, the comparison must continue. We look for the following
elements, by calling leftmost on the two right subtrees, r1 and r2. We then call
compare recursively.

 else compare cmp (leftmost z1 r1) (leftmost z2 r2)

If one of the two zippers equals Top and the other Left, this means that one of the two
traversals has reached the end, but not the other. We therefore return -1 or 1, as the
case may be.

 | Top, Left _ ->
 -1
 | Left _, Top ->
 1

Finally, by construction, the case of a zipper of the form Right cannot occur. We
dispense with it as follows:

 | Right _, _ | _, Right _ ->
 assert false

 To solve the initial problem of how to compare two trees t1 and t2, it suffices to
construct the two zippers with the function leftmost, and then compare them using
the function compare.

 let compare_tree cmp t1 t2 =
 compare cmp (leftmost Top t1) (leftmost Top t2)

Program 75 — Lexicographic comparison of binary trees.

 let rec leftmost z = function
 | E -> z
 | N (l, x, r) -> leftmost (Left (z, x, r)) l

 let rec compare cmp z1 z2 = match z1, z2 with
 | Top, Top ->
 0
 | Left (z1, x1, r1), Left (z2, x2, r2) ->
 let c = cmp x1 x2 in
 if c <> 0 then c
 else compare cmp (leftmost z1 r1) (leftmost z2 r2)
 | Top, Left _ ->
 -1
 | Left _, Top ->
 1
 | Right _, _ | _, Right _ ->
 assert false

 let compare_tree cmp t1 t2 =
 compare cmp (leftmost Top t1) (leftmost Top t2)

 The complete code is given in program 75. Note that the two functions leftmost
and compare are tail recursive.

 9.3 Cursors

When discussing the problem of comparing binary trees, we saw the importance of
traversing a data structure step by step. This method of traversal is different from
that of higher-order iterators like iter and fold, with which we would not have been
able to solve that problem.

 In general, for an arbitrary data structure of type ’a t, we would like a cursor
interface in order to traverse its elements one by one. Such an interface is given in
program 76.

Program 76 — Cursor structure.

 type ’a enum
 val start: ’a t -> ’a enum
 val step: ’a enum -> ’a * ’a enum (* raise Exit when done *)

 The interface contains an abstract polymorphic type, ’a enum, for the cursor,
where the variable ’a is the type of the elements. The function start returns a
new cursor. The function step returns the current element and the cursor
corresponding to the next element, or raises the exception Exit if the iteration is
complete.

 This interface defines persistent cursors, which means that the cursor passed as
input to the function step is not modified. We may thus reuse the cursor,
for example, in an algorithm that uses backtracking. Another possibility is
that of imperative cursors, where the function step returns only the current
element and advances the cursor to the following element by a side effect (see
exercise 9.12).

 We will now implement persistent cursors on lists and trees.

 Cursors on Lists

The zipper on lists is itself a convenient cursor. It is, nevertheless, unnecessarily
complex since we do not need to keep track of the elements situated to the left of the
cursor. In other words, the cursor for lists is nothing but the right list, that
is:

 type ’a enum = ’a list

 The function start reduces to the identity. The function step raises the exception
Exit if the cursor is empty. Otherwise, it returns the head of the list and the rest of
the list as the new cursor.

 let step = function
 | [] -> raise Exit
 | x :: r -> x, r

 Note that the persistent nature of lists ensures the persistence of the cursor. The
complete code is given in program 77.

Program 77 — Cursors on lists.

 type ’a enum = ’a list

 let start l =
 l

 let step = function
 | [] -> raise Exit
 | x :: r -> x, r

 Cursors on Trees

Program 78 — Cursors on trees (infix traversal).

 type ’a enum = Top | Left of ’a * ’a tree * ’a enum

 let rec leftmost t e = match t with
 | E -> e
 | N (l, x, r) -> leftmost l (Left (x, r, e))

 let start t =
 leftmost t Top

 let step = function
 | Top -> raise Exit
 | Left (x, r, e) -> x, leftmost r e

To define a cursor on trees, it is first necessary to choose a traversal order. We
arbitrarily choose infix order here. (See exercises 9.8 et 9.9 for other traversal
orders.)

 Unlike zippers on lists, zippers on trees do not immediately provide us with
an operation to produce the next element in the infix traversal. However,
we have seen how the zipper permits this operation when dealing with the
problem of comparing binary trees. Only the two constructors Top and Left
of the zipper are necessary. We therefore define the following type for the
cursor:

 type ’a enum = Top | Left of ’a * ’a tree * ’a enum

 The function start places the cursor on the element situated at the bottom
left of the tree. For this, we use the function leftmost that was written for
program 75.

 let start t =
 leftmost t Top

 The function step raises the exception Exit if the cursor is Top. Otherwise, it
returns the element x contained in the constructor Left and constructs a new cursor
by calling leftmost on the right subtree of x.

 let step = function
 | Top -> raise Exit
 | Left (x, r, e) -> x, leftmost r e

 This is exactly what we did in program 75 to move to the next element.

 As in case of lists, the immutable nature of the type enum guarantees the
persistence of the cursor. The complete code is given in program 78 (see previous
page).

[image: PIC] For Further Information
Zippers were invented by Gérard Huet and presented in the article
The Zipper [12]. As the author noted, this concept was surely already
known to other programmers.

The OCaml standard library provides a module Seq that implements
delayed lists. This is an alternative to cursors that may be used to
traverse data structures step by step.

 9.4 Exercises

 Zippers on Lists

9.1 Equip the zipper on lists with functions to_start and to_end, that permit
moving to the beginning and end of a list, respectively.

9.2 Rewrite the function to_list in the same manner as the function
to_tree.

9.3 Consider the following problem: Given a non-empty list of integers, determine if
there exists a binary tree whose leaves, considered in infix order, are located at the
depths given by the list. For example, the list [1;3;3;2] corresponds to a binary tree,
but not the list [1;3;3]. We propose the following algorithm to solve this problem:

 	If the list contains a single element, the algorithm terminates. The result
 is positive if and only if the element is 0, which corresponds to the empty
 tree.

 	Otherwise, we search for the first two consecutive elements of the list that
 are equal. If there are none, we fail. Otherwise, calling n the common value
 of the two integers, we replace the two occurrences of n by the integer
 n − 1, which corresponds to an internal node.

 	Start again with the resulting list.

Write a function is_tree: int list -> bool that implements this algorithm by using the
zipper structure so as to avoid starting at the beginning of the list each time. The
total complexity must be linear in the length of the list.

9.4 It is possible to program an efficient text editor using the zipper structure. Each
line of text is a zipper on a list of characters, as explained earlier. Similarly, a file is
viewed as a zipper on the list of lines. We use the following types to represent a line
and a text, respectively:

 type line = { left: char list; right: char list }
 type text = { up: line list; current: line; down: line list }

The field current of the type text represents the current line on which the cursor is
found. The fields up and down are the analogs of left and right for lines.
Write the functions insert_char, return, backspace, etc. for such a text
editor.

 Zippers on Trees

9.5 Write a function remove_leaf: ’a zipper -> ’a zipper that verifies that
the zipper passed as argument points to a node that has no children, and
removes it. Such a node is of the form N(E,x,E). Conversely, write a function
insert_leaf: ’a -> ’a zipper -> ’a zipper that verifies that the zipper passed as
argument points to a leaf node (that is, E), and which inserts in its place a new node
containing the value passed as argument.

9.6 Write a function remove_leftmost: ’a zipper -> ’a zipper that verifies
that the zipper passed as argument points to a node of the tree that has
no left child, and removes it. Make sure to retain the right subtree, if it is
present.

9.7 Consider n-ary trees labeled by strings, defined by the following type:

 type tree = N of string * tree list

Define a zipper structure on such trees.

 Cursors

9.8 Write a cursor on binary trees corresponding to a prefix traversal, that is, a
traversal in which each node is visited before its two subtrees.

9.9 Write a cursor on binary trees corresponding to a postfix traversal, that is, a
traversal in which each node is visited after its two subtrees.

9.10 Rewrite the comparison of binary trees (program 75) using the cursor on trees
(program 78).

9.11 Rather than raising an exception Exit when the cursor has reached the end of
the traversal, the function step can return a value of type option, that is,
step: ’a enum -> (’a * ’a enum) option. Rewrite the cursors on lists and trees with this
new interface.

9.12 If the persistence of the cursor is not used, we may consider an imperative
version in which the function step returns the current element only and advances to
the next element by a side effect, that is, step: ’a enum -> ’a. Rewrite the cursors on
lists and trees with this new interface.

9.13 Implement a cursor on arrays.

 Part III
Algorithmic Techniques and Applications

 Chapter 10
Arithmetic

10.1 Euclid’s Algorithm

The most famous of all algorithms is certainly that of Euclid. It calculates
the greatest common divisor of two integers, x and y, written x ∧ y, and
called the “gcd of x and y”. Given two non-negative integers x and y, Euclid’s
algorithm replaces the pair (x,y) by the pair (y,x mod y), continuing until y
reaches zero. It then returns the value of x, which is the gcd of the initial
values of x and y. We write this algorithm in the form of a recursive function
gcd:

 let rec gcd x y =
 if y = 0 then x else gcd y (x mod y)

The correctness of the algorithm follows from the fact that each iteration preserves the
greatest common divisor of x and y. When we reach y = 0, we return x, that is, x∧ 0,
which is then the gcd of the initial values of x and y. In other words, we have used the
following two properties of the gcd:

[image: x ∧ y = y ∧ (x mod y), x ∧ 0 = x.]

 The termination of the algorithm follows from the fact that y decreases strictly in
each iteration, remaining non-negative throughout. Indeed, we have the invariant that
x,y ≥ 0.

 The complexity of Euclid’s algorithm is given by Lamé’s theorem. It states that, if
the algorithm performs s iterations with x > y > 0, then x ≥ Fs+1 and y ≥ Fs, where
(Fn) is the Fibonacci sequence. We deduce from this that Euclid’s algorithm
is logarithmic, that is, s = O(log x). In the general case, the complexity is
O(log(max(x,y))); see exercise 10.1. A detailed analysis may be found in The Art of
Computer Programming [14, sec. 4.5.3].

 Exercise 10.2 generalizes the function gcd to integers x and y that are not
necessarily non-negative.

 The Extended Euclidean Algorithm

We can easily modify Euclid’s algorithm to compute the Bézout coefficients, that is,
two integers u and v satisfying the following equation:

 	

[image: ux + vy = x ∧ y.]

 	(10.1)

This is known as the extended Euclidean algorithm. We implement it in the form of a
function extended_gcd that takes the integers x and y as arguments and returns the
triple (u,v,x ∧ y). The code is given in program 79.

 It is easy to see that the third component of the returned triple is the gcd of x and
y. Indeed, if we focus on this component, we find the same computations as those
performed in the function gcd with the variables x and y, since x −⌊[image: x y]⌋y is nothing
but x mod y. To verify the equation 10.1, it suffices to proceed by induction on y.
The base case y = 0 is clear. For the induction step, the induction hypothesis tells us
that:

[image: x uy + v(x − ⌊-⌋y) = x ∧y y]

 This is equivalent to:

[image: x vx + (u− ⌊-y⌋v)y = x∧ y,]

 which corresponds to the code of the function extended_gcd.

 The complexity of extended_gcd is the same as that of the function gcd. The
number of operations performed in each iteration is certainly greater, but remains
bounded, and the number of iterations is exactly the same. Therefore, the complexity
is still O(log x).

Program 79 — The extended Euclidean algorithm.

let rec extended_gcd x y =
 if y = 0 then
 (1, 0, x)
 else
 let q = x / y in
 let (u, v, g) = extended_gcd y (x - q * y) in
 (v, u - q * v, g)

 10.2 Exponentiation by Squaring

For n ∈ ℕ, a naive computation of xn performs n− 1 multiplications. The algorithm
of exponentiation by squaring consists in computing xn while performing only
O(log n) multiplications. It makes use of the following identities:

[image: { (x2)n∕2 if n is even, xn = 2(n−1)∕2 x (x) if n is odd.]

 Its translation in OCaml, for x of type int, is easy. We may write, for example,
the code given in program 80. It uses the fact that n/2 returns ⌊n∕2⌋, irrespective of
whether n is even or odd.

 There are multiple variants. We may, for example, treat n = 1 as a special case,
but this is not particularly useful. (See also exercise 10.4.) In any case, the central
idea remains the following: If we divide the exponent by at least two in each step, the
total number of recursive calls is proportionate to log(n), and so is the number of
multiplications.

 More precisely, we can show by induction on k that, if 2k−1 ≤ n < 2k, then the
function exp performs exactly k recursive calls. As each recursive call to exp performs
one or two multiplications, we deduce that the total number of multiplications is
bound by 2log n.

 The applications of this algorithm are innumerable, especially since x does not
necessarily have to be of type int. Once we have a unit and an associative operation,
that is, a monoid M, we may apply this algorithm to compute xn for x ∈ M and
n ∈ ℕ. Exercise 10.6 proposes one such generalization.

Program 80 — Exponentiation by squaring.

let rec exp x n =
 if n = 0 then
 1
 else
 let r = exp (x * x) (n / 2) in
 if n mod 2 = 0 then r else x * r

 10.3 Modular Arithmetic

In this section, we assume that we are looking to perform arithmetic modulo m for a
fixed value of m. This is interesting for several reasons. We may, for instance, wish to
compute a very large value but be interested only in its final k digits in base 10. In
this case, we will have m = 10k. We could also use the Chinese Remainder Theorem
to compute a given value modulo several pairwise relative prime integers and
represent in this way integers potentially larger than those provided by the machine.
See exercise 10.8.

 In the rest of this section, we assume m is a constant of type int such that m > 0.
We will write a certain number of functions that manipulate integers modulo m, that
is, integers x such that:

 	

[image: 0 ≤ x < m.]

 	(10.2)

Exercise 10.7 proposes to gather together the various functions in a functor
parametrized by m. We begin with a function of_int that takes an arbitrary integer x
and returns its residue modulo m. We cannot simply do x mod m because if x is
negative, then x mod m is also negative. In general, a mod b has the same sign as a. We

therefore write:

 let of_int x =
 let r = x mod m in if r < 0 then r + m else r

Addition modulo m is easily written if we assume that the operands are already integers
modulo m. To guarantee the property (10.2), it suffices to subtract m if the value of
x+y is greater than or equal to m.

 let add x y =
 let r = x + y in if r >= m then r - m else r

The integers x and y being non-negative, the sign is not a problem here. Nevertheless, for
the addition to be correct, the operation x+y must not overflow, that is, we must have
x+y ≤ max_int. An easy way of guaranteeing this is to impose a maximum value on m,
namely, m ≤ max_int∕2 + 1. We can do this by placing the following assertion at the
beginning of the code:

 let () = assert (0 < m && m <= max_int/2 + 1)

Subtraction is written just as easily, if we take care to return a non-negative value, as we
did above for the function of_int.

 let sub x y =
 let r = x - y in if r < 0 then r + m else r

Arithmetic overflow is not possible here, thanks to the assumption that we made earlier
for the addition operation. (It is, nevertheless, worth convincing yourself of this.) The
code of these first three operations is given in program 81.

Program 81 — Arithmetic modulo m (addition and
subtraction).

 let () = assert (0 < m && m <= max_int/2 + 1)

 let of_int x = let r = x mod m in if r < 0 then r + m else r

 let add x y = let r = x + y in if r >= m then r - m else r

 let sub x y = let r = x - y in if r < 0 then r + m else r

 Multiplication

Multiplication is a subtler affair. For operands that are sufficiently small,
that is, less than [image: √m--], it suffices to perform the multiplication and take its
residue:

 let mul x y =
 (x * y) mod m

However, if we do not wish to restrict the range of the operands, and keep only the
restriction already imposed, namely, m ≤ max_int∕2 + 1, we cannot use ordinary
multiplication as it could trigger an overflow. We can, however, work around this
difficulty by performing the multiplication as one would by hand. Suppose x is written
in base 2 as:

[image: (xkxk−1...x1x0)2]

 where xk is the most significant digit and x0, the least significant digit. We
will then write a loop that calculates (xk…xi)2 ×y (mod m), for i varying
from k + 1 to 0. We write it as a for loop, accumulating the result in a
reference r. Given the assumption on m and the fact that the OCaml type int is
represented with Sys.word_size-1 signed bits (see chapter 3), we can begin with
i = Sys.word_size-4.

 let mul x y =
 let r = ref 0 in
 for i = Sys.word_size - 4 downto 0 do

In each iteration of the loop, we begin by multiplying r by 2, modulo m, which we do with
the function add.

 r := add !r !r;

We then have !r ≡ (xk…xi)2 × 2 ×y (mod m). Next, we test the bit xi and, if it equals 1,
we add y to r to re-establish the loop invariant.

 if x land (1 lsl i) <> 0 then r := add !r y

Once out of the loop, we have !r ≡ xkxk−1…x1x0 ×y (mod m), that is, !r ≡ x×y
(mod m), which is the desired result. The code is given in program 82.

Program 82 — Arithmetic modulo m (multiplication and
division).
__

 let mul x y =
 let r = ref 0 in
 for i = Sys.word_size - 4 downto 0 do
 r := add !r !r;
 if x land (1 lsl i) <> 0 then r := add !r y
 done;
 !r

 let div x y =
 let u, _, g = extended_gcd y m in
 if g <> 1 then invalid_arg "div";
 mul x (of_int u)

 Division

The division of x by y modulo m assumes that y and m are relatively prime,
and returns a result q such that q×y = x (mod m). We use the extended
Euclidean algorithm (program 79). Indeed, if y and m are relative prime integers,
then the extended Euclidean algorithm gives us two integers, u and v, such
that:

[image: u × y+ v × m = 1]

 This follows from equation 10.1. Multiplying this equality by x, we get:

[image: (x × u)× y = x (mod m)]

 The result of the division is therefore x×u. The code is given in program 82. It
uses of_int u because u may be negative, but could be made more efficient since
Euclid’s algorithm guarantees that |u| < m, so that the use of of_int is unnecessarily
complicated.

 10.4 Matrix Calculus

In this section, we implement some basic matrix operations. For the sake of simplicity,
we assume that the matrices have integer coefficients. Exercise 10.9 proposes a
generalization to matrices with arbitrary coefficients.

 As we explained in section 2.5 Sieve of Eratosthenes, a matrix is simply an array
of arrays, that is:

 type matrix = int array array

We recall that we must not write Array.make 3 (Array.make 4 v) to create a 3 × 4 matrix, but
rather Array.make_matrix 3 4 v, or equivalently, Array.init 3 (fun _ -> Array.make 4 v).

 Other than Array.make_matrix, the OCaml standard library does not
provide operations on matrices. Let us begin therefore by writing a function
init_matrix, analog of Array.init for matrices. The function takes as arguments
the dimensions n and m of the matrix, and a function f to initialize each
element.

 let init_matrix n m f =
 Array.init n (fun i -> Array.init m (fun j -> f i j))

In other words, we return the matrix M of size n×m such that Mi,j = f i j.
We derive from this a function id to construct the identity matrix of size
n×n.

 let id n =
 init_matrix n n (fun i j -> if i = j then 1 else 0)

Program 83 — Basic matrix operations.

type matrix = int array array

let init_matrix n m f =
 Array.init n (fun i -> Array.init m (fun j -> f i j))

let id n =
 init_matrix n n (fun i j -> if i = j then 1 else 0)

let size a =
 (Array.length a, Array.length a.(0))

let add a b =
 let (n, m) as s = size a in
 if size b <> s then invalid_arg "add";
 init_matrix n m (fun i j -> a.(i).(j) + b.(i).(j))

let mul a b =
 let n, p = size a in
 let q, m = size b in
 if q <> p then invalid_arg "mul";
 let product i j =
 let s = ref 0 in
 for k = 0 to p - 1 do s := !s + a.(i).(k) * b.(k).(j) done;
 !s
 in
 init_matrix n m product

 Next, let us write a function size that returns the dimensions of a matrix, that is,
the number of rows and columns, as a pair. Assuming that a matrix always contains
at least one row, we may write:

 let size a =
 (Array.length a, Array.length a.(0))

Let us now consider the addition of two matrices A and B. We begin by verifying that
they have the same size.

 let add a b =
 let (n, m) as s = size a in
 if size b <> s then invalid_arg "add";

It then suffices to use init_matrix to construct the matrix whose general term is
Ai,j + Bi,j.

 init_matrix n m (fun i j -> a.(i).(j) + b.(i).(j))

The product of a matrix A of size n × p and a matrix B of size p × m is a matrix C of
size n × m whose general term is given by:

 	

[image: k∑<p Ci,j = Ai,kBk,j for 0 ≤ i < n and 0 ≤ j < m. k=0]

 	(10.3)

 We begin by determining the dimensions of the two matrices and by verifying that
the number of columns of A is indeed equal to the number of rows of B.

 let mul a b =
 let n, p = size a in
 let q, m = size b in
 if q <> p then invalid_arg "mul";

We then write a local function product that computes the coefficient Ci,j following
equation (10.3).

 let product i j =
 let s = ref 0 in
 for k = 0 to p - 1 do s := !s + a.(i).(k) * b.(k).(j) done;
 !s

It only remains to create a matrix of size n × m with the function init_matrix by
passing it the function product as argument.

 in
 init_matrix n m product

 The complete code is given aboev in program 83. An array of arrays is not the
only possibility for representing a matrix. There are other representations that are
more economical in terms of memory when a large number of elements are
equal. We then speak of sparse matrices. Exercise 10.13 proposes one such
representation.

 10.5 Exercises

 Euclid’s Algorithm

10.1 The complexity result given in section 10.1 assumes x > y. Show that in the
general case the complexity is O(log(max(x,y))).

10.2 Euclid’s algorithm as presented above assumes x,y ≥ 0. If x or y is negative,
the algorithm could return a negative result. (The operation mod returns a value of
the same sign as its first argument.) Write a second version of the function gcd that
always returns a non-negative result irrespective of the sign of its arguments. In which
case will the result be zero?

10.3 Let x,y,m be three positive integers such that y ∧ m = 1. The quotient of x
by y modulo m is any integer w such that:

[image: 0 ≤ w < m and x ≡ yw (mod m).]

 Write a function to compute the quotient of x by y modulo m.

 Exponentiation by Squaring

10.4 Write a variant of the function exp based on the following identities:

[image: { (xn∕2)2 if n is even, xn = (n−1)∕22 x (x) if n is odd.]

 Is there a difference in terms of efficiency?

10.5 Write a tail-recursive version of the function exp. This is not very interesting
if n is a machine integer since log(n) is then very small compared to the maximum
number of nested calls supported by the stack. However, if n is very large, for example
n = 2220
 , tail recursion is necessary.

10.6 Write the code of program 80 as a functor computing xn for x of an arbitrary
type t, provided that this type t is equipped with a constant one and an operation
mul.

 Modular Arithmetic

10.7 Write the code of programs 81 and 82 as a functor parametrized by the value
of m, that is:

 module Modulo(M: sig val m: int end): sig ... end = struct ... end

Why is it useful to write such a functor? Is it useful to have this functor export an
abstract type of integers modulo m?

10.8 If m1 and m2 are two relatively prime integers, the Chinese Remainder
Theorem allows us to represent every integer x between 0 (inclusive) and m1m2
(exclusive) by a pair (x1,x2), where x ≡ x1 (mod m1) and x ≡ x2 (mod m2).
This representation is useful when m1 and m2 are representable in the machine but
m1m2 is not (being too large). Write the addition, subtraction, and multiplication
operations on this representation of integers. Given the pair (x1,x2), how can we
recover the integer x that it represents?

 More generally, we may consider k integers m1,m2,…,mk pairwise relatively prime
and represent arbitrary integers by k-tuples. For more details, consult The Art of
Computer Programming (vol. 2, sec. 4.3.2).

 Matrix Calculus

10.9 Write the code of figure 83 as a functor parametrized by the type of matrix
elements, constants zero and one of this type, and operations add and mul on this
type.

10.10 Write a function power: t -> int -> t that raises a matrix to power n using the
algorithm of exponentiation by squaring.

10.11 The numbers of the Fibonacci sequence (Fn) satisfy the following
identity:

 	

[image: ()n () 1 1 = Fn+1 Fn . 1 0 Fn Fn−1]

In other words, we may compute Fn by raising a 2 × 2 matrix to power n. Derive a
program from the preceding exercise that computes Fn in O(log n) elementary
arithmetic operations.

 Note, however, that this does not mean that that we are able to compute Fn for
large values of n. In fact, the terms of the Fibonacci sequence grow exponentially. If
we make use of arbitrary-precision integers, the cost of the arithmetic operations
themselves must be taken into account, and the complexity will not be O(log n).
Otherwise, the calculation will quickly overflow.

10.12 Combining the preceding exercise and the modular arithmetic of the
preceding section, write a program that computes the final seven digits of F106. The
computation should be instantaneous.

10.13 When a matrix contains many identical elements (for example, many zero
elements), it can be interesting to represent it more compactly than as an array of
arrays. One solution consists in representing each row of the matrix by a dictionary
that associates some of the column indices with their corresponding elements,
the others taking a default value. For example, for matrices with integer
coefficients whose zero elements are not represented, we may define the following
type:

 type matrix = { cols: int; rows: M.t array }

where M.t is the type of a dictionary associating integers with integers (for example,
obtained using the module Map), and where the field cols stores the number of
columns. Write the functions id, size, add, and mul for this type.

 Chapter 11
Dynamic Programming and Memoization

Dynamic programming and memoization are two closely related techniques based on
the idea that it is better to avoid computing the same thing twice.

 11.1 Basic Idea

We illustrate the two techniques in the simple example of the Fibonacci sequence.
Recall that this sequence of integers (Fn) is defined by:

[image: ({ F0 = 0 F1 = 1 (Fn = Fn−2 + Fn−1 if n ≥ 2.]

 It is easy enough to write a recursive function that calculates Fn based on this
definition:

 let rec fib n =
 if n <= 1 then n else fib (n - 2) + fib (n - 1)

But this is also rather simplistic. Indeed, it would take more than a minute to compute
F50. It is not the recursion that is problematic here, but rather the fact that we

compute the same values of Fn several times over. For instance, to compute F5, F3
will be computed twice and F2 three times, as shown in the call graph in
figure 11.1.

 [image: PIC]

Figure 11.1: Call graph of F5.

 It is easy to see that, in general, the computation of Fn requires Fn+1 − 1
additions because the recursion equation is exactly the same as that which
defines Fn. We can observe this empirically. On a computer circa 2011, it
takes 2 seconds to compute F42, 3 seconds to compute F43, 5 seconds to
compute F44, etc. We recognize here the terms of the Fibonacci sequence.
Extrapolating, we can say that it would take 89 seconds to compute F50, and this is
correct to within a half-second! As we know that Fn grows exponentially, we
cannot hope to go much further in the computation of the sequence using this
method.

 11.1.1 Memoization

The fact that we are computing the same thing several times leads us, quite naturally,
to the idea that we could store the intermediate results in a table. Such a table would
associate integers n with the value Fn. Accordingly, we proceed as follows: To
compute fib n, we begin by checking whether there is an entry in the table for n, in
which case we return the corresponding value. Otherwise, we calculate fib n as
 fib (n-2) + fib (n-1) , that is, recursively. We return the result after havingadded
it to the table. This technique, consisting in using a table to store intermediate
results, is called memoization, a term coined by the researcher Donald Michie in
1968.

Let us implement this idea in a function fib_memo. We begin by introducing a hash
table to store the intermediate results, choosing an arbitrary initial size for
it:

 let memo = Hashtbl.create 17

The function fib_memo begins by checking whether the value of fib n is already present
in the table memo. If it is, it is returned:

 let rec fib_memo n =
 try
 Hashtbl.find memo n

Otherwise, we compute the result exactly as for the function fib, that is, using two
recursive calls:

 with Not_found ->
 let fn = if n <= 1 then n
 else fib_memo (n-2) + fib_memo (n-1) in

Then, we store it in the table memo before returning it:

 Hashtbl.add memo n fn;
 fn

 This concludes the function fib_memo. Its efficiency is far greater than that
of fib. The computation of F50, for example, becomes instantaneous (in
contrast to the 89 seconds taken by fib). We can show that the complexity
of fib_memo is linear. Intuitively, we understand that computing Fn now
involves computing Fi only once for i ≤ n. The complete code of the function
fib_memo is given in program 84 below. Note that the table memo is defined
outside the function fib_memo, since it must be the same for all recursive
calls.

Program 84 — Computing Fn via memoization.

let memo = Hashtbl.create 17
let rec fib_memo n =
 try
 Hashtbl.find memo n
 with Not_found ->
 let fn =
 if n <= 1 then n else fib_memo (n-2) + fib_memo (n-1) in
 Hashtbl.add memo n fn;
 fn

 11.1.2 Dynamic Programming

Using a hash table to memoize the computation of the Fibonacci sequence may seem
unnecessarily costly. Indeed, in the end we will store only the values of Fi for i ≤ n,
for which an array of size n + 1 would suffice. If we wished to rewrite the
function fib_memo using this idea, we could, for example, begin by assigning the
value −1 to each cell of the array, to indicate that the value has not yet
been computed. Another possibility would be to fill the array in a specific
order. In the present case, we see that it suffices to fill the array in increasing
order since the computation of Fi requires the values of Fi−2 and Fi−1. This
technique, consisting in using a table and progressively filling it with the results of
intermediate computations, is called dynamic programming, often abbreviated as
DP.

 Let us implement this idea in a function fib_dp. We begin by treating the special
case n = 0. In the general case, when n > 0, we allocate an array f of size n + 1,
which will contain the values of the Fi.

 let fib_dp n =
 if n = 0 then 0 else
 let f = Array.make (n+1) 0 in

 This array may be allocated inside the function fib_dp since, unlike fib_memo, it
will not be recursive. Next, we fill the cells of the array f in increasing order, treating
f.(1) as a special case.

 f.(1) <- 1;
 for i = 2 to n do f.(i) <- f.(i-2) + f.(i-1) done;

 Once the array is filled, we have only to return the value contained in its last
cell.

 f.(n)

This concludes the function fib_dp. As for fib_memo, its complexity is linear. This can
be seen easily since the code boils down to a simple for loop. The complete code of
the function fib_dp is given in program 85.

Program 85 — Computing Fn via dynamic programming.

let fib_dp n =
 if n = 0 then 0 else
 let f = Array.make (n+1) 0 in
 f.(1) <- 1;
 for i = 2 to n do f.(i) <- f.(i-2) + f.(i-1) done;
 f.(n)

 Remark

We have chosen the Fibonacci sequence as an example for pedagogical reasons. Of
course, it is very simple to compute the terms of this sequence in linear time without
using either memoization or dynamic programming (see exercise 11.1).

 11.2 Mechanical Memoization

The use of an array in fib_dp, rather than the hash table in fib_memo, may leave us
thinking that dynamic programming is simpler to implement than memoization. This
is indeed the case in that example.

 It is nevertheless important to understand that in order to write fib_dp we made
use of two facts: we had to compute the Fi for all i ≤ n; and we could compute
them in increasing order. In general, the inputs of the function that we wish
to compute may not necessarily be consecutive integers. They may not be
integers at all, or the dependencies between the different values may not be as
simple.

 Memoization, by contrast, is simpler to implement. It suffices to add a few lines of
code to consult and fill the hash table, without modifying the structure of the
function. We can do this mechanically.

 Better yet, we can implement the memoization procedure once and for all, as a
higher-order function memo_fun that takes as argument a function f to be memoized.
We begin by creating a hash table in which to store the already computed
results.

 let memo_fun f =
 let h = Hashtbl.create 17 in

We then return a function that performs the memoization, that is, consults the table and
fills it as needed.

 fun x ->
 try Hashtbl.find h x
 with Not_found -> let v = f x in Hashtbl.add h x v; v

The type of the function memo_fun is as follows:

 memo_fun : (’a -> ’b) -> ’a -> ’b

 As we see, memo_fun takes as argument a function of an arbitrary type and returns
a function of the same type. The polymorphic nature of the function follows from the
use of the generic hash tables of OCaml (see exercise 11.2).

 In order to memoize the function fib, it suffices to write:

 let fib_memo2 = memo_fun fib

 If we compute fib_memo2 50 twice, the second computation is instantaneous
because the result is present in the table. However, the first computation takes just as
long as it does without memoization. Indeed, during the first call, we calculate
fib 50 because the value is not present in the table. During this computation,
recursive calls are made to the function fib and not to its memoized version
fib_memo2.

 We might think that a solution consists in writing the following code:

 let rec fib_memo3 =
 memo_fun (fun n -> if n <= 1 then n
 else fib_memo3 (n-2) + fib_memo3 (n-1))

 Unfortunately, this still does not work. Each call to fib_memo3 involves a new call
to memo_fun, which has the effect of allocating a new hash table. Thus the previously
calculated results are lost and cannot be found.

 To solve this problem, that is, to allocate a single hash table and perform recursive
calls to the function being memoized, it is necessary to rewrite the function memo_fun
in a subtler manner. We do this in the form of a function memo_rec that may be used
as follows:

 let fib_memo4 =
 memo_rec (fun f n -> if n <= 1 then n else f (n-2) + f (n-1))

 Here, the single call to memo_rec ensures the creation of a single table. The
function being memoized is passed as an additional argument f.

 The function memo_rec is written as follows. We begin, as in case of memo_fun, by
creating a table:

 let memo_rec ff =
 let h = Hashtbl.create 5003 in

Next, we define the recursive function f that performs the memoization:

 let rec f x =
 try Hashtbl.find h x
 with Not_found -> let v = ff f x in Hashtbl.add h x v; v
 in
 f

 When the result is not in the table, we compute the result v using ff f x, that is,
by passing the function f and the argument x to the function ff provided by the user.
The complete code of memo_rec is given in program 86.

Program 86 — Generic memoization operator.

let memo_rec ff =
 let h = Hashtbl.create 5003 in
 let rec f x =
 try Hashtbl.find h x
 with Not_found -> let v = ff f x in Hashtbl.add h x v; v
 in
 f

 As in case of memo_fun, the type of memo_rec is polymorphic, but it is more
complex:

memo_rec: ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b

 The function ff has type (’a -> ’b) -> ’a -> ’b, which may be read as
 (’a -> ’b) -> (’a -> ’b) . That is, it takes as argument a function of type ’a -> ’b
and returns a function of the same type.

 11.3 Differences between Memoization and Dynamic Programming

In certain situations, dynamic programming may be preferred to memoization. Take
the example of the computation of the binomial coefficients C(n,k), the recursive
definition of which is as follows:

[image: ({ C (n,0) = 1 C (n,n) = 1 (C (n,k) = C (n − 1,k − 1) + C(n − 1,k) if 0 < k < n.]

 Both memoization and dynamic programming may be applied to this definition. In
the first case, we will have a hash table indexed by the pair (n,k) and, in the second
case, a matrix indexed by n and k. However, if we seek to compute C(n,k) for
n = 2 × 105 and k = 105, we are probably going to exceed the available memory of the
machine (assuming an ordinary desktop computer). In the first case, this would
happen when filling the hash table and in the second, when trying to allocate the
matrix. The reason is that the complexity in time and in space is O(nk). In the
previous example, we would have to store at least 15 billion intermediate
results.

 Yet, if we look closer, the computation of C(n,k) for a given value of n only
requires the values of C(n− 1,k). Accordingly, we may carry out the computation for
increasing values of n, even if not all the values computed are going to be useful in the
end. We can visualize the situation by drawing Pascal’s triangle as in figure 11.2. We
will compute the values line by line, keeping track of only a single line at any given
moment.

 	 1
	 1	 1

	 1 	 2 	 1

	 1 	 3 	 3 	 1

	 1 	 4 	 6 	 4 	 1

	 1 	 5 	 10 	 10 	 5 	 1

	 ⋮

 Figure 11.2: Pascal’s triangle.

 Let us implement this idea in a function comb_smart_dp. We begin by allocating
an array row of size n+1 that will contain the line of Pascal’s triangle being
computed:

 let comb_smart_dp n k =
 let row = Array.make (n+1) 0 in

In fact, an array of size k+1 would suffice (see exercise 11.3).

 Initially, this array is filled with zeroes. We initialize the first cell with
1.

 row.(0) <- 1;

 This value will not change in what follows, because the first column of Pascal’s
triangle contains only ones. Next, we write a loop to compute the i-th line of Pascal’s
triangle:

 for i = 1 to n do

 This computation will be done in-place within the array row, assuming that it
contains the values of the (i− 1)-th line. To avoid overwriting values that have yet to
be used, we will compute the new values from right to left, since these values do not
depend on those situated further to the right. We continue with a second
loop:

 for j = i downto 1 do row.(j) <- row.(j) + row.(j-1) done

Here, we make use of the fact that row.(i) contains 0, which permits us to avoid
introducing a special case. We stop when j = 1 because the value row.(0) does not
need to be recomputed, as explained above. Once we have exited the double loop, the

array row contains the n-th line of Pascal’s triangle, and we only have to return
row.(k):

 done;
 row.(k)

The time complexity remains O(nk) but the space complexity is only O(n). In the
example given above, with n = 2 × 105 and k = 105, the result is now obtained
in a few seconds. Note, however, that it causes an arithmetic overflow (see
exercise 11.4).

 The conclusion of this little exercise is that dynamic programming, which allows
for a finer control of the use of memory, can sometimes be more advantageous than
memoization. Conversely, in many situations where this extra measure of control is
not necessary, memoization is far simpler to implement.

 11.4 Hash-consing

Just as we can avoid computing the same thing twice, as we did above, we
may similarly avoid constructing the same data several times, to save on
memory. We can do this safely as long as we are dealing with values that will
not be subsequently modified. If, for example, we have already constructed
the list [1; 2; 3], it is pointless to reconstruct anew. We can instead reuse
it.

 The technique of reusing values that have already been constructed is
known as hash-consing. It is quite simply the application of the technique
of memoization to the construction of values. The term hash-consing
combines precisely the idea of hashing used in memoization with that of

allocation1 .
Here, we will demonstrate how to implement this technique, taking as an example
binary trees containing characters, that is:

 type tree = E | N of tree * char * tree

 The idea is to provide an alternative to the constructor N, in the form of a
function node that behaves exactly as this constructor, but that returns a structurally
identical value, if one has already been constructed. One possible solution consists in
directly memoizing the function node, that is, by storing the values of type tree
that have already been constructed in a hash table. However, proceeding in
this manner would not be very efficient. Indeed, both computing the hash
keys and comparing values of the type tree require traversals that may be
costly.

 A much better solution consists in avoiding these traversals by associating an
integer, to be used in the hash function, with each value of type tree. We begin,
therefore, by modifying the type tree slightly in order to store an integer as the first
argument of the constructor N.

 type tree = E | N of int * tree * char * tree

 We will see below how this integer is computed. We write a function that
returns this integer when it is given the constructor N, and the integer 0
otherwise.

 let unique = function
 | E -> 0
 | N (u, _, _, _) -> u

 We will justify the name of this function below, by explaining why this integer is

in fact unique. For the present, this is not important since we wish only to define a
hash function. Here is the definition of the hash function:

 let hash = function
 | E ->
 0
 | N (_, l, c, r) ->
 (19 * (19 * unique l + Char.code c) + unique r) land max_int

 This function does not make use of the integer stored in the constructor N.
Indeed, hash will be used precisely to determine if a tree with root c and subtrees l
and r has already been constructed. It must therefore only depend on the
values l, c, and r. To compute the result in constant time, the function hash uses
the integers stored in the subtrees l and r, via the function unique. The operation
land max_int is used here to guarantee a non-negative result.

 The second idea consists in comparing two values of type tree in constant time by
using the fact that their subtrees have already been shared if they are equal and are
therefore physically equal. For this we write a function equal that uses the physical
equality == on the subtrees.

 let equal t1 t2 = match t1, t2 with
 | E, E -> true
 | N (_, l1, c1, r1), N (_, l2, c2, r2) ->
 l1 == l2 && c1 == c2 && r1 == r2
 | _ -> false

 Equipped with these two functions, we can now construct a hash table to memoize
the construction of trees. We can do this using the functor Hashtbl.Make of the
OCaml standard library. However, such a table would keep the constructed values
forever. What we want, by constrast, is for the GC to be able to recover the space
allocated for values that are no longer used, as it usually does.

 For this, we will use another hash table structure included in the OCaml standard
library, namely, the functor Weak.Make. Its signature is identical to that of the functor
Hashtbl.Make.

 module X = struct
 type t = tree
 let hash = ...
 let equal = ...
 end
 module W = Weak.Make(X)

The resulting module W provides a set structure of values of type tree, in which the
elements disappear when they are not referenced anywhere except by a pointer from

this structure. Such pointers, which are not taken into account by the GC, are called
weak references. Hence the name of the module: Weak.

 We may now construct the table that will contain the constructed values of type
tree. We initialize it with an arbitrary size.

 let nodes = W.create 5003

Program 87 — Hash-consing (code).

 type tree = E | N of int * tree * char * tree

 let empty =
 E

 let unique = function
 | E -> 0
 | N (u, _, _, _) -> u

 module X = struct
 type t = tree
 let hash = function
 | E ->
 0
 | N (_, l, c, r) ->
 (19 * (19 * unique l + Char.code c) + unique r)
 land max_int
 let equal t1 t2 = match t1, t2 with
 | E, E -> true
 | N (_, l1, c1, r1), N (_, l2, c2, r2) ->
 l1 == l2 && c1 == c2 && r1 == r2
 | _ -> false
 end
 module W = Weak.Make(X)
 let nodes = W.create 5003

 let node =
 let cpt = ref 1 in
 fun l c r ->
 let n0 = N (!cpt, l, c, r) in
 let n = W.merge nodes n0 in
 if n == n0 then incr cpt;
 n

 It remains only to write the function node that will perform the actual
memoization. It uses a global counter, initialized with the value 1.

 let node =
 let cpt = ref 1 in
 fun l c r ->

We begin by constructing the desired tree, using the current value of the counter.

 let n0 = N (!cpt, l, c, r) in

Next, we consult the hash table to determine if such a value has already been
constructed. The module W conveniently provides a function merge that determines if
an equal value is already present in the set and, if this is not the case, adds it. In both
cases, the returned value is contained in the table.

 let n = W.merge nodes n0 in

It only remains to increment the value of the counter if a new node has been added to the
table, which is easily determined by comparing n and n0 using physical comparison.
In all cases, we return the tree n.

 if n == n0 then incr cpt;
 n

The complete code is given in program 87.

 Of course, all of this is correct only if two trees that have the same integer are
indeed equal. To guarantee it, we must encapsulate the type tree behind an interface
that prevents users from arbitrarily setting this integer. One possibility is to make
tree a private type. Such an interface is given in program 88 (see following page). In
this way, we can justify a posteriori that the integer stored in each tree is unique in
the sense that two trees bearing the same integer are equal. However, two equal

values can bear a different integer. Indeed, a value can be constructed, then
reclaimed by the GC, then reconstructed identically later, with a different
integer.

 The advantages of hash-consing are numerous. Firstly, it permits us to economize
on memory. Certainly, there is an extra cost linked to memoization, but this cost is of
constant time. Indeed, we have been careful to write an equality and a hash
function that are of constant cost. The second advantage of hash-consing is that
we can now use physical equality == instead of structural equality. Indeed,
two values of type tree are equal if and only if they are physically equal.
This is guaranteed by the encapsulation of the type tree behind a private
type. Thirdly, we have a total order on the type tree, of constant time,
by comparing the values returned by the function unique. In particular,
we can now construct data structures, for example by using the functors
Set.Make or Map.Make, that will be as efficient as in case of integers. Finally,
we have an excellent hash function on the type tree, namely, the function
unique. Exercise 11.6 proposes using it to memoize a recursive function on
trees.

 It is important to reiterate here that the hash-consing technique is only applicable
to structures that can be shared. The technique is thus applicable to persistent
structures, but not to mutable ones.

Program 88 — Hash-consing (interface).

 type tree = private E | N of int * tree * char * tree
 val empty: tree
 val node: tree -> char -> tree -> tree

 11.5 Exercises

 Dynamic Programming and Memoization

11.1 Modify the function fib_dp so that it uses only two integers instead of an
array.

11.2 Reimplement the function memo_rec as a functor parametrized by the type of
the arguments of the memoized function, so as to be able to use hash tables other
than the generic tables of OCaml.

11.3 Modify the function comb_smart_dp so that it does not compute the values of
Pascal’s triangle beyond the k-th column.

11.4 Modify the function comb_smart_dp so that it returns an arbitrary-precision
integer (type Num.num of the OCaml library). Note: The complexity is no longer
O(nk) because additions are no longer atomic operations. Their cost depends on the
size of the operands, and these grow rapidly in Pascal’s triangle.

11.5 The edit distance between two strings is defined as the smallest number of
insertions, deletions, and substitutions of characters required to pass from one to the
other. For example, the distance between "duck" and "duke" is two (one
deletion, one insertion). Write a recursive function that takes as arguments two
strings a and b, and two indices i and j, and returns the distance between the
strings a[0..i[and b[0..j[. Explain why we end up making the same calls
several times. Improve efficiency by using either memoization or dynamic

programming.

 Hash-consing

11.6 Write a memoized function height that computes the height of a tree making
use of the fact that trees have been hash-consed.

11.7 Write a structure of lists of integers making use of the hash-consing
technique.

11.8 Generalize the above exercise to a functor that takes as argument the type of
the elements, equipped with an equality and a hash function.

11.9 How can the application of the constructor N in the function node in
program 87 be avoided when the value has already been constructed?

 Chapter 12
Sorting Algorithms

This chapter presents several sorting algorithms on lists and arrays. We assume
that the elements to be sorted are of type elt, equipped with a total order
given in the form of a function compare of type elt -> elt -> int. Sorting
functions on lists and arrays will respectively have type elt list -> elt list
and elt array -> unit. We assume that we sort lists and arrays in increasing
order. For the sake of convenience, we define two functions lt and le as
follows:

 let lt x y = compare x y < 0
 let le x y = compare x y <= 0

Throughout this chapter, N will denote the number of elements to be sorted. For each
sorting algorithm presented, we indicate its complexity not only in terms of the
number of comparisons performed, but also in terms of the number of basic
allocations in the case of lists and the number of assignments in the case of arrays.
For each one, we give the complexity in the best, worst, and average cases. For the
average case, we assume that the elements to be sorted are distinct and that the N!
possible permutations of the input are all equally likely. Recall that the optimal
complexity of a sorting algorithm only performing comparisons of elements is
O(N log N) (see section 12.5).

 12.1 Insertion Sort

Insertion sort consists in successively inserting each element into the set of elements
already sorted. This is what we do, for example, when we sort a pack of
cards.

 12.1.1 Lists

Insertion sort on a list consists in traversing it while successively inserting each
element in the part already sorted. We begin therefore by writing a function insert
that inserts an element x in a list that is assumed to be sorted. The code is as
follows:

 let rec insert x = function
 | y :: l when lt y x -> y :: insert x l
 | l -> x :: l

The first pattern matching case corresponds to a recursive insertion when the first
element of the list is smaller than x. The second pattern matching case corresponds to
that in which x is smaller than all the elements of l, whether l is empty or
not.

 Sorting then consists in traversing the list using List.fold_left, with the portion
of the list already sorted as accumulator.

 let insertion_sort l =
 List.fold_left (fun acc x -> insert x acc) [] l

This code may prove problematic for long lists: Since the function insert is not tail
recursive, it can overflow the stack. It is, however, easy to modify the function insert
to make it tail recursive. We can do this by adding an accumulator containing the list,
in reverse order, of elements smaller than x that have already been considered. If we
call this accumulator acc, we then have the following situation when we try to insert
x in l:

[image: PIC]

 Once the position of x is determined, it suffices to reverse the accumulator
acc and concatenate the result with l. The function List.rev_append does
exactly this and is tail recursive. The final code of insertion sort is given in
program 89.

Program 89 — Insertion sort on lists.

 let rec insert acc x = function
 | y :: l when lt y x -> insert (y :: acc) x l
 | l -> List.rev_append acc (x :: l)

 let insertion_sort l =
 List.fold_left (fun r x -> insert [] x r) [] l

 Complexity

When the function insert inserts an element x at position k in l, it performs k
comparisons and 2k allocations (k to construct the accumulator and k in
List.rev_append). At best, k is always 1 and, at worst, it equals the length of the
list, which in the end gives the table in figure 12.1.

 				
	 	 best case 	 average 	 worst case

				
				
	 comparisons 	 N 	 N2∕4 	 N2∕2

				
	 allocations 	 N 	 N2∕2 	 N2

				

 Figure 12.1: Complexity of insertion sort on lists.

 12.1.2 Arrays

Insertion sort on an array a is performed in-place. It consists in successively inserting
each element a.(i) in the portion of the array a[0..i-1] that is already sorted, which
corresponds to the following situation:

 	 0 i-1 	 	
			
	
 … already sorted …
 	 a.(i)
 	 … to be sorted …

			

 We begin with a for loop to traverse the array:

 let insertion_sort a =
 for i = 1 to Array.length a - 1 do
 let v = a.(i) in

To insert the element a.(i) in the right place, we use a while loop that shifts the
elements to the right as long as they are greater than a.(i).

 let j = ref i in
 while 0 < !j && lt v a.(!j - 1) do
 a.(!j) <- a.(!j - 1);
 decr j
 done;

Once out of the loop, all that remains is to put a.(i) in its place.

 a.(!j) <- v
 done

The complete code of insertion sort on arrays is given in program 90.

Program 90 — Insertion sort on arrays.

 let insertion_sort a =
 for i = 1 to Array.length a - 1 do
 let v = a.(i) in
 let j = ref i in
 while 0 < !j && lt v a.(!j - 1) do
 a.(!j) <- a.(!j - 1);
 decr j
 done;
 a.(!j) <- v
 done

 Complexity

Note that the function insertion_sort performs as many comparisons as
assignments. When the while loop inserts the element a.(i) at position i− k, it
performs k + 1 comparisons. At best, k equals 0 and, at worst, it equals i, which in
the end gives the table in figure 12.2.

 				
	 	 best case 	 average 	 worst case

				
				
	 comparisons 	 N 	 N2∕4 	 N2∕2

				
	 assignments 	 N 	 N2∕4 	 N2∕2

				

 Figure 12.2: Complexity of insertion sort on arrays.

 12.2 Quicksort

Quicksort relies on the method of divide and conquer: The elements to be sorted are
divided into two subsets, all the elements of the first being smaller than those of the
second. Then, we sort each subset recursively. In practice, the subdivision is
performed with the help of an arbitrary element p of the set, called the pivot. The two
subsets are then respectively the elements less than or equal to p, and the elements
greater than p.

 12.2.1 Lists

To implement quicksort on lists, we begin by writing a function partition that
partitions a list at a given pivot p. To ensure tail recursion, we use an accumulator
consisting of a pair of lists. The function partition therefore takes the following
form:

 let rec partition ((left, right) as acc) p = function

 The lists left and right represent the elements that are, respectively, less than or
equal to p and greater than p. When we reach the empty list, it suffices to return the
accumulator.

 | [] -> acc

 Otherwise, we consider the first element x and compare it with the pivot p. If x is
less than or equal to p, we add it to left and call partition recursively on the rest of
the list, s.

 | x :: s when le x p ->
 partition (x :: left, right) p s

 On the other hand, if x is greater than p, we add it to right and similarly call
partition recursively.

 | x :: s ->
 partition (left, x :: right) p s

 Quicksort takes the form of a recursive function quicksort. The base case is that
of the empty list.

 let rec quicksort = function
 | [] ->
 []

 If the list is not empty, we choose its first element as pivot p and partition the
remaining elements using the function partition.

 | p :: s ->
 let (left, right) = partition ([], []) p s in

Finally, we sort left and right recursively and concatenate the results, remembering to
insert the pivot p in the middle.

 (quicksort left) @ (p :: quicksort right)

The complete code of quicksort on lists is given in program 91.

Program 91 — Quicksort on lists.

 let rec partition ((left, right) as acc) p = function
 | [] -> acc
 | x :: s when le x p ->
 partition (x :: left, right) p s
 | x :: s ->
 partition (left, x :: right) p s

 let rec quicksort = function
 | [] ->
 []
 | p :: s ->
 let (left, right) = partition ([], []) p s in
 (quicksort left) @ (p :: quicksort right)

 It is important to note that neither of the two recursive calls of the function
 quicksort is tail recursive. A stack overflow is therefore possible. Exercise 12.4
discusses a solution to this problem.

 Complexity

The function partition makes as many comparisons and allocations as there are
elements in the list passed as argument. Let C(N) be the number of comparisons
performed in the function quicksort for a list of length N.

 If partition returns a list of length K and a list of length N − 1 − K, we
deduce:

[image: C (N) = N − 1+ C (K) + C(N − 1− K).]

 The worst case corresponds to K = 0, which gives C(N) = N − 1 + C(N − 1), and
hence C(N) ∼[image: N2- 2]. The best case corresponds to a list split into two equal halves, that
is, K = N∕2. From this we easily deduce C(N) ∼ N log N. For the number of
comparisons on average, we consider that the N possible final places for the pivot are
all equally probable, which gives:

[image: 1 ∑ C (N) = N − 1 + N- C (K)+ C (N − 1 − K) 0≤K≤N −1 -2 ∑ = N − 1 + N C (K). 0≤K≤N −1]

 After a bit of algebra, left to the reader, we obtain:

[image: C(N) C (N − 1) 2 2 N-+-1-= ----N---- + N-+--1 − N(N--+-1).]

 This is a telescoping sum, which leads us to conclude that:

[image: C(N) ------∼ 2logN N + 1]

 We therefore have C(N) ∼ 2N log N. For the number of allocations A(N), we
proceed in a similar fashion, with a slightly different equation:

[image: A(N) = N + K + A(K)+ A (N − 1 − K).]

 In the end, we obtain the results given in the table of figure 12.3.

 				
	 	 best case 	 average 	 worst case

				
				
	 comparisons 	 N log N 	 2N log N 	 N2∕2

				
	 allocations 	 [image: 32]N log N 	 4N log N 	 N2

				

 Figure 12.3: Complexity of quicksort on lists.

 12.2.2 Arrays

Quicksort on arrays is performed in-place. The partition and sorting functions take as
arguments the array and two indices that delimit the portion to be considered. We
retain the idea of a function partition that organizes the elements around a pivot,
and a sorting function that proceeds recursively.

 The function partition takes an array a as argument, and two indices l and r,
that delimit a portion of the array. This portion corresponds to the elements between
the indices l (inclusive) and r (exclusive). We begin by choosing a.(l) as
pivot.

 let partition a l r =
 let p = a.(l) in

This choice is arbitrary and can influence performance. Exercise 12.8 proposes a better
method of choosing the pivot.

 The idea consists in traversing the array from left to right, between indices l
(inclusive) and r (exclusive), with a for loop. In each iteration of the loop, the
situation is as follows:

[image: PIC]

 The index i of the loop gives the position of the next element to consider. The
index m partitions the part that has already been traversed. More precisely, it is the
index of the last cell containing a value less than or equal to p. We represent it with a
reference.

 let m = ref l in
 for i = l + 1 to r - 1 do

If a.(i) is strictly greater than p, we leave it in its place. Otherwise, to maintain the loop
invariant, it suffices to increment m and swap a.(i) and a.(!m).

 if le a.(i) p then begin incr m; swap a i !m end
 done;

The code of the function swap is given in program 92 below. Once all the elements have
been traversed, we perform one more swap to put the pivot in its place, that is, at
position !m, and we return this index.

 if l <> !m then swap a l !m;
 !m

We write the main function of quicksort as a recursive function quick_rec that takes the
same arguments as the function partition. If l ≥ r-1, the number of elements to be
sorted is either zero or one, and there is nothing to do.

 let rec quick_rec a l r =
 if l < r - 1 then begin

Otherwise, we partition the elements between l and r.

 let m = partition a l r in

After this call, the pivot a.(m) is at its final place. We then perform two recursive
calls to sort, respectively, the elements smaller than and larger than the
pivot.

 quick_rec a l m;
 quick_rec a (m + 1) r
 end

To sort an array, it suffices to call quick_rec on all of its elements.

 let quicksort a = quick_rec a 0 (Array.length a)

The complete code is given in program 92.

Program 92 — Quicksort on arrays.

 let swap a i j =
 let t = a.(i) in
 a.(i) <- a.(j);
 a.(j) <- t

 let partition a l r =
 let p = a.(l) in
 let m = ref l in
 for i = l + 1 to r - 1 do
 if le a.(i) p then begin incr m; swap a i !m end
 done;
 if l <> !m then swap a l !m;
 !m

 let rec quick_rec a l r =
 if l < r - 1 then begin
 let m = partition a l r in
 quick_rec a l m;
 quick_rec a (m + 1) r
 end

 let quicksort a = quick_rec a 0 (Array.length a)

 As with quicksort on lists, a stack overflow could occur. Indeed, the first call to
quick_rec is not tail recursive and, in the worst case, the number of these calls may
be equal to the length of the array. Exercice 12.6 discusses a solution to this
problem.

 Complexity

The function partition always performs exactly (r−l) − 1 comparisons. The
complexity in number of comparisons is therefore the same as in case of quicksort
on lists. As far as the number of assignments is concerned, we note that
the function partition performs as many calls to swap as increments of
m. The best case occurs when, at each partition stage, the pivot remains
in the first position. Then no assignment is performed. It is important to
note that this case does not correspond to the best complexity in terms of
comparisons, which is quadratic in this case. Thus, on average, and assuming
that all final positions for the pivot are equally likely, we have fewer than
(r−l) + 1 assignments, each call to swap performing two assignments. This leads
to a calculation analogous to that of the average number of comparisons.
We have already done this computation for lists and obtained 2N log N.
In the worst case, the pivot is always found at position r-1. The function
partition then performs 2(r−l) assignments. There is, thus, a total of N2
assignments. In the end, we obtain the results given in the table of figure
12.4.

 					
	 	 best case
 	 average 	 worst case

					
					
	 comparisons 	 N log N 	 - 	 2N log N 	 N2∕2

					
	 assignments 	 - 	 0 	 2N log N 	 N2

					

 Figure 12.4: Complexity of quicksort on arrays.

 To avoid the worst case, to the extent possible, the two optimizations proposed in
exercises 12.8 and 12.9 must be implemented.

 12.3 Merge Sort

As with quicksort, merge sort also applies the principle of divide and conquer. It
partitions the elements to be sorted into two parts of the same size, without trying to
compare their elements. It then sorts the two parts recursively and merges them;
hence the name merge sort. Thus, the worst case of quicksort, in which the two parts
have disproportionate sizes, is avoided.

 12.3.1 Lists

We begin by writing a function split that partitions a list into two lists of length
differing by at most one. To ensure tail recursion, we pass two lists l1 and
l2 as accumulators. When we reach the end of the list, we return the pair
(l1, l2).

 let rec split l1 l2 = function
 | [] -> (l1, l2)

Otherwise, we consider the first element x and place it alternatively in l1 or l2. The
simplest way to achieve this is to exchange l1 and l2 at each call.

 | x :: l -> split (x :: l2) l1 l

 The second step consists in writing a function merge that merges two sorted lists.
For this, we traverse the two lists simultaneously.

 let rec merge l1 l2 = match l1, l2 with

If one of the two is empty, we return the other.

 | [], l | l, [] ->
 l

Otherwise, we compare the first elements x1 and x2 of each list. If x1 is smaller, it is
placed at the head of the result, and we recursively merge the remainder s1 of l1 with
l2. We proceed symmetrically if x2 is smaller.

 | x1 :: s1, x2 :: s2 ->
 if le x1 x2 then x1 :: merge s1 l2 else x2 :: merge l1 s2

 Note: We observe that merge is not tail recursive. We can fix this easily by adding
an additional argument in which we accumulate the smaller elements.

 Finally, we write a function mergesort that implements merge sort on a list l. If
the list contains at most one element, we return it directly.

 let rec mergesort l = match l with
 | [] | [_] ->
 l

Otherwise, we partition the list l into two lists using the function split:

 | _ ->
 let l1, l2 = split [] [] l in

We then sort the two lists l1 and l2 recursively, and merge the results using
merge.

 merge (mergesort l1) (mergesort l2)

Unlike the function merge, the function mergesort does not risk triggering a stack
overflow: Since the list l is partitioned into two equal halves, the size of the stack is
logarithmic. Program 93 below contains the complete code, with the function merge
in its tail-recursive version.

Program 93 — Merge sort on lists.

 let rec split l1 l2 = function
 | [] -> (l1, l2)
 | x :: l -> split (x :: l2) l1 l

 let rec merge acc l1 l2 = match l1, l2 with
 | [], l | l, [] ->
 List.rev_append acc l
 | x1 :: s1, x2 :: s2 ->
 if le x1 x2 then merge (x1 :: acc) s1 l2
 else merge (x2 :: acc) l1 s2

 let rec mergesort l = match l with
 | [] | [_] ->
 l
 | _ ->
 let l1, l2 = split [] [] l in
 merge [] (mergesort l1) (mergesort l2)

 We can avoid allocating the lists l1 and l2 by cleverly reusing the list l itself.
Exercise 12.10 proposes such an optimization. This idea is notably used in the
function List.sort of the OCaml standard library.

 Complexity

The function split makes N allocations and no comparisons. The function merge
makes twice as many allocations as comparisons: In the second branch of the pattern
matching, there are as many comparisons as allocations, and in the first
branch, the number of allocations performed by List.rev_append is equal
to the length of acc, itself equal to the number of allocations/comparisons
performed in the recursive part. Let C(N) (resp. f(N)) be the total number of
comparisons performed by mergesort (resp. merge). We then have the following
equation:

[image: C (N) = 2C (N ∕2)+ f(N)]

 Indeed, the two recursive calls are made on lists of the same length N∕2. In the
best case, the function merge examines only the elements of one of the two lists, since
they are all smaller than those of the other list. In this case, f(N) = N∕2 and
hence C(N) ∼[image: 1 2]N log N. In the worst case, merge examines every element, so
that f(N) = N − 1; hence C(N) ∼ N log N. The analysis on the average
case is subtler (see [15, ex 2 p. 646]) and gives f(N) = N + O(1); hence

C(N) ∼ N log N as well. The number of assignments is easily deduced from the
number of comparisons. In the end, we obtain the results given in the table of
figure 12.5.

 				
	 	 best case 	 average 	 worst case

				
				
	 comparisons 	 [image: 12]N log N 	 N log N 	 N log N

				
	 allocations 	 2N log N 	 3N log N 	 3N log N

				

 Figure 12.5: Complexity of merge sort on lists.

 12.3.2 Arrays

The idea of merge sort on arrays is the same as for lists: We partition the elements to
be sorted into two equal halves. We sort the two halves, and then merge them. We
delimit the portion to be sorted by two indices l (inclusive) and r (exclusive). For the
partition, it suffices to compute the middle index m = [image: l+2r]. We then recursively sort
the two parts delimited by l and m on the one hand, and m and r on the other. We
have only to merge them. This proves extremely difficult to do in-place. It is
simpler to use a second array, allocated once and for all at the start of the
sort.

 We begin by writing the function merge that implements the merging. It takes as
arguments two arrays, a1 and a2, and the three indices l, m, and r. The portions
a1[l..m[and a1[m..r[are sorted. The objective is to merge them in a2[l..r[. For this,
we traverse the two portions of a1 (with two references i and j) and the portion of a2
that is to be filled (with a for loop).

 let merge a1 a2 l m r =
 let i = ref l in
 let j = ref m in
 for k = l to r - 1 do

 In each iteration of the loop, the situation is therefore as follows:

[image: PIC]

 We must determine the next value to put in a2.(k). It is the smallest of the
two values a1.(!i) and a1.(!j). It is important, however, to also treat
the case in which there are no more elements in one of the two halves. We
determine whether the element is to be taken from the left half with the following
test:

 if !i < m && (!j = r || le a1.(!i) a1.(!j)) then begin

This test checks whether the left half is non-empty and its first element is smaller
than the first element of the right half, if such an element exists. In both
cases, we copy the element into a2.(k) and increment the corresponding
index.

 a2.(k) <- a1.(!i); incr i
 end else begin
 a2.(k) <- a1.(!j); incr j
 end
 done

Next, we implement merge sort as a function mergesort. We begin by allocating a
temporary array tmp obtained by copying the array to be sorted.

 let mergesort a =
 let tmp = Array.copy a in

The recursive part of merge sort is materialized via a recursive function mergesort_rec
that takes as arguments the indices l and r, that delimit the portion to be
sorted.

 let rec mergesort_rec l r =

 If the segment contains at most one element, that is, if l ≥ r-1, there is nothing
more to be done.

 if l < r - 1 then begin

 Otherwise, we divide the interval into two equal halves by computing the middle
position m, and then recursively sort a[l..m[and a[m..r[.

 let m = (l + r) / 2 in
 mergesort_rec l m;
 mergesort_rec m r;

Note that the computation of (l+r)/2 cannot trigger an integer overflow, since the
maximum size of an OCaml array is much smaller than the largest representable
integer (see section 3.2 Runtime Model for further details).

Program 94 — Merge sort on arrays.

 let merge a1 a2 l m r =
 let i = ref l in
 let j = ref m in
 for k = l to r - 1 do
 if !i < m && (!j = r || le a1.(!i) a1.(!j)) then begin
 a2.(k) <- a1.(!i); incr i
 end else begin
 a2.(k) <- a1.(!j); incr j
 end
 done

 let mergesort a =
 let tmp = Array.copy a in
 let rec mergesort_rec l r =
 if l < r - 1 then begin
 let m = (l + r) / 2 in
 mergesort_rec l m;
 mergesort_rec m r;
 Array.blit a l tmp l (r - l);
 merge tmp a l m r
 end
 in
 mergesort_rec 0 (Array.length a)

 It remains to perform the merge. For this, we copy the entire portion a[l..r[into
the array tmp and then call the function merge.

 Array.blit a l tmp l (r - l);
 merge tmp a l m r
 end

Finally, we sort the full array a by calling mergesort on all its elements.

 in
 mergesort_rec 0 (Array.length a)

Program 94 contains the complete code. Its efficiency can be further improved: As with
quicksort, we can switch to insertion sort when the portion to be sorted becomes
sufficiently small (see exercise 12.7). Another idea consists in avoiding the copy of a
to tmp, which uses Array.blit (see exercise 12.12).

 Complexity

The number of comparisons is exactly the same as in case of lists. The number of
assignments is also the same: N assignments in the function merge (each element
being copied from a1 to a2) and N assignments performed by Array.blit.

 Let A(N) be the total number of assignments in mergesort. We then
have:

[image: A(N) = 2A(N ∕2)+ 2N,]

 that is, 2N log N assignments in total. In the end, we obtain the results of
figure 12.6.

 				
	 	 best case 	 average 	 worst case

				
				
	 comparisons 	 [image: 12]N log N 	 N log N 	 N log N

				
	 assignments 	 2N log N 	 2N log N 	 2N log N

				

 Figure 12.6: Complexity of merge sort on arrays.

 12.4 Heapsort

Heapsort is based on the use of a priority queue. Such a structure permits the
addition of elements and the extraction of its smallest element. The idea behind
heapsort is the following: We construct a priority queue containing all the elements to
be sorted and then extract the elements one by one. Since the extraction operation
returns the smallest element each time, the elements come out in increasing
order.

 In principle, any priority queue structure could be used. However, a structure in
which the addition and extraction operations have cost O(log N) gives an optimal
sorting algorithm in O(N log N). Both of the heap structures presented in chapter 6
have such complexity.

 12.4.1 Lists

We assume we are given a functor PriorityQueue that implements a priority queue
structure. In principle, we can choose between imperative and persistent structures.
However, there is no advantage to choosing a persistent structure here. We therefore
use the imperative heap structure described in section 6.3 Imperative Priority Queues.
Its interface is given again in program 95.

Program 95 — Minimal signature for imperative priority
queues.
__

 type t
 type elt
 val create : unit -> t
 val is_empty : t -> bool
 val add : elt -> t -> unit
 val get_min : t -> elt
 val remove_min : t -> unit

 We apply the functor PriorityQueue by passing as argument a module that
compares elements with compare. To avoid having to reverse the list at the end, we
order elements in decreasing order, that is, the element of highest priority for the
priority queue will be the largest element for the order relation lt. We therefore
write:

 module Heap = PriorityQueue(struct
 type t = elt
 let compare x y = compare y x
 end)

 The function heapsort takes a list l of elements to be sorted and begins by
creating an empty heap h.

 let heapsort l =
 let h = Heap.create () in

The function then adds all the elements of the list l to the heap.

 List.iter (fun x -> Heap.add x h) l;

 Next, we create a reference res that will receive the sorted result. We extract the
elements from the heap with the help of a while loop.

 let res = ref [] in
 while not (Heap.is_empty h) do

If the heap is not empty, we extract its smallest element x using Heap.get_min and then
remove it from the heap using Heap.remove_min.

 let x = Heap.get_min h in
 Heap.remove_min h;

We add x at the head of the list contained in res and then repeat.

 res := x :: !res
 done;

Once the heap becomes empty, it suffices to return the contents of res.

 !res

Note that the fact of having reversed the order relation in the heap structure means that
we do not have to reverse the list !res at the end of heapsort. Program 96 contains
the complete code.

Program 96 — Heapsort on lists.

 let heapsort l =
 let h = Heap.create () in
 List.iter (fun x -> Heap.add x h) l;
 let res = ref [] in
 while not (Heap.is_empty h) do
 let x = Heap.get_min h in
 Heap.remove_min h;
 res := x :: !res
 done;
 !res

 Complexity

The complexity of heapsort depends on the complexity of the heap structure used. As
we mentioned in the introduction to this section, if the operations add and
remove_min of the heap structure have at most logarithmic cost, then the sort itself
has cost O(N log N) in the worst case, which is optimal. If we now assume that the
heap structure used is that of section 6.3 Imperative Priority Queues, we can give a
more precise result. Indeed, we then know that add and remove_min each make a
maximum of 2log k comparisons to add or remove an element from a heap containing
k elements, so that the total number of comparisons in the worst case is at most:

[image: 4(log1 + log 2+ ⋅⋅⋅+ log N) ∼ 4N logN]

 In fact, we will see in the next section that the construction of the heap has only
linear cost, so that the total is equivalent to 2N log N.

 12.4.2 Arrays

To implement heapsort on an array a, we will construct the heap structure
directly inside this array. The organization of the heap in the array is exactly
the same as in section 6.3 Imperative Priority Queues: The left and right
children of a node stored at index i are respectively stored at indices 2i + 1 and
2i + 2. As in the previous section, we construct a heap for the reverse order
relation, that is, a heap in which the largest element is to be found at the
root.

 To construct the heap, we consider the elements of the array from right to left. In
each iteration, we have the following situation:

[image: PIC]

 The portion a[k+1..n[contains the bottom of the heap being constructed, that is,
it is a forest of heaps whose roots are situated at indices i such that k < i < 2k + 3.
We then make the value a.(k) descend to its place in the heap rooted at k.
Once all the elements have been traversed, we have a single heap rooted at
0.

 The second step consists in deconstructing the heap. For this, we exchange its
root r in a.(0) with the element v in a.(n-1). The value r is then in its
final place. We then reestablish the heap structure on a[0..n-1[by making
v descend to its place in the heap of size n-1 rooted at 0. We repeat the
operation for positions n-1 , n-2 , etc. In each iteration k , we have the following
situation:

[image: PIC]

There is a heap in the portion a[0..k[, all of whose elements are smaller than those of
the portion a[k..n[that is already sorted.

 The two steps of the above algorithm use the same operation consisting in making
a value descend until it reaches its position in a heap. This is implemented using a
recursive function move_down that takes as arguments an array a, an index k, a value
v, and an upper bound on the indices, n.

 let rec move_down a k v n =

We assume that we already have a heap h1, rooted at 2k+1, so that 2k+1 < n, and
similarly a heap h2, rooted at 2k+2, so that 2k+2 < n. The objective is to construct a
heap rooted at k, containing v and all the elements of h1 and h2. We begin by
determining whether the heap rooted at k will be reduced to a leaf, that is, whether
the heap h1 is empty. If this is so, we assign the value v to a.(k), and we are
done.

 let r = 2 * k + 1 in
 if r >= n then
 a.(k) <- v

Otherwise, we determine the index rmax of the largest of the two roots of h1 and h2, by
carefully handling the case in which h2 is empty.

 else
 let rmax =
 if r+1 < n then if lt a.(r) a.(r+1) then r+1 else r
 else r in

If the value v is greater than or equal to a.(rmax), the descent is complete, and it suffices
to assign v to a.(k).

 if le a.(rmax) v then a.(k) <- v

Otherwise, we move a.(rmax) up and continue the descent of v recursively at the
position rmax.

 else begin a.(k) <- a.(rmax); move_down a rmax v n end

The sorting function takes an array a as argument:

 let heapsort a =
 let n = Array.length a in

We begin by constructing the heap bottom-up by calling move_down. We avoid
unnecessary calls for heaps reduced to single leaves by beginning the loop at ⌊[image: n2]⌋− 1.
(Indeed, for every strictly greater index k, we have 2k+1 ≥ n.)

 for k = n/2 - 1 downto 0 do move_down a k a.(k) n done;

Once the heap is fully constructed, we extract its elements one by one, in decreasing
order. As explained above, for each index k, we swap a.(0) with the value v in a.(k)
and then move v down to its place in the heap.

 for k = n-1 downto 1 do
 let v = a.(k) in a.(k) <- a.(0); move_down a 0 v k
 done

Note that the specification of move_down allows us to avoid assigning v to a.(0) before
beginning the descent. Program 97 below contains the complete code.

Program 97 — Heapsort on arrays.

 let rec move_down a k v n =
 let r = 2 * k + 1 in
 if r >= n then
 a.(k) <- v
 else
 let rmax =
 if r+1 < n then if lt a.(r) a.(r+1) then r+1 else r
 else r in
 if le a.(rmax) v then a.(k) <- v
 else begin a.(k) <- a.(rmax); move_down a rmax v n end

 let heapsort a =
 let n = Array.length a in
 for k = n/2 - 1 downto 0 do move_down a k a.(k) n done;
 for k = n-1 downto 1 do
 let v = a.(k) in a.(k) <- a.(0); move_down a 0 v k
 done

 Complexity

Let us first consider the cost of a call to move_down a k v n. The number of recursive
calls is bounded by log n since the value of k is doubled at each call. Furthermore,
move_down performs at most two comparisons and an assignment in each call.
Thus, in the worst case, we have a total of 2log n comparisons and log n
assignments.

 For the sorting itself, we can roughly bound the number C(N) of comparisons in
each call to move_down by 2log N, that is, at worst a total of 3N log N comparisons
(N log N comparisons for the first step and 2N log N for the second). Similarly, the
total number of assignments is, at worst, [image: 3 2]N log N.

 In fact, we can be more precise and show that the first step of the algorithm,
namely, the construction of the heap, has linear cost. (See for example [7, Sec. 7.3].)
It follows that only the second part of the algorithm contributes to the asymptotic
complexity so that C(N) ∼ 2N log N. For an analysis on average of heapsort, the
reader is referred to The Art of Computer Programming [15, vol. 3, p. 152].

 Note that heapsort executes in constant memory. Indeed, the function move_down
performs only tail-recursive calls and, moreover, all computations are performed
in-place inside the array a.

 12.5 Optimal Complexity

We present here a quick proof of the fact that the optimal complexity of a sorting
algorithm that performs only element comparisons is in O(N log N).

 We can visualize such an algorithm as a binary tree. Each internal node
symbolizes a comparison that has been performed, the left (resp. right) subtree
representing the rest of the algorithm when the test is positive (resp. negative). Each

leaf constitutes a possible result, that is, a permutation performed on the
initial sequence. If we assume N distinct elements, there are N! possible
permutations and, hence, at least N! leaves in this tree. Its height is consequently at
least log N!. Now the longest path from the root to a leaf corresponds to the
largest number of comparisons performed by the algorithm on an input.
There is, therefore, an input for which the number of comparisons is at least
log N!. By Stirling’s formula, we know that log N! ∼ N log N. For a more
detailed proof, the reader is referred to The Art of Computer Programming [15,
Sec. 5.3].

 12.6 Experimental Evaluation

In this section, we compare the different sorting algorithms presented in this chapter
empirically.

 Evaluation Protocol

For a given list or array, we evaluate the performance of several algorithms on the
same input as follows. We execute each sorting algorithm five times, measuring the
computation time in each case. We exclude the smallest and the largest values, and
take the average of the three remaining values.

 For lists, we consider randomly constructed as well as already sorted lists, with
lengths 2i × 1000 for i ranging from 0 to 10. For arrays, we consider randomly filled as
already sorted arrays, with lengths 2i × 1000 for i ranging from 0 to 12. It is
important to consider the case of data that is already sorted because that represents a
realistic situation for which we wish to verify that our sorting algorithms are
efficient.

 Evaluation on Lists

We compare the algorithms listed in figure 12.7. Figures 12.8 and 12.9 present the
results.

 	 insertion 	 insertion sort of program 89

		
	 quicksort 	 quicksort of program 91

		
	 quicksort (log stack) 	 quicksort with the first call made to the smaller of
 the two lists after partitioning (see exercise 12.4)

		
	 quicksort (rand) 	 quicksort with a randomly chosen pivot (see
 exercise 12.5)

		
	 mergesort 	 merge sort of program 93

		
	 mergesort (reuse) 	 merge sort with optimization consisting in not
 constructing intermediate lists when partitioning
 (see exercise 12.10)

		
	 List.sort 	 the function List.sort of the OCaml standard
 library (version 3.11.2)

		
	 heapsort (arrays) 	 heapsort of program 96, using the structure based
 on arrays presented in section 6.3

		
	 heapsort (trees) 	 heapsort of program 96, using the structure based
 on binary trees presented in section 6.4

 Figure 12.7: Sorting algorithms on lists.

 For random lists (figure 12.8), we observe the following: Insertion sort
(insertion) can only be used in case of small lists, given its quadratic complexity.
(We do not give the computation time for lists longer than 16,000.) Two of the three
quicksort algorithms, (quicksort and quicksort (rand)) triggered a stack overflow
on lists of length 210. The algorithm heapsort (trees), which uses binary trees, is
penalized due to the construction of the trees, even if its complexity is optimal. The
other sorting algorithms have comparable efficiency, the fastest being that of the
OCaml standard library.

 [image: PIC]

 Figure 12.8: Comparison of sorting algorithms on random lists.

 [image: PIC]

 Figure 12.9: Comparison of sorting algorithms on already sorted lists.

 In case of already sorted lists (figure 12.9), we observe the following: Insertion sort
(insertion) has quadratic complexity. (The favorable case would have been
that of a list sorted in decreasing order.) The first two quicksort algorithms,
quicksort and quicksort (log stack), have quadratic complexity, which is
explained by the arbitrary choice of the first element of the list as pivot. (We do
not give the computation time for lists of length greater than 16,000.) The
third quicksort algorithm, quicksort (rand), behaves well but triggers a
stack overflow on lists of size 210 × 1000. The algorithm heapsort (trees)
remains penalized due to the construction of the trees, as in case of random
lists.

 We may draw the following conclusions: Merge sort is the one that best combines
simplicity and efficiency. Even its simplest version has an efficiency comparable to the
optimized version of the OCaml standard library. Heapsort always performs well,
but its implementation is considerably more complex than that of merge
sort. Finally, we observe that using quicksort on lists is not straightforward
because we must, at a minimum, combine the optimizations of exercises 12.4
and 12.5, to avoid both stack overflows and the unfavorable case of quadratic
complexity.

 Evaluation on Arrays

We now compare the different techniques for sorting arrays of integers based
on algorithms listed in figure 12.10. Figures 12.11 and 12.12 present the
results.

 	 insertion 	 insertion sort of program 90

		
	 quicksort 	 quicksort of program 92

		
	 quicksort (insertion) 	 quicksort using an insertion sort on small
 segments (see exercise 12.7)

		
	 quicksort (log stack) 	 quicksort with the first call on the smallest of
 the two segments (see exercise 12.6)

		
	 quicksort (rand) 	 quicksort with a pivot chosen randomly (see
 exercise 12.8)

		
	 mergesort 	 merge sort of program 94

		
	 merge sort (swap) 	 merge sort with the optimization consisting
 in avoiding the use of Array.blit (see
 exercise 12.12)

		
	 Array.stable_sort 	 the function Array.stable_sort of the OCaml
 standard library (version 3.11.2)

		
	 heapsort 	 heapsort of program 97

		
	 Array.sort 	 heapsort of the OCaml standard library

 Figure 12.10: Sorting algorithms on arrays of integers.

 [image: PIC]

 Figure 12.11: Comparison of sorting on random arrays.

 [image: PIC]

 Figure 12.12: Comparison of sorting on already sorted arrays.

 For random arrays (figure 12.11), we observe the following: As in case of lists,
insertion sort can only be used for small arrays. The two heapsort algorithms,
heapsort and Array.sort, are slightly less efficient than merge sort and quicksort.
The two most efficient algorithms are both merge sorts.

 For already sorted arrays (figure 12.12), we observe the following: Here, the first
three quicksort algorithms, quicksort, quicksort (insertion), and quicksort
(log stack), are in their most unfavorable case, which may be explained by the
arbitrary choice of the left-most element as pivot. (We do not give the computation
time for arrays of length greater than 16,000.) The version of quicksort with
a randomly chosen pivot achieves a good efficiency, comparable to that of
mergesort.

 Of all the sorting algorithms in O(N log N), heapsort is among the least efficient
while merge sort is among the most efficient. Here, insertion sort (insertion) is
the most efficient, since we are in the favorable case of linear complexity.
(The unfavorable case would have been that of an array sorted in decreasing
order.)

 We may draw the following conclusions: If we are allowed to allocate an
intermediate array, in other words, to temporarily double memory use, then merge
sort is the best choice. As in case of lists, it combines simplicity and efficiency. If,
however, we wish to sort an array in-place, we must either use heapsort or quicksort,
taking care to combine it with the optimizations of exercises 12.6 and 12.8, to
avoid both stack overflows and quadratic behavior due to a bad choice of
pivot.

 12.7 Exercises

12.1 Write a function two_way_sort: bool array -> unit that sorts a boolean
array in-place, performing only swaps of elements, with the convention that
false < true. The complexity should be proportionate to the number of

elements.

12.2 (Dijkstra’s Dutch national flag problem) Write a function that sorts an array
in-place. The array contains values representing the three colors of the Dutch flag,
namely:

 type color = Blue | White | Red

Only swaps of elements in the array may be performed. The complexity should be
proportionate to the number of elements.

12.3 More generally, we consider the case of an array containing k distinct values.
To simplify matters, we assume that we are dealing with integers 0,…,k − 1. Write a
function that sorts such an array in O(max(k,N)) time, where N is the size of the
array.

 Quicksort

12.4 One way to avoid a potential stack overflow in the function quicksort on lists
is by first implementing a non-tail-recursive call to sort the smaller of the two lists,
followed by a tail-recursive call to sort the larger one. Hint: For the tail-recursive call,
generalize the function quicksort so that it takes as additional arguments the two
lists left and right, so that quicksort left l right returns the concatenation, in this
order, of left, the sorted list l, and right. Show that the size of the stack remains
logarithmic even in the worst case.

12.5 Modify the function partition on lists to use a randomly chosen element of
the list as pivot. The aim is to avoid the unfavorable case of a sorted list, where
quicksort would then have quadratic complexity.

12.6 One way of avoiding a potential stack overflow in the function quick_rec on
arrays is to begin by performing the recursive call on the smaller of the two
portions. Show that the size of the stack remains logarithmic even in the worst
case.

12.7 A classic idea to speed up sorting algorithms consists in switching to insertion
sort when the number of elements to be sorted is small, that is, less than a constant
fixed in advance (for example, 5). Modify the quicksort implementation on arrays
taking this idea into consideration. Use the function insertion_sort on arrays
(program 90) and generalize it by passing two indices, l and r, to delimit the portion
of the array to be sorted.

12.8 Modify the quicksort implementation on arrays to use a pivot chosen randomly
in the segment a[l..r[. As with lists, the idea is to avoid the unfavorable case of an
already sorted array, where quicksort would then have quadratic complexity. One
simple solution is to shuffle the array before sorting it, for example using
exercise 2.11.

12.9 When numerous elements of the array are equal, the preceding exercise does
not always suffice to guarantee a good choice of pivot. Modify the function partition
so that it separates the elements that are strictly smaller than the pivot (to
the left), those equal to the pivot (in the center), and those strictly greater
than the pivot (to the right). Instead of two indices m and i dividing the
segment of the array into three parts, as illustrated in figure ??, we will
use three indices to divide the segment of the array into four parts. The
new function partition must now return two indices. Modify the function
quick_rec accordingly. Partitioning into three parts in this way is the subject of
exercise 12.2.

 Merge Sort

12.10 One source of inefficiency of merge sort on lists is the function split. Given
a list l containing n elements, split l constructs two completely new lists, l1 and l2,
containing all the elements of l. We can avoid this construction by using only the list
l, without allocating any new lists. Rather than taking every other element of l to
construct l1 and l2, we choose for l1 the ⌊n∕2⌋ first elements of l and for l2 the
⌈n∕2⌉ last elements. To construct l2, write a function chop: int -> ’a list -> ’a list
such that chop n1 l returns the suffix of l obtained by removing its n1 first elements.
As for l1, it suffices to represent it as a prefix of l, that is, to add an argument n1 to
the function mergesort, indicating that the first n1 elements of l must be sorted.
Rewrite the function mergesort using this idea. Reuse the function merge of
program 93. Calculate the complexity in number of allocations of the function
mergesort.

12.11 One way of optimizing the function mergesort on almost sorted arrays
is by avoiding the merging when, after both recursive calls, the elements
of the left half are all smaller than the elements of the right half. We can
easily test this by comparing the right-most element of the left half with the
left-most element of the right half. Modify the function mergesort using this
idea.

12.12 To avoid copying a into tmp with Array.blit in the function mergesort on
arrays, one possibility is to sort the two halves of the array a while simultaneously
shifting them to the array tmp, then merging tmp back into a as is already done.
However, sorting the elements of a into tmp requires, conversely, that the two halves
be sorted in-place, then merged into tmp. We therefore need two mutually
recursive sorting functions. We can make do with only one by passing an
additional parameter indicating whether the sorting must be done in-place or
in tmp. Modify the functions mergesort and mergesort_rec following this
idea.

12.13 In merge sort, as in quicksort, we can switch to insertion sort when the

number of elements to be sorted is small (see exercise 12.7).

 Chapter 13
Graph Algorithms

In this chapter, we present graph algorithms. These algorithms are independent of the
underlying graph data structure. They can be used, in particular, with all the graph
structures of chapter 7. Below, we will take as given a module G whose signature
includes at least the types, functions, and modules of program 98. Graphs are of type
graph, and their vertices are of type vertex. The function iter_vertex iterates
over the vertices of a given graph, applying a function passed as argument
to each of them. The function iter_succ iterates over the successors of a
given vertex. The module H provides a hash table structure with vertices as
keys.

Program 98 — Minimal signature of a graph structure.

 type graph
 type vertex
 val iter_vertex: (vertex -> unit) -> graph -> unit
 val iter_succ: (vertex -> unit) -> graph -> vertex -> unit
 module H: HashTable with type key = vertex

 13.1 Breadth-First Search

The first traversal that we present is called breadth-first search (BFS). It consists in
exploring the graph by moving outwards “in concentric circles,” from a particular
vertex s, called the root. We first traverse the vertices that are exactly one arc away
from the root s, then those situated two arcs away, and so forth. Consider, for
example, the graph on the left in figure 13.1. Beginning from vertex 5, we
first visit vertices 4 and 1, which are directly linked to vertex 5. We then
visit vertices 0, 6 and 2, followed by vertex 7, and finally vertex 3. The
graph, with distances to the root indicated as exponents, is shown on the
right.

 [image: PIC] [image: PIC]

Figure 13.1: Breadth-first search of a graph.

 We write breadth-first search as a function iter_bfs that takes as arguments a
graph g, a root s, and a function f that will be applied to the elements of g as these
are discovered. We begin by creating a hash table that will contain the vertices
already discovered by the traversal.

 let iter_bfs f g s =
 let visited = H.create () in

The search itself is based on the use of a queue into which vertices are inserted as they
are discovered. The idea is that, at any point in time, the queue will contain the
vertices situated at distance d from the root, followed by the vertices situated at
distance d + 1:

 				
	 ←
	 vertices at distance d 	 vertices at distance d + 1 	 ←

				

 This is the concretization of our notion of “concentric circles,”
more precisely of the two consecutive concentric circles that are being
considered. This property is crucial for the correctness of breadth-first
search1 .
Here, we use the module Queue to implement the queue. Initially, it contains only the
root. It is useful to write a function add that adds a vertex simultaneously in the hash
table and the queue. We begin by using it on the root s.

 let queue = Queue.create () in
 let add w = H.add visited w (); Queue.add w queue in
 add s;

Another important property is that each vertex contained in the queue is also contained
in the table visited, which the function add guarantees in an obvious manner. We
use a loop to examine vertices in the order in which they are discovered, until all
vertices reachable from the root have been examined. As long as the queue is not
empty, we extract the first element v of the queue and apply the visitor function f to
it.

 while not (Queue.is_empty queue) do
 let v = Queue.pop queue in
 f v;

For each successor w of v not yet found, that is, not contained in the table visited, we
use add to add it to both the queue and the table.

 iter_succ (fun w -> if not (H.mem visited w) then add w) g v
 done

This completes the while loop and the function iter_bfs. The complete code is given in
program 99 below.

Program 99 — Breadth-first search.

 let iter_bfs f g s =
 let visited = H.create () in
 let queue = Queue.create () in
 let add w = H.add visited w (); Queue.add w queue in
 add s;
 while not (Queue.is_empty queue) do
 let v = Queue.pop queue in
 f v;
 iter_succ (fun w -> if not (H.mem visited w) then add w) g v
 done

 This code applies equally well to undirected and directed graphs. Note that some
vertices may not be discovered by this algorithm. These are the vertices v for
which there is no path between the root and v. In other words, breadth-first
search determines the set of vertices that can be reached from the root and
even determines their minimal distance from the root in number of arcs (see
exercise 13.1).

 The complexity of breadth-first search is easy to determine. Each vertex is placed
in the queue at most once and is therefore examined at most once. Each arc is
considered at most once, when its starting vertex is examined. For a graph with N
vertices and E arcs, the complexity is therefore O(N + E), which is optimal. The
complexity in space is O(N), since the queue, like the hash table, may contain
(almost) all vertices in the worst case.

 There is another way to implement breadth-first search, without using a queue. As
noted above, the queue has a very particular structure, with vertices at distance d
followed by vertices at distance d + 1. We see, therefore, that the queue structure is
not really necessary. All we need are two “buckets,” one containing the vertices at
distance d, and the other, those at distance d + 1. We may concretize these, for
instance, using lists. When we are done with bucket d, we swap the two buckets. This
does not affect the complexity.

 13.2 Depth-First Search

The second graph traversal that we present is depth-first search (DFS). It uses a
backtracking algorithm: As long as we can follow an arc, we do so, and when it is no
longer possible, we backtrack. As with breadth-first search, we mark vertices as they
are discovered, to avoid getting stuck in a cycle. Consider the example of the graph on
the left in figure 13.2. We begin a depth-first search from vertex 2. Two arcs come
out of this vertex, 2 → 4 and 2 → 5. We arbitrarily choose to consider the arc
2 → 5 first and, accordingly, proceed to vertex 5. No arc comes out of 5,

so we cannot continue. We therefore backtrack to vertex 2, and consider
the second outgoing arc, 2 → 4. From 4, we can only follow the arc 4 → 3.
Similarly, from 3, we can only follow the arc 3 → 1. Two arcs emerge from
vertex 1: 1 → 0 and 1 → 4. We choose to follow the arc 1 → 4 first. It leads to a
vertex that has already been visited. We therefore backtrack. Returning to 1,
we consider the other arc, 1 → 0, which leads to 0. From there, the only
outgoing arc leads to 3, which has also already been visited. We therefore
return to 0, then to 1, then to 3, then to 4, and finally to 2. The traversal
is complete. If we redraw the graph with the order in which the vertices
were discovered as exponents, we get the graph on the right in figure 13.2.

 [image: PIC] [image: PIC]

Figure 13.2: Example of depth-first search.

 As with breadth-first search, we will make use of a hash table containing the
vertices already discovered.

 let iter_dfs f g s =
 let visited = H.create () in

Depth-first search is written as a recursive local function visit taking a vertex v as
argument. Its code is a few lines long:

 let rec visit v =
 if not (H.mem visited v) then begin
 H.add visited v ();
 f v;
 iter_succ visit g v
 end

If vertex v has already been discovered, there is nothing more to be done. Otherwise, we
mark it and visit it with the function f. Then, we consider each successor w,
recursively triggering a depth-first search on each one. One detail is crucial: We added
v to the table visited before considering its successors. This is what keeps us from
getting stuck in a cycle. To conclude the function iter_dfs, we have only to call
visit on the root s:

 in
 visit s

The complete code is given in program 100.

Program 100 — Depth-first search.

 let iter_dfs f g s =
 let visited = H.create () in
 let rec visit v =
 if not (H.mem visited v) then begin
 H.add visited v ();
 f v;
 iter_succ visit g v
 end
 in
 visit s

 The complexity is O(N + E), by the same logic as in case of breadth-first search.
Space complexity is subtler since it is the stack of recursive calls that contains the
vertices being visited, and that plays the role of the queue in breadth-first search.
Since in the worst case all the vertices can be present in the stack or hash table, it
follows that the space complexity is O(N).

 Like breadth-first search, depth-first search allows us to determine the set of
vertices that can be reached from the root s. Figure 13.3 illustrates another example,
where depth-first search is triggered from vertex 1. Vertices 2 and 5 are not
discovered. In particular, depth-first search, like breadth-first search, is a way to
determine the existence of a path between a particular vertex, namely, the root, and
other vertices of the graph. If that is the only objective (if, for example, the minimal
distance does not interest us), depth-first search is generally more efficient. Indeed, its
memory use (that is, the call stack) is often inferior to that of breadth-first search.
The typical example is that of a tree, in which memory use is limited to the height of
the tree for depth-first search, but could be as large as the entire tree in
case of breadth-first search. Depth-first search has many other applications
that lie beyond the scope of this book. See, for example, Introduction to
Algorithms [7].

 [image: PIC]

Figure 13.3: Another depth-first search.

 13.3 Shortest Path

We consider here graphs whose arcs are labeled with weights (representing distances,
for example). We seek the shortest path between two vertices, where the length is no
longer the number of arcs but rather the sum of weights along the path. Thus, if we
consider the weighted graph of figure 13.4, the shortest path from vertex 2 to
vertex 0 is of length 5. This is the path 2 → 4 → 3 → 1 → 0, which is shorter than
the path 2 → 1 → 0, of length 6, even if the latter contains fewer arcs. Similarly,
the shortest path from vertex 2 to vertex 5, via vertex 4, is of length 2.

 [image: PIC]

Figure 13.4: Example of a weighted graph.

 As with breadth- and depth-first search, we take as given a vertex s, from which
we seek to determine the shortest paths to the other vertices. We also require the
weight of each arc. One possibility is to modify the graph structure to include this.
Here, however, we take as given a weight function weight of the following type, where
weights are of type float:

 val weight: graph -> vertex -> vertex -> float

This function will only be called with arguments g, x, and y if there is an arc between x
and y in the graph g.

 We present two algorithms to solve the problem. The first, Dijkstra’s algorithm,
assumes that the weights are always non-negative. The second, the Bellman-Ford
algorithm, involves no such hypothesis regarding the weights.

 Dijkstra’s Algorithm

Dijkstra’s algorithm is a generalization of breadth-first search. Here, too, we
proceed in “concentric circles.” The difference is that the radii of these circles
represent distance in terms of total weight rather than number of arcs. Thus, in
the example above, starting from the root 2, we first reach the vertices at
distance 1 (namely, 4), then those at distance 2 (namely, 3 and 5), then those
at distance 3 (namely, 1), and finally those at distance 5 (namely, 0). A
possible complication is that we may reach a vertex at a certain distance (for
example, vertex 5 with the arc 2 → 5), and then later find a shorter path by
taking different arcs (for example, 2 → 4 → 5). A queue no longer suffices
as it did in breadth-first search. Instead, we will use a priority queue (see
chapter 6). The priority queue will contain the vertices already found, ordered
by distance from the root. When a better path to a vertex is found, the

vertex is reinserted in the queue with a higher priority, that is, a shorter
distance2 .

 We now describe the code of Dijkstra’s algorithm. To implement the priority
queue, we assume a functor PriorityQueue, parametrized by a type t equipped with
a total order. (Such functors were presented in chapter 6.) Here, the type t will be
that of pairs (v,d), where v is a vertex and d is its distance from the root. The order
on these pairs is that obtained by comparing the distances. We introduce the
following module:

 module VertexDistance = struct
 type t = vertex * float
 let compare (_, d1) (_, d2) = Stdlib.compare d1 d2
 end

It only remains to apply the functor PriorityQueue to the module VertexDistance,
that is:

 module P = PriorityQueue(VertexDistance)

We assume here that the module P provides a function create to construct a new
priority queue, a function add to add an element, and a function extract_min that
removes and returns the smallest element for the order defined by the function
compare.

 We now arrive at the code of the algorithm itself. We write it as a function
dijkstra that takes as arguments a graph g, a root s, and a function f. The
function f will be applied to elements of g as their shortest distance to s is
determined, the vertex being passed to f as first argument, and its distance as second
argument. We begin by creating a hash table that will contain the vertices already
reached by the traversal.

 let rec dijkstra f g s =
 let visited = H.create () in

We also create a hash table, distance, and the priority queue, queue. The hash table will
contain the distance currently known for each vertex.

 let distance = H.create () in
 let queue = P.create () in

It is convenient to introduce a function add that will add a vertex to both these data
structures at the same time. We begin by applying it to the root s.

 let add v d = H.replace distance v d; P.add queue (v, d) in
 add s 0.;

We will see below why H.replace is preferred over H.add. We then continue with a loop
as long as the queue is not empty.

 while not (P.is_empty queue) do

We extract the first element of the queue, u, together with the distance to the root, du. If
the vertex u is already in visited, then we have already determined the distance
of s to u, and there is nothing more to be done.

 let (u, du) = P.extract_min queue in
 if not (H.mem visited u) then begin

This situation can indeed occur when a first path is found and another, shorter, path is
found subsequently. The latter then passes before the former in the priority queue.
When the longer path finally comes out of the queue, it should be ignored. If the
vertex is not in visited, however, that means that we have just found a shortest path
from s to u, which we indicate by adding u to the table visited and by applying the
visitor function f to u and du.

 H.add visited u ();
 f u du;

Next, we will examine all arcs emerging from u. For each arc u → v, the distance to v
obtained by following the corresponding arc is the sum of the distance du and the arc
weight, that is, weight u v. Several scenarios are possible for the vertex v. Either it is
the first time that it is reached, or it was already in distance. In the latter case, we
may have decreased the distance to v by passing through u. If so, it suffices to use
the function add to update the tables. We handle each successor v in the function
visit below:

 let visit v =
 let d = du +. weight g u v in
 if not (H.mem distance v) || d < H.find distance v then
 add v d

Program 101 — Shortest path (Dijkstra’s algorithm).

 module VertexDistance = struct
 type t = vertex * float
 let compare (_, d1) (_, d2) = Stdlib.compare d1 d2
 end
 module P = PriorityQueue(VertexDistance)

 let rec dijkstra f g s =
 let visited = H.create () in
 let distance = H.create () in
 let queue = P.create () in
 let add v d = H.replace distance v d; P.add queue (v, d) in
 add s 0.;
 while not (P.is_empty queue) do
 let (u, du) = P.extract_min queue in
 if not (H.mem visited u) then begin
 H.add visited u ();
 f u du;
 let visit v =
 let d = du +. weight g u v in
 if not (H.mem distance v) || d < H.find distance v then
 add v d
 in
 iter_succ visit g u
 end
 done

 It only remains to apply this function to all arcs emerging from u, which
concludes the body of the while loop.

 in
 iter_succ visit g u
 end
 done

Once we exit the while loop, all vertices that may be reached from s have been visited.
The complete code is given in program 101 above.

 Figure 13.5 shows the result of Dijkstra’s algorithm on the graph given in the
previous example, with 2 as root. The graph is drawn with the final distances
obtained for each vertex as exponents. In this example, all vertices have been reached
by the traversal. As for the breadth- and depth-first searches, this is not
always the case: only vertices for which there is a path from the root will be
reached.

 [image: PIC]

Figure 13.5: Result of Dijkstra’s algorithm.

 Complexity

Let us evaluate the cost of Dijkstra’s algorithm in the worst case. The priority queue
can contain up to E elements, because the algorithm visits each arc at most once, and
each arc can lead to the insertion of an element in the queue. Assuming that the
priority queue operations add and extract_min have logarithmic cost (as is the case
for the priority queues described in chapter 6), each operation on the queue will have
cost O(log E), that is, O(log N), since E ≤ N2. The total cost is therefore
O(E log N).

 Bellman-Ford Algorithm

We present here a second solution to the shortest path problem, this time without
assuming that the weights are non-negative. Omitting this assumption introduces a
subtlety. If the graph contains a cycle with strictly negative total weight,
and if this cycle can be reached from the root, then none of the vertices
that can be reached from the cycle will have a shortest path because we can
take this cycle as many times as we wish, reducing the total weight of the
path each time. The Bellman-Ford algorithm computes the shortest paths
from the root and detects any negative cycle that may be reached from the
root.

 This algorithm consists in repeating the following operation N times: Consider
each arc u → v of the graph and determine if taking it will reduce the distance
currently known between the source and v. The idea is that a shortest path
between s and v cannot contain more than N − 1 arcs, without which this path
would contain a cycle, which we could remove from the path if it is of non-negative

weight. This is why N iterations suffice.

 Let us now write the code of the Bellman-Ford algorithm. We begin by defining a
function iter_edge that traverses all the arcs of a graph g.

 let iter_edge f g =
 iter_vertex (fun u ->
 iter_succ (fun v -> f u v (weight g u v)) g u) g

For each arc u → v, the function iter_edge applies the function f to the vertices u and
v, and the distance of the arc u → v given by the function weight.

 The function bellman_ford takes a graph g and a root vertex s as arguments. It
begins by creating a hash table h containing the known distances for each
vertex.

 let bellman_ford g s =
 let h = H.create () in

We begin by initializing this table, giving s distance 0 and every other vertex an infinite
distance.

 iter_vertex (fun v -> H.add h v max_float) g;
 H.add h s 0.;

Program 102 — The Bellman-Ford algorithm.

 let iter_edge f g =
 iter_vertex (fun u ->
 iter_succ (fun v -> f u v (weight g u v)) g u) g

 exception NegativeCycle

 let bellman_ford g s =
 let h = H.create () in
 iter_vertex (fun v -> H.add h v max_float) g;
 H.add h s 0.;
 for i = 1 to nb_vertex g - 1 do
 iter_edge (fun u v w ->
 let d = H.find h u +. w in
 if d < H.find h v then H.replace h v d
) g
 done;
 iter_edge (fun u v w ->
 if H.find h u +. w < H.find h v then
 raise NegativeCycle
) g;
 h

 We use here the constant max_float to represent an infinite distance. Then we
repeat the following operation N − 1 times: We examine each arc, using a for loop
and the function iter_edge.

 for i = 1 to nb_vertex g - 1 do
 iter_edge (fun u v w ->

For each arc u → v, we compute the distance d from the root to v that is obtained by
taking this arc. If it is smaller than the best distance currently known, we record
it.

 let d = H.find h u +. w in
 if d < H.find h v then H.replace h v d

Once this for loop is complete, we redo the operation an N-th and final time. This time,
the shortest paths can only be improved by the presence of a negative cycle. We will
signal this case by raising an exception.

 done;
 iter_edge (fun u v w ->
 if H.find h u +. w < H.find h v then
 raise NegativeCycle

This completes the Bellman-Ford algorithm. We can return the table h that gives the
distance of each vertex to the source. This is what is done in program 102.

 [image: PIC]
 							
	 vertex 	 distance after i steps

							
							
	 0 	 ∞ 	 ∞ 	 2 	 -3 	 -3 	 -3
	 1 	 ∞ 	 1 	 -3 	 -3 	 -3 	 -3

	 2 	 ∞ 	 3 	 2 	 -2 	 -2 	 -2
	 3 	 ∞ 	 ∞ 	 -2 	 -2 	 -2 	 -2

	 4 	 ∞ 	 -4 	 -4 	 -4 	 -4 	 -4
	 5 	 0 	 0 	 0 	 0 	 0 	 0

							

 Figure 13.6: Illustration of the Bellman-Ford algorithm.

 We illustrate the Bellman-Ford algorithm with an example. Consider the graph of
figure 13.6, for which we seek to determine the distances from vertex 5. The table to
the right of the graph gives the distance found for each vertex after each step.
Initially, all the vertices are at an infinite distance, except the root 5. At each step,
we assume the vertices are traversed in the order of their numbering. We observe,
for example, that the distance to vertex 2 initially takes the value 3 (the
arc 5 → 2), then the value 2 (passing through vertex 1), and finally the
value -2 (passing through the vertices 4 and 1). After that, it no longer
varies. More generally, we observe here that none of the distances is improved
during the last two steps of the algorithm. In particular, there is no negative
cycle.

 Complexity

The cost of the Bellman-Ford algorithm in the worst case is easy to evaluate. We
perform exactly N passes, and each pass examines each of the E arcs once and only
once. The complexity is therefore O(EN), that is, O(N3) in the worst case. In
practice, however, we can significantly improve performance by observing that many
arcs are examined unnecessarily when the distance from the root to the starting
vertex has not been modified. Another simple optimization consists in stopping once a
pass has not improved any of the distances. The complexity in the worst case remains,
nevertheless, the same.

 13.4 Minimum spanning tree

We consider here an undirected graph whose arcs are labeled with weights. We also
assume that the graph is connected, that is, that each pair of vertices is linked by a
path. A spanning tree is a subset of the arcs, that does not contain a cycle, and that
links all vertices together. It is easy to convince ourselves that such a tree exists. For
example, a depth-first search beginning at an arbitrary vertex will determine
such a tree: it is formed by all the arcs that led to the discovery of a new
vertex.

 We seek then to solve the problem of finding a spanning tree whose total
weight is minimal. We present here a solution known as Kruskal’s algorithm.
This algorithm consists in traversing the arcs in increasing order of weight.
For each arc u − v, we determine if a cycle is created by adding the arc to
the set of arcs already selected to form the spanning tree. If this is so, we
ignore the arc. Otherwise, we select it. Once all the arcs have been examined,
the set of selected arcs form a minimum spanning tree (see exercises 13.24
and 13.25).

 To implement this algorithm, we need to find an efficient means to determine if
selecting a new arc introduces a cycle among the already selected arcs. Luckily, there
is a simple solution to this problem, in the form of the structure of disjoint sets
studied in chapter 8. Indeed, it suffices to construct an initial structure in which each
vertex constitutes a class by itself. For any selected arc u − v, we merge the
classes of u and v. This materializes the fact that there now exists a path
between every pair of vertices in the new class. To test if an arc introduces a
cycle, it suffices therefore to test whether its extremities belong to the same
class.

 Let us now write the code for Kruskal’s algorithm, as a function spanning_tree
that takes a graph as argument and returns a minimum spanning tree in the form of a
list of arcs. We take as given a module UF for the structure of disjoint sets (see
chapter 8), with the following signature:

 module UF: sig
 val create : vertex list -> t
 val find : t -> vertex -> vertex
 val union : t -> vertex -> vertex -> unit
 end

We assume there is a function vertices that returns the list of vertices of a graph. Such
a function is easy to obtain from iter_vertex. Similarly, we assume there is a
function edges that returns the list of all arcs of a graph, each arc being a triple
(x,y,w), where w is the weight of the arc x − y. Here, too, this function is easy to
obtain from iter_edge and weight.

 The code of Kruskal’s algorithm begins by creating a union-find structure based
on the list of vertices of the graph:

 let spanning_tree g =
 let uf = UF.create (vertices g) in

Next, we sort the list of arcs of the graph in increasing order of weight, using the library
function List.sort. The comparison used here is that of weights, with the usual
order on floating-point numbers, that is, Stdlib.compare.

 let compare (_,_,w1) (_,_,w2) = Stdlib.compare w1 w2 in
 let edges = List.sort compare (edges g) in

The list of arcs selected to form the spanning tree is stored in a local reference st.

 let st = ref [] in

We then write a function cover that examines an arc (u,v,w) and determines if it should
be selected. For this, we compare the classes of vertices u and v using the function
UF.find. If they are different, we add the arc to the list st and merge the two classes,
using the function UF.union.

 let cover ((u, v, w) as e) =
 if UF.find uf u <> UF.find uf v then begin
 UF.union uf u v;
 st := e :: !st
 end

Finally, it only remains to examine each arc of the list edges using this function, and
then return the resulting list.

 in
 List.iter cover edges;
 !st

The code of Kruskal’s algorithm is given in program 103.

Program 103 — Kruskal’s algorithm.

 let spanning_tree g =
 let uf = UF.create (vertices g) in
 let compare (_,_,w1) (_,_,w2) = Stdlib.compare w1 w2 in
 let edges = List.sort compare (edges g) in
 let st = ref [] in
 let cover ((u, v, w) as e) =
 if UF.find uf u <> UF.find uf v then begin
 UF.union uf u v;
 st := e :: !st
 end
 in
 List.iter cover edges;
 !st

 We illustrate Kruskal’s algorithm with an example. Consider the graph on the top
left of figure 13.7. Arcs are considered in increasing order of weight, as presented in
the table on the right in the figure. For each arc, we indicate if it is selected (column
“added”) and the resulting partition in the union-find structure. The spanning tree
obtained in the end is illustrated at the bottom left of the figure. Its total
weight is -2. It is important to note that arcs of the same weight may be
considered in any order. Thus, we have examined here the arc 0 − 1 before the
arc 1 − 4, but we could equally have done it the other way around. The spanning
tree would have been different, but its total weight would have been the
same.

 	 [image: PIC]

 [image: PIC]

 	 				
	 weight 	 arc 	 added 	 vertex partition

				
				
	 	 	 	 {0},{1},{2},{3},{4},{5}

	 -4 	 4 − 5 	 yes 	 {0},{1},{2},{3},{4,5}

	 -1 	 0 − 3 	 yes 	 {0,3},{1},{2},{4,5}

	 0 	 0 − 4 	 yes 	 {0,3,4,5},{1},{2}

	 1 	 0 − 1 	 yes 	 {0,1,3,4,5},{2}

	 1 	 1 − 4 	 no 	 {0,1,3,4,5},{2}

	 2 	 1 − 2 	 yes 	 {0,1,2,3,4,5}

	 3 	 1 − 5 	 no 	 {0,1,2,3,4,5}

	 4 	 3 − 4 	 no 	 {0,1,2,3,4,5}

	 5 	 2 − 5 	 no 	 {0,1,2,3,4,5}

				

 Figure 13.7: Illustration of Kruskal’s algorithm.

 A number of variations and optimizations are possible. Exercise 13.26 thus
proposes interrupting the arc traversal once we have selected N − 1 arcs.
Similarly, exercise 13.27 proposes using a priority queue rather than a sorting
algorithm. Be that as it may, the key idea remains the use of the disjoint-set data
structure.

 Complexity

The cost of Kruskal’s algorithm is split between that of sorting the set E of arcs and
that of examining each arc. The first cost is O(E log E) in the worst case, if we use a
sorting algorithm of optimal complexity (see chapter 12). The second cost is O(E) if
we consider that the operations on the union-find structure are constant
time (see chapter 8). The complexity of Kruskal’s algorithm is therefore
O(E log E).

 13.5 Exercises

 Breadth-first Search

13.1 Modify the function iter_bfs to compute the distance, in number of arcs,
between the root and each vertex discovered by the traversal. A simple approach
consists in associating this distance with each vertex in the table visited. Return
this table as the result of the function iter_bfs.

13.2 Modify the function iter_bfs so as to return a shortest path between the root
and the vertex, for each vertex discovered by the traversal. For each vertex
discovered, store the vertex that led to it, for instance, in a hash table. We
can then recover the path from the vertex discovered to the root “by going
backwards.”

13.3 Write a function that performs a breadth-first traversal of the nodes of a tree
by imitating the breadth-first search of a graph.

13.4 Implement a cursor for binary trees (see section 9.3 Cursors) corresponding to
breadth-first search.

13.5 Use the previous exercise to write a program that colors a graph with k colors
without using the same color for two vertices linked by an arc. Proceed by
backtracking, using the persistent nature of the cursor to backtrack. If no color
assignment is possible, raise the exception Not_found.

 Depth-first Search

13.6 Redo exercise 13.2 for depth-first search.

13.7 In many applications of depth-first search, we wish to traverse all the vertices
of the graph and not merely those that can be reached from a vertex s. Using
the function iter_vertex that traverses all vertices of the graph, modify
the function iter_dfs so that every vertex of the graph is visited exactly
once.

13.8 For an undirected graph, a connected component is a maximal set of vertices
pairwise linked by a path. Explain how the variant of depth-first search proposed in

the previous exercise determines the connected components of an undirected graph.
Write the corresponding code.

13.9 Rewrite the function iter_dfs using a while loop rather than a recursive
function. Hint: Use a stack containing the vertices from which the depth-first search is
to be performed. The code should resemble that of a breadth-first search, with the
stack replacing the queue. There is, however, a difference in the treatment of the
vertices already visited. Show that the vertices are not necessarily visited in the same
order as in the recursive version.

13.10 Depth-first search can be modified to detect the presence of a cycle in the
graph. When the function iter_dfs comes across an already visited vertex, we do not
know a priori if we have found a cycle. It could be that the vertex has already been
reached by a parallel path. Instead of two states (reached/not reached), the
marking of the vertices should therefore be modified to use three: reached/being
visited/visited. Write a function has_cycle that determines the presence of a cycle in
a graph. Modify the function so that it returns the list of vertices of the cycle found, if
any.

13.11 Let G be a directed graph that does not contain a cycle. We call such graphs
directed acyclic graphs (DAG). A topological sort of G is a traversal of its vertices
compatible with the arcs, that is, where a vertex x is visited before a vertex y if there
is an arc x → y. Modify program 100 so that it performs a topological sort, in the
form of a function with the following type:

 topological_sort: (vertex -> unit) -> graph -> unit

Use a stack to which a vertex v is added once the call to visit v terminates. Once the
depth-first search is completed, apply the function passed as argument to all the
elements of the stack.

13.12 For a directed graph, a strongly connected component is any maximal set of

vertices pairwise linked by a path. Kosaraju-Sharir’s algorithm computes the set of
strongly connected components of a graph G, in time O(N + E), using two depth-first
searches. It proceeds as follows:

 	We begin by constructing the transposition GR of the graph G, that is,
 the graph having the same vertices as G but with the arcs reversed (see
 exercise 7.1).

 	Next, we traverse the vertices of GR according to a topological sort (see
 previous exercise). For each vertex v, we perform a depth-first search in G,
 starting from v, if v is not already part of a strongly connected component.
 All the vertices that are reached by this search are then placed in a new
 component.

Write a function scc: graph -> vertex list list that uses this algorithm to compute the
strongly connected components of a graph.

13.13 We can use depth-first search to construct a perfect maze in an n×m grid. A
perfect maze is one in which there is one and only one path between any two cells. We
begin by considering the graph in which all cells of the grid are linked to their
neighbors:

 [image: PIC]

We then perform a depth-first search beginning from an arbitrary vertex (for example,
the top left one). When we traverse the successors of a vertex, we do so in random
order. Once the traversal is completed, the maze is obtained by declaring that we can
pass from one vertex to another if the corresponding arc was taken during the

depth-first search. Exercise 8.7 proposes another way of constructing a perfect
maze.

13.14 We consider here the problem of playing peg solitaire. This is a
game of patience consisting of 32 pegs on a board with 33 holes. Initially,
the pegs occupy all the holes, except the one at the center of the board.

 [image: PIC]

A peg can be removed from the board by having one of the four adjacent pegs jump over
it, provided that the hole where the peg is to land is empty. Here are two possible
moves starting from the initial position.

 [image: PIC] [image: PIC] [image: PIC] [image: PIC]

The aim of the game is to arrive at a situation in which there is only one peg remaining,
which occupies the central position.

 [image: PIC]

We can easily solve this problem using depth-first search on a graph in which each vertex
represents a board configuration.

 	A board configuration can be represented by an integer whose (i+7j)-th bit
 indicates the presence of a peg at position (i,j) for 0 ≤ i,j < 7. Assuming
 a 64-bit machine, we let type state = int. Define two constants, initial
 and final, representing respectively the initial and final configurations of
 the game.

 	
 A move can be represented by two configurations, the first one indicating the
 two pegs involved (the one that is moved and the one jumped over), and the
 second indicating the final position of the peg that was moved. For example, the
 first move above is represented as follows:

 [image: PIC] [image: PIC]

 Let type move = state * state. Construct a list containing the 88 possible moves
 (independent of what the configuration may be).

 	Write a function possible_move to test if a move is possible in a given
 configuration and a function move that performs the move, if one is possible.
 Derive from it a function iter_succ that traverses all possible moves in a given
 configuration.

 	Modify the function iter_dfs of program 100 to interrupt the traversal once
 the configuration final is reached and return the path found, as in
 exercise 13.6 above.

 	Finally, write a function print that displays a configuration on the screen,
 and use it to display the solution found, in the form of 32 successive
 configurations.

Note: The problem of peg solitaire is one of the problems discussed in the book by
Cousineau and Mauny The Functional Approach to Programming [9, page
216].

13.15 In the preceding exercise, depth-first search was a good solution because all
the paths were of the same length. When this is not the case, and if we seek a path
of minimal length, it is necessary to turn to breadth-first search instead.
However, this may require a lot of memory. In this case, Iterative deepening
search (IDS) offers a solution that has low memory requirements, but which is
still able to find a path of minimal length. The idea is to execute successive
depth-first searches, limited to maximal depths that are larger and larger.

 	
 Explain why we can no longer memoize the vertices already visited during the
 depth-first searches. Consider the following graph and assume that we traverse
 it beginning at vertex 0.

 [image: PIC]

 	Implement iterative deepening search as a function
 ids: (vertex -> bool) -> graph -> vertex -> unit that stops once it reaches a
 vertex that satisfies the function passed as argument.

 	In case of the traversal of a complete binary tree starting at the root, show that
 iterative deepening search is no costlier than breadth-first and depth-first
 searches.

 Shortest Paths

13.16 Generalize the function dijkstra for distances of an arbitrary type, for
example in the form of a functor.

13.17 Redo exercise 13.2 for Dijkstra’s algorithm. Note: When a path is improved,
the corresponding table must be updated.

13.18 Redo the steps of the Bellman-Ford algorithm, illustrated in figure 13.6,
assuming that the weight of the arc 0 → 4 is -3.

13.19 Warshall’s algorithm (exercice 7.6) can be easily adapted to compute all
shortest paths in a graph. This is the Floyd-Warshall algorithm. Let V = {0,…,N − 1}.
Initially, the distance di,j between vertices i and j equals the weight of the
corresponding arc, if there is one, and is otherwise ∞. The algorithm then
computes the minimal distance di,j from i to j in O(N3) time as follows:

 	 for k from 0 to N − 1

	 for i from 0 to N − 1

	 for j from 0 to N − 1

	 di,j ← min(di,j,di,k + dk,j)

Write a function that implements this algorithm. How can we treat the general case,
when vertices are not necessarily the integers 0,…,N − 1?

13.20 Although Dijkstra’s algorithm allows us to find a path of minimal cost, it
may visit a number of vertices in the graph unnecessarily. Suppose we use Dijkstra’s
algorithm to find the shortest path (in terms of distance) between two cities on a road
network. The algorithm will explore the network in larger and larger concentric circles
centered around the starting city, until it reaches the destination city. If we take the
example of the French road network, and if we seek the shortest path between Paris
and Nice, it is likely that almost all the cities of France will have been visited before
Nice is reached.

 The A⋆ algorithm allows us to solve this problem through a finer control of the
order in which vertices are visited. This control takes the form of a heuristic that
estimates the distance remaining between a vertex and the destination. The
A⋆ algorithm is identical to Dijkstra’s algorithm, except that the queue no longer
uses distance to the source as priority, but rather the sum of this distance and the
value given by the heuristic. If the heuristic is admissible, that is, if it never
overestimates the remaining distance, then the A⋆ algorithm will find the shortest
path. An admissible heuristic for the road-network example is the distance
as a crow flies. If the heuristic always returns zero, we recover Dijkstra’s
algorithm.

 Let us consider the example of an infinite grid in which each point is linked to its
eight direct neighbors.

 [image: PIC]

The cost here is the Euclidean distance, that is, four neighbors are at distance 1, and the

other four at distance [image: √2-]. We can therefore use as heuristic the Euclidean distance
between the point in question (x,y) and the destination point (xd,yd), that is,
[image: ∘ --------2---------2- (x − xd) + (y − yd)].

 [image: PIC]

 The figure above shows the result of the A⋆ algorithm finding a path from point
(0,0), labelled 1, to point (5,10), labelled 103, the black nodes being excluded from
the grid. As we see, only 103 nodes were visited. Dijkstra’s algorithm would also have
found the shortest path, but the total number of visited nodes would have been much
larger (over 800).

 Assume we are given a function heuristic: graph -> vertex -> vertex -> float, and
implement the A⋆ algorithm by modifying the code of program 101. Apply this to
the preceding example and verify that we do indeed arrive at the result of the figure
above.

13.21 “French solitaire” differs from that of exercise 13.14, called “English solitaire,”
by virtue of four additional pegs present in positions (1,1), (5,1), (1,5), and (5,5).

 [image: PIC]

French solitaire is, surprisingly, much harder to solve than English solitaire.
Furthermore, there exist combinations of starting/final configurations that
do not admit of a solution, for example, the configuration in which the
central peg is removed at the start and the last peg must be placed at the

center3 .
We will accordingly loosen the conditions on the positions of the initial and final
pegs.

 One approach to solving French solitaire consists in using the A⋆ algorithm
presented in the preceding exercise. Modify the code of exercise 13.14 as follows:

 	Add the 8 new moves linked to the 4 new pegs to the the list of all possible
 moves.

 	Write a heuristic function that evaluates how “compactly” pegs are laid out
 on the board. Given the representation of the grid as an integer, we may
 compute a rough approximation by counting the number of bit inversions,
 that is, the number of times that we pass from a 1 bit to a 0 bit, and vice
 versa.

 	
 Finally, replace depth-first search with the A⋆algorithm. Here is an
 example of initial and final configurations for which there exists a solution.

 [image: PIC] …
 [image: PIC]

As in exercise 13.14, present the solution by displaying all successive configurations of the
board.

13.22 It is possible to combine the ideas of iterative deepening search (exercise 13.15)
and the A⋆ algorithm (exercise 13.20), to obtain an algorithm known as
IDA⋆ (iterative deepening A⋆). The idea is as follows: At each iteration, we execute a
depth-first search of all the states where the heuristic does not exceed a given
threshold, without seeking to memoize already visited states. Once the search is over,
we take as the new threshold the smallest value of the heuristic obtained during the
previous search. In other words, each iteration pushes the threshold of the heuristic a
little further until a path is found or no vertex takes a value greater than the
threshold. To initiate the process, it suffices to take as initial threshold the heuristic
for the root vertex. As with the A⋆algorithm, an admissible heuristic, that is, one
that never overestimates the remaining distance, guarantees that IDA⋆ will
find a shortest path. The IDA⋆ algorithm was discovered by Korf [17] in
1985.

 Assume we are given a function heuristic: graph -> vertex -> vertex -> float, and
modify the code of exercise 13.15 to implement the IDA⋆algorithm. The following
exercise proposes an application of this algorithm.

13.23 A good application of the IDA⋆ algorithm proposed in the preceding exercise
is the game of fifteen. The game consists in a 4 × 4 grid containing 15 tiles, numbered
from 1 to 15. The sixteenth position is empty, and we may place in it one of
the adjacent tiles. Initially, the tiles are scrambled, for example as follows:

 [image: PIC]

The aim is to place the tiles in increasing
order4 .

 [image: PIC]

To solve the game, we will use the following heuristic: For each tile, we compute the
distance that separates it from its final position, in terms of number of rows and
columns. This is called the Manhattan distance. In the preceding example, tile 7 is
initially at distance 4 from its final position because it has to be moved up by one
row, and right by three columns. For a given configuration, we then take the sum of
the Manhattan distances of the fifteen tiles, which is a lower bound on the number of
moves that remain to be done. This is an admissible heuristic, and we will thus be
able to find a smallest solution. Solve the game using the IDA⋆ algorithm. The
example of the game of fifteen is presented in the article by Korf that introduced the
IDA⋆ algorithm.

 Minimum Spanning Tree

13.24 Show that the set of arcs returned by Kruskal’s algorithm does indeed form a
tree.

13.25 Show that the result of Kruskal’s algorithm is indeed a minimum spanning
tree.

13.26 Improve the code of program 103 so that it stops as soon as N − 1 arcs have
been added to the spanning tree.

13.27 Reimplement program 103 using a priority queue rather than a sorting
algorithm. How does it differ from the previous exercise?

 Bibliography

 [1] Stephen Adams. Functional pearls: Efficient sets – a balancing
 act. Journal of Functional Programming, 3(4):553–561, October 1993.
 Expanded version available as Technical Report CSTR 92-10, University of
 Southampton.

 [2] G. M. Adel’son-Vel’ski[image: ˘ı] and E. M. Landis. An algorithm for the
 organization of information. Soviet Mathematics–Doklady, 3(5):1259–1263,
 September 1962.

 [3] Alfred V. Aho, John E. Hopcroft, and Jeffrey Ullman. Data Structures

 and Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston,
 MA, USA, 1983.

 [4] Henry G. Baker. Shallow binding makes functional arrays fast.
 SIGPLAN Not., 26(8):145–147, 1991.

 [5] Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass.
 Ropes: An alternative to strings. Software - Practice and Experience,
 25(12):1315–1330, 1995.

 [6] John Conway. Doomsday rule.
http://en.wikipedia.org/wiki/Doomsday_algorithm.

 [7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
 Clifford Stein. Introduction to Algorithms, Second Edition. The MIT Press,
 September 2001.

 [8] Guy Cousineau and Michel Mauny. Approche fonctionnelle de la
 programmation. Ediscience International, 1995.

 [9] Guy Cousineau and Michel Mauny. The Functional Approach to
 Programming. Cambridge University Press, 1998. Traduction anglaise
 de [8].

 [10] Jeremy Gibbons and Oege de Moor, editors. The Fun of Programming.
 Cornerstones in Computing. Palgrave, 2003.

 [11] Jr. Henry G. Baker. Shallow binding in Lisp 1.5. Commun. ACM,
 21(7):565–569, 1978.

 [12] Gérard Huet. The Zipper. Journal of Functional Programming,
 7(5):549–554, September 1997.

 [13] D. E. Knuth. The Art of Computer Programming. Volume 1:
 Fundamental Algorithms. Addison-Wesley, 1968.

 [14] D. E. Knuth. The Art of Computer Programming. Volume 2:
 Seminumerical Algorithms. Addison-Wesley, 1969.

 [15] D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting
 and Searching. Addison-Wesley, 1973.

 [16] Donald E. Knuth. The Art of Computer Programming, volume 4A:

 Combinatorial Algorithms, Part 1. Addison-Wesley Professional, 1st edition,
 2011.

 [17] Richard E. Korf. Iterative-deepening-A*: An optimal admissible tree
 search. In IJCAI, pages 1034–1036, 1985.

 [18] Donald R. Morrison. PATRICIA—Practical Algorithm To Retrieve
 Information Coded in Alphanumeric. J. ACM, 15(4):514–534, 1968.

 [19] Chris Okasaki. Purely Functional Data Structures. Cambridge
 University Press, 1998.

 [20] Chris Okasaki and Andrew Gill. Fast Mergeable Integer Maps. In
 Workshop on ML, pages 77–86, September 1998.

 [21] Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition.
 Addison-Wesley, 2011.

 [22] Daniel Dominic Sleator and Robert Endre Tarjan. Self Adjusting
 Heaps. SIAM J. Comput., 15(1):52–69, February 1986.

 [23] Robert Endre Tarjan. Efficiency of a Good But Not Linear Set Union
 Algorithm. J. ACM, 22(2):215–225, 1975.

 [24] Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional, July
 2002.

 Index

 Symbols _ , 14, 132

:=, 65

 -

 – =, 247

 () , 90

||, 32

!, 67

 && , 30

 <> , 244

 = , 242

 == , 245

O (big O notation), 257

A accumulator, 177

algorithm

 - Bellman-Ford, 416

 - Dijkstra, 414

 - Euclid, 366

 - extended Euclidean, 372

 - Floyd-Warshall, 349, 441

 - Kosaraju-Sharir, 433

 - Kruskal, 420

aliasing, 111

 and , 91

appel

 - terminal, 392

append (List), 230

arc, 336

arithmetic, 364

array

 - persistent, 277

 - resizeable, 260, 325

Array (OCaml library)

 - init, 123

 - iteri, 266, 344

 - length, 109

 - make, 99

 - make_matrix, 114

 - set, 102

 - sort, 129

array, 94, 106, 259

 asr , 22

 Assert_failure , 151

 assert , 150

A⋆, 443, 448

AVL tree, 283

AVL, 274

B backtracking, 214, 216

Baker, Henry G., 278

balancing, 273, 286

 begin , 96

Bellman-Ford algorithm, 417

Bézout, 371

BFS, 409

big O, notation, 256

big-endian, 305

binary search, 220

binomial coefficient, 382

bit vector, 263

bit

 - low order, set, 267

 - lowest-order set, 308

 - operations on bits, 19

block, 103, 241

bool (type), 27

C call

 - function, 6

 - stack, 154

 - tail, 155, 166

cardioid, 79

char (type), 33

transitive closure, 348

closure, 250

command line, 9

compare (Stdlib), 288

compilation unit, 182

compilation

 - separate, 185

compilation, 179

complexity

 - amortized, 258, 261, 296, 321, 328

complexity, 255

component

 - connected, 426

 - strongly connected, 431

constructor, 199

Cousineau, Guy, 437

Curry, Haskell, 133

cursor, 360, 425

cycle

 - negative, 418

cycle, 337

cycles

 - detection of, 427

D DAG, 211, 430

dequeue, 329

dereference, 66

DFS, 411

dictionary, 292, 297, 301, 310

Dijkstra

 - algorithm, 415

 - Dutch national flag, 404

disjoint sets, 353

divide and conquer, 398

dynamic programming, 378

E edge

 - multiple edges, 351

edge, 335

encapsulation, 189, 193

endianness, 306

eprintf (Printf), 39

equality

 - physical, 246

 - structural, 243

Eratosthenes, 92

Euclid, 365

evaluation, order, 117

exception, 142f, 149

execution time, 251

 exit , 170

 exn , 240

exponentiation by squaring, 373

F false , 29

Fibonacci, 276, 280, 291, 369, 377, 380

file, 146

filter (List), 233

float (type), 69

float (Random), 61

floating-point number, 64

floating-point numbers, 49

Floyd-Warshall algorithm, 350, 442

fold_right (List), 174

 for , 48, 78

function

 - anonymous, 120, 140

 - call, 5

 - declaration, 87

 - first class, 118

 - recursive, 88

 function , 160

functor, 190, 192

G game of fifteen, 450

garbage collector, 249

GC, 248

gcd, 367

Gill, Andrew, 313

graph

 - adjacency lists, 347

 - adjacency matrix, 341

 - dense, 345

 - strongly connected components, 432

 - topological sort, 429

graph, 333, 407

 Graphics , 81, 84

H Hanoi, tower of, 219

hash table, 295

hash-consing, 314, 385

heap, 323f, 326

heapsort, 332

heuristic, 444

Huet, Gérard, 361

I IDA⋆, 446

IDS, 440, 447

 ignore , 82

immutable, 157

 in_channel , 144

 include , 238

 infinity , 72

init (Array), 121

input/output, 141

int (Random), 222

int (type), 13

interface, 181, 184

iter (List), 161

iterator, 168

iteri (Array), 264, 342

K Knuth shuffle, 225, 405

Korf, Richard E., 449

Kosaraju-Sharir, algorithm, 434

Kruskal’s algorithm, 421

L label, 339

Lamé, 368

 land , 23

leap (year), 3

length (Array), 107

 let , 4, 7, 47, 76

library

 - Array, 98, 101, 108, 113, 122, 128, 265, 343

 - List, 162, 172, 175, 228, 231, 234, 358, 395, 423

 - Printf, 40

 - Queue, 319

 - Random, 51, 62, 223

 - Seq, 363

 - Stdlib, 12, 289

 - Unix, 253

 - Weak, 389

linking, 183

Lisp, 386

list

 - adjacency, 346

 - linked, 317

List (OCaml library)

 - append, 232

 - filter, 235

 - fold_right, 176

 - iter, 163

 - map, 173

 - mem, 229

 - rev_append, 359, 396

 - sort, 424

list, 152, 156

little-endian, 304

 lnot , 26

local variable, 46

Logo, programming language, 186

loop

 - body, 60

 - for, 58, 77

 - index, 59

 - while, 104

 lor , 24

 lsl , 20

 lsr , 21

 lxor , 25

M make (Array), 97

make_matrix (Array), 112

Mandelbrot set, 86

Manhattan distance, 451

map (List), 171

marshalling, 147f

matching

 - pattern, 202

matrix

 - adjacency, 340

matrix, 110, 236f, 375

Mauny, Michel, 438

 max_int , 16, 18

maze, 355, 435

McCarthy, John, 167

mem (List), 227

memoization, 379

Michie, Donald, 381

 min_int , 15, 17

modular arithmetic, 374

module, 180

Monte-Carlo, 52

Morrison, Donald R., 311

mutable, 136

N n-tuple, 116

 nan , 73

 neg_infinity , 71

 not , 31

ntz, number of trailing zeros, 268

O Okasaki, Chris, 312

opam, 1

 open , 80

open, 83

order

 - evaluation, 139

 - higher, 119, 124

 out_channel , 145

P pair, 115, 130

partial application, 134

Pascal, triangle, 383

Pascal’s triangle, 384

path

 - in a graph, 338

 - shortest, 412

Patricia tree, 303

pattern matching

 - or patterns, 204

pattern matching, 8, 126, 153, 158f, 197, 201, 203, 452

pattern

 - wildcard, 131

pattern, 125

persistence, 215

π, 53

polymorphism, 169, 178

pop, population count, 269, 279

 print_char , 36

 print_float , 38

 print_int , 37

 print_string , 35

Printf (OCaml library)

 - eprintf, 41

 private , 194

Q queens, problem of N, 213

queue

 - double-ended, 330

 - persistent, 320

 - priority, 316, 322

Queue (OCaml library), 318

queue, 315

R Random (OCaml library)

 - float, 63

 - int, 224

Random (OCaml library), 50

record, 135

 ref , 45, 138

reference, 44, 57, 137

rev_append (List), 357, 394

rope, 271

rosace, 217

S search

 - binary, in an array, 221

 - breadth-first, 408

 - depth-first, 410

 - iterative deepening, 439

 - shortest path, 413

Seq (OCaml library), 362

sequence

 - expression, 43, 68

set, Mandelbrot, 85

set (Array), 100

sharing, 208, 210

shuffle, 226, 406

side effects, 42, 54

Sierpiński, Wacław, 239

sieve of Eratosthenes, 93

smart constructor, 209, 285, 287, 309

solitaire

 - French, 445

solitaire, 436

sort

 - heap, 331, 400

 - insertion, 391

 - merge, 399

 - quick, 397

 - topological, 428

sort (Array), 127

sort (List), 422

sorting

 - optimal complexity, 402

sorting, 390

stack

 - call, 164

 - overflow, 165

Stdlib (OCaml library)

 - compare, 290

Stdlib (OCaml library), 11

string (type), 34

string, 272

Swift, Jonathan, 307

 Sys , 10

T tail recursion, 393

Tarjan, Robert Endre, 354

text editor, 275

The Art of Computer Programming, 281, 370, 376, 401, 403

times (Unix), 252

tree

 - 2-3-4, 294

 - AVL, 284

 - binary search, 282

 - binary, 207, 212

 - Patricia, 302

 - prefix, 298, 300

 - red-black, 293

 - self-balancing, 327

 - spanning, 419

tree, 206

trie, 299

 true , 28

 truncate , 70

TryOCaml, 2

type

 - abstract, 187, 191

 - algebraic, 196, 200

 - enumerated, 198

 - private, 188, 195

 - variable, 205

U union-find, 352

 unit , 89

Unix (OCaml library)

 - times, 254

V variable

 - global, 74

 - local, 55, 75

 - scope, 56

vector

 - bit, 262

vertex, 334

von Koch, snowflake, 218

W Warren, Henry S., 270

weak reference, 387

Weak (OCaml library), 388

 while , 95, 105

Z zipper, 356

 1The symbol > designates the terminal prompt from which commands are launched.

 1One bit is used by OCaml’s automatic memory management system; see section 3.2 Runtime
 Model in chapter 3.

 2A resizeable array could also be used here. This notion will be presented in chapter 4.

 3The program seq is a Unix tool that displays all the integers from 1 to n, one integer per
 line. It is the simplest way to obtain exactly n lines of text.

 4Chapter 9 will present another type of iterator which can solve this problem.

 5Here, we use the French naming system of musical notes, which is used in many other
 countries as well.

 1Another solution, notably adopted in the hash tables of the OCaml standard library,
 consists is using an array whose size n is a power of 2. The modulo operation can then be
 implemented with land (n-1), which has the added advantage of being much cheaper than a
 division.

 2This comes from the word retrieval.

 3The terms little-endian and big-endian were borrowed from Jonathan Swift’s Gulliver’s
 Travels.

 1The term cons stands for allocation in the language Lisp, where the technique of
 hash-consing was first introduced.

 1For a detailed proof of the correctness of breadth-first search, consult [7, chap. 23].

 2Another solution would be to use a priority queue structure where it is possible to modify
 the priority of an element already in the queue. Such structures exist but are complex to implement
 and, although asymptotically better, do not necessarily bring any practical gains. The solution
 presented here is a good compromise.

 3It is only recently that we have rediscovered how French solitaire was played in the 18th
 century: Initially, all cells contain a peg, and the player removes a peg of her choice. This
 peg can then be placed back on the board at any moment during the game. With these
 rules, there is then a solution in which the central peg is taken out at the start and the
 final peg is placed in the center. Here, however, we maintain the same rules as in English
 solitaire.

 4Not all initial configurations admit a solution.

OEBPS/fig/heap_1_add_1-mps-.png
1<3

OEBPS/fig/rope_example-mps-.png
App

/N

Str "a ver" App

N

Str "y long" Str" string"

OEBPS/fig/damier1-mps-.png

OEBPS/fig/chess2-mps-.png
g

g

OEBPS/fig/solution8-mps-.png
g

g

g

g

OEBPS/fig/zipper_list_expl-mps-.png
Af—{el—c] | [o}—{e}—{F—(c.

OEBPS/fig/bc-book-.png

OEBPS/fig/tree_ABCDEF_rotG-mps-.png
~
~
D/

|_C
B\

OEBPS/fig/zipper_list-mps-.png

OEBPS/fig/fig_31_c-mps-.png
1
| B, e B e BRI T

OEBPS/fig/graph1dl-mps-.png

OEBPS/fig/quad_tree-mps-.png

OEBPS/fig/pt_naive2-mps-.png

OEBPS/fig/solitaire_b-mps-.png

OEBPS/fig/fractale1-mps-.png

OEBPS/fig/dijkstra2-mps-.png

OEBPS/fig/uf2-mps-.png
OO0

OEBPS/fig/heap_1-mps-.png

OEBPS/fig/zipper_tree_expl-mps-.png

OEBPS/fig/pt_exact-mps-.png

OEBPS/fig/bad_tree_ABDEF-mps-.png

OEBPS/fig/parray3-mps-.png
TR [ITaTe T e]

Pda2

O

P40

OEBPS/fig/length_123-mps-.png
3|0

OEBPS/fig/hanoi-mps-.png

OEBPS/fig/fixed-svgs/heapsort-iteration-situation-2.png
0

heap

sorted

OEBPS/fig/dfs2-mps-.png

OEBPS/fig/good_matrix-mps-.png

OEBPS/fig/heap_1_remove-mps-.png

OEBPS/fig/fixed-svgs/insertion-sort-state.png
acc

OEBPS/perfgraph-source/sorting-sorted-arrays-.png
53 -
£t 5 o § &
+ + = = £ £ 'g - -l
M 2 3 3 3 3 & & 2 2 g
2210.00 1.98 206 207 001 001 001 0.00 001 0.01
25 | 0.00 0.02 0.02 0.01 0.01 0.02 0.02
26 1 0.00 - - - 0.04 0.04 0.02 0.02 0.04 0.04
27 1 0.00 - - - 0.07 0.07 0.05 0.04 0.10 0.08
28 1 0.00 - - - 0.16 0.15 0.10 0.08 0.21 0.16
29 | 0.01 - - - 0.32 0.33 0.21 0.18 0.45 0.37
210 1 0.02 - - - 0.71 0.67 043 0.37 094 0.73
211 1 0.05 - - - 147 138 090 0.76 1.98 153
2121011 - - - 311 298 194 1.65 4.28 3.34
43 insertion ——
4r quicksort (i?w:iecr‘iisc?r:; i
quicksort (log stack) —a—
35 quicksort (rand) —— 1
mergesort —a— 3
i 3L mergesort (swap)
2 Array.stable_sort (OCaml)
g 25 Arraysort??)%%i?\g
5 2
; 15
1
05

279 2710 2711
N/1000

2712

OEBPS/fig/kruskal_2-mps-.png

OEBPS/fig/solitaire_francais_initial-mps-.png

OEBPS/fig/damier3-mps-.png

OEBPS/fig/coup_dst-mps-.png

OEBPS/fig/partition-.png
60

Lnd

OEBPS/fig/maze_20_10-mps-.png
=iali}

H

Eat
|

|
— 111

—

L|

=

-

L

I J1]

T
l

OEBPS/fig/quad_tree_example-mps-.png

OEBPS/fig/queue_1_2_3_add4-mps-.png

OEBPS/fig/dfs3-mps-.png

OEBPS/fig/chess5-mps-.png
g

OEBPS/fig/dijkstra1-mps-.png

OEBPS/fig/fib5_tree-mps-.png

OEBPS/fig/ids_no_memo-mps-.png

OEBPS/fig/von_koch1-mps-.png

OEBPS/fig/taquin_final-mps-.png
1]12(3
4 15|16 |7
9 (10|11
12 (13|14 |15

OEBPS/fig/damier_dag-mps-.png
White Black White Black

OEBPS/fig/parray1-mps-.png
—~ ¢ 1 X
TR e T —(e O O

OEBPS/fig/fig_31_a-mps-.png
1

W
[1]e—{2]

OEBPS/fig/sieve_0-mps-.png
A Y2]3]4]5]6]7]8]9]10]11]12]13]14]15]16]17]18]19]20]21[22] 23]

OEBPS/fig/bfs_queue_6-mps-.png

OEBPS/fig/coup_org-mps-.png
(ONeNe)
OO0OO0OO0O00O0
Cee®@O0O0OO0O0
OO0O0OO0O00O0
(O eNe)

OEBPS/fig/pi_monte_carlo-mps-.png

OEBPS/fig/solitaire_francais-mps-.png
o000 00O
o000 0O0O

OEBPS/perfgraph-source/sorting-random-arrays-.png
53 _
SR) § 5
s v v = g - g
s 5 5 8 % o8 § & % 3§
E s s %z 0z B 0B oz & 7
X £ 8 38 8 38 E E & & &
2771.65 0.01 0.01 001 001 001 001 00l 001 0.01
25 - 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02
26 - 0.04 0.04 0.03 0.04 0.04 0.03 0.03 0.04 0.05
27 - 0.08 0.08 0.08 0.08 0.09 0.07 0.06 0.10 0.10
28 - 0.16 0.15 0.16 0.18 0.19 0.14 0.13 0.21 0.21
29 - 0.33 033 033 036 041 0.29 0.26 0.46 0.46
2100 - 074 0.70 0.71 0.72 0.84 0.61 0.57 1.01 1.02
2L - 143 140 141 164 1.76 1.28 1.10 236 235
2121 - 305 3.01 3.0 341 374 269 2.34 537 540
Insertion ——
quicksort —se— L
quicksort (insertion) —x—
quicksort (log stack) —a— 1
quicksort (rand) ——
mergesort —a—
mergesort (swap) —s—
Array.stable_sort (OCaml) —s—
heapsort —a—o

temps en secondes

Array.sort (OCaml)

279 2710 2711
N/1000

2712

OEBPS/fig/avl_example-mps-.png

OEBPS/fig/solitaire_d-mps-.png
XX
eO0 @
XX X
e0c0oooe
e0c0ooooe
XX
XX

OEBPS/fig/miroir_damier1-mps-.png

OEBPS/fig/zipper_list_expl2-mps-.png
AJ—{Bl—{c}—{o] | [E}—{F—(c]

OEBPS/fig/heap_array_1-mps-.png
o 1 2 3 4

31712219

OEBPS/fig/bf_1-mps-.png

OEBPS/fig/fixed-svgs/heapsort-iteration-situation-1.png
k k+l

heap being built

OEBPS/fig/graph1d-mps-.png

OEBPS/fig/solitaire_a-mps-.png

OEBPS/fig/queue_1_2_3_q-mps-.png

OEBPS/fig/zipper_sf-mps-.png

OEBPS/fig/sieve_3-mps-.png

OEBPS/fig/fig_31_e-mps-.png

OEBPS/fig/fixed-svgs/mergesort-iteration-situation.png
al

a2

sorted

sorted

i

T3

sorted

T

OEBPS/fig/sieve_2-mps-.png

OEBPS/perfgraph-source/sorting-sorted-lists-.png
=~
(9]
n g > n
s 5 5§ & s 9 £ & 0t
N @ 5 5 E 2 2 o]]
m — lop lop lop — < =
2111494 - 894 0.02 0.02 0.01 0.01 0.03 0.03
25 - 0.06 0.05 0.02 0.02 0.06 0.07
26 - - - 0.13 0.11 0.05 0.04 0.12 0.19
27 - - - 0.26 0.27 0.11 0.11 0.25 049
28| - - - 077 062 0.25 027 054 1.18
29| - - - 166 138 0.58 0.59 1.16 2.76
2101 - - - - 307 128 1.26 243 6.36
® insertion ——
quicksort —se—
14 ¢ quicksort (log stack) —a—
quicksort (rand) —s—
12 mergesg?fzgeej:er; i
@ List.sort (OCaml) —s—
-E 10 H heapsort (arrays) —a—
S heapsort (trees) —a—0
Posf
g 5
N 4
2
0
2~7 278 279 210

N/1000

OEBPS/fig/taquin_initial-mps-.png
12

14

10 (11|13 |15

OEBPS/fig/doubly_linked_list-mps-.png
[(1| e 2le 2| e (4| |

OEBPS/fig/right_rotate3-mps-.png

OEBPS/fig/right_rotate_code2-mps-.png
rotation droite

v

OEBPS/fig/grille-mps-.png

OEBPS/fig/fractale0-mps-.png

OEBPS/fig/fixed-svgs/quick-idea.png
>P

7

OEBPS/fig/mem_list123-mps-.png

OEBPS/fig/trie_compact-mps-.png
do

. true
i m
doing in
false
a o

dominate domino

OEBPS/fig/cardioide-mps-.png

OEBPS/fig/graph1-mps-.png

OEBPS/fig/avl_example_pretty-mps-.png

OEBPS/fig/dfs_laby-mps-.png

OEBPS/fig/doubly_linked_list_add-mps-.png
| (1| e 2le|2|e i e |3 |ef e (4| |

OEBPS/fig/fig_31_b-mps-.png
(1] e

3|01

OEBPS/fig/trie_1-mps-.png

OEBPS/fig/turtle_squares-mps-.png

OEBPS/fig/rosace-mps-.png

OEBPS/fig/mem_pair12-mps-.png

OEBPS/fig/solitaire_c-mps-.png
000000

0000060

o000 0O0O
o0 0

OEBPS/fig/astar_result-mps-.png

OEBPS/fig/chess1-mps-.png
g

~ | IE

OEBPS/fig/left_right_rotate_code2-mps-.png
>

OEBPS/fig/zipper_sf2-mps-.png

OEBPS/fig/hash1-mps-.png
hd

hd

hd

nn "We likell []

—{"the codes"]

" inll []

SOl W — O

OEBPS/fig/fractale2-mps-.png

OEBPS/fig/persistence_en-mps-.png
persistent structures | non persistent structures

immutable
structures

OEBPS/fig/cardioide_expl-mps-.png

OEBPS/fig/mem_abcd-mps-.png
T
195

w

OEBPS/fig/pt_4_5_7_17-mps-.png

OEBPS/fig/von_koch3-mps-.png

OEBPS/fig/quad_tree_example_tree-mps-.png
S T

Node Black Node White

Black Black Black White Black Black Black White

OEBPS/fig/mandelbrot-mps-.png

OEBPS/fig/fig_31_d-mps-.png

OEBPS/fig/solitaire_e-mps-.png

OEBPS/fig/chess3-mps-.png
)

)

OEBPS/fig/bad_matrix-mps-.png

OEBPS/fig/tree_ABDEF-mps-.png

OEBPS/fig/von_koch2-mps-.png

OEBPS/fig/pt_4_5_13_17-mps-.png

OEBPS/fig/solitaire_f-mps-.png

OEBPS/fig/fixed-svgs/resizable-array.png
+—v.size —

v.data [... elements ... [... unused ...]
+——Array.length v.data——

OEBPS/fig/rope_append_small-mps-.png
PPPPP

OEBPS/fig/astar_moves-mps-.png

OEBPS/fig/list_example-mps-.png

OEBPS/fig/solitaire_francais_sol35-mps-.png

OEBPS/fig/fixed-svgs/partitioned-set.png
0

OEBPS/fig/mem_ref1-mps-.png

OEBPS/fig/bad_tree_ABCDEF-mps-.png

OEBPS/fig/parray2-mps-.png
aTh[cTaT

27,

OEBPS/fig/bad_tree_ABCDEF_rotD-mps-.png

OEBPS/fig/list123-mps-.png
(1] o]

(2] o]

OEBPS/fig/mem_block-mps-.png

OEBPS/fig/queue_1_2_3_4_rmv1-mps-.png

OEBPS/fig/zipper_tree_expl2-mps-.png

OEBPS/fig/bfs_queue_0-mps-.png
OnOaOmO
9'6"‘6.0

OEBPS/fig/chess4-mps-.png
)

OEBPS/fig/heap_1_cells-mps-.png
3(0)

/N

Ty 129

/ N\

213y 9y

OEBPS/fig/dfs1-mps-.png

OEBPS/fig/zipper_sf1-mps-.png

OEBPS/fig/breakout.png

OEBPS/fig/tree_ABCDEF-mps-.png

OEBPS/fig/bc-lampe-.png

OEBPS/fig/heap_1_remove_a-mps-.png
A

OEBPS/fig/kruskal_1-mps-.png

OEBPS/perfgraph-source/sorting-random-lists-.png
%‘

§ 5§ § § § % & % %
5 % ¢ £ B B % 2 2
N £ 3§ 5 5 E E 53 & ¢
24 16.03 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.02
25 - 0.05 0.03 0.05 0.05 0.03 0.03 0.04 0.05
26 - 0.10 0.0r 0.14 0.12 0.08 0.05 0.09 0.13
27 - 0.30 0.17 0.27 0.28 0.19 0.12 0.19 0.37
28 - 0.63 038 0.67 0.63 045 0.27 042 091
29 - 1.39 0.82 138 140 0.99 0.65 0.93 2.08
2101 - 175 - 3.09 220 141 192 4.84

insertion ——

quicksort —se—

quicksort (log stack) —a—

quicksort (rand) —s—

mergesort —a—

mergesort (reuse) —e—

List.sort (OCaml) —a—o

temps en secondes

heapsort (arrays) —a—
heapsort (trees)

R —

277

278

279
N/1000

2710

