A Persistent Union-Find Data Structure

Sylvain Conchon

Jean-Christophe Filliatre

LRI, Univ Paris-Sud, CNRS, Orsay F-91405
INRIA Futurs, ProVal, Parc Orsay Universite, F-91893

{conchonfilliatr}@Iri.fr

Abstract

The problem of disjoint sets, also known asion-find consists
in maintaining a partition of a finite set within a data sturet
This structure provides two operations: a functfomd returning
the class of an element and a functiamion merging two classes.
An optimal and imperative solution is known since 1975. Hasve
the imperative nature of this data structure may be a drakwbac
when it is used in a backtracking algorithm. This paper tetae
implementation of a persistent union-find data structureffadent
as its imperative counterpart. To achieve this result, @lut®n
makes heavy use of imperative features and thus it is a signtfi
example of a data structure whose side effects are safetiehid
behind a persistent interface. To strengthen this lasinclave
also detail a formalization using the Coq proof assistaniciwvh
shows both the correctness of our solution and its obsenaiti
persistence.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Featuref Data types and structures; D.23dftware/Program
Verificatior]: Correctness proofs

General Terms Algorithms, Verification
Keywords Union-Find, Persistence, Formal Verification

1. Introduction

The problem of disjoint sets, known asion-find consists in main-
taining a partition of a finite set within a data structuretiut loss
of generality, we can assume that we are considering aipartf
the n integers{0, 1,...,n — 1}. A typical signaturé for such a
data structure could be the following:

module type ImperativeUnionFind = sig

type t

val create : int — t

val find : t — int — int

val union : t — int — int — unit
end

It provides an abstract data typdor the partition and three opera-
tions. Thecreate operation takes an integeras input and builds

1This article is illustrated with ® EcTIVECAML [2] code but is obviously
translatable to any other programming language.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ACM SIGPLAN Workshop on ML October 5, 2007, Freiburg, Germany.
Copyright(© 2007 ACM [to be supplied]. .. $5.00

a new partition where each elemenfin ..., n — 1} constitutes a
class by itself. Theind operation returns the class of an element,
as an integer considered to be the representative of this.dR
nally theunion operation merges two classes of the partition, the
data structure being modified in place (hence the returnype).

An optimal solution is known since the 70s. It is attributed
to Mcllroy and Morris [3] and its complexity was analyzed by
Tarjan [17}. It is a classic of the algorithmic literature (see for
instance [11] chapter 22). The code of this solution is giiren
appendix. The main idea is to link together the elements ofi ea
class. For this purpose, the arrpyrent maps each integerto
another integer of the same class. Within each class, tlivdse |
form an acyclic graph where any path leads to the representat
which is the sole element mapped to itself. The following rfigu
illustrates a situation where the §ét 1, ..., 7} is partitioned into
two classes whose representatives are 3 and 4 respectively.

The find operation simply follows the links until it finds the rep-
resentative. Thanion operation first finds out the two representa-
tives of the given elements and then links one to the othemTivo
key improvements are used to reach optimal efficiency. Tlsé fir
one is calledpath compressianany element encountered during
the search performed kfind is re-mapped to the representative.
The second one consists in keeping an approximation of zleeo$i
each class, calledrank, and to choose for the representative of a
union the one with the largest rank.

The union-find data structure is used in many different cdate
In most cases, the imperative implementation above is gtiyfe
suited — and even optimal. But as soon as we need to roll back to
previous versions of the union-find structure, the impeeatiature
of this solution is a nuisance. Indeed, providing either ficient
“copy” or “undo” operation turns out to be very difficult, ntbs
because of path compression. Here are typical examplesewher
union-find is used together with backtracking:

01 .. 7
[7ls]els]al3]a]3

e Unificatiornt A typical use of a union-find data structure is uni-
fication. For instance, unification is massively used in &yol
where backtracking is precisely a fundamental conceptfi-Uni
cation is also used in ML type inference. In that case, this is
not a backtracking algorithm but, within an interactivelewel,

2|n the following, we will abusively refer to this solution dsrjan’s algo-
rithm.

destructive unifications of non-generalized type varisipheist
be undone when typing errors are encountered.

e Decision proceduresAnother example of a union-find data
structure used within a backtracking algorithm are denisio
procedures where the treatment of equality is usually based
on such a structure and where the boolean part of formulas is
mostly processed using backtracking [13, 16].

A standard solution to the issue of backtracking in datacstru
tures is to turn tgersistentlata structures (as opposecfhemeral
data structures) [12]. In this case, tlxeion operation now returns
a new partition and leaves the previous one unchanged. Gha-si
ture of such a persistent data structure could be the fahigwi

module type PersistentUnionFind = sig

type t

val create : int — t

val find : t — int — int

val union : t — int — int — t
end

It simply differs from signatur@mperativeUnionFind in the re-
turn type ofunion, which is nowt instead ofunit. One easy
way to implement such a signature is to use purely applieatata
structures. An immediate — and probably widely used — sotuti
is to switch from an imperative array to a purely applicativap.
Assuming a modul@! implementing maps from integers to inte-
gers, as follows

module M : sig
type t
val empty : t
val add : int — int — t — t
val find : int — t — int
end

we can directly implement the persistent union-find datacstaire
as a map, that is

type t = M.t

Thenfind andunion operations are easily implemented:

let rec find m i
try find (M.find i m) with Not_found — i

let union m i j =

let ri = find m i in

let rj = find m j in

if ri <> rj then M.add ri rj m else m

Unfortunately, path compression cannot be implementetowit
changing the type of ind: one would needind to return a new
partition but this would require the programmer to modifient
code. For this reason, such solutions are far less effidiemt the
imperative implementation.

The main contribution of this paper is the design of a peaist
union-find data structure as efficient as the imperative émgnta-
tion. To achieve this result, we consider a data structutk side
effects yet with sighatur@ersistentUnionFind, So that client
code may use it as if it was a purely applicative data strecflinis
is thus an example of an imperative data structure whoseeside
fects aresafely hidderbehind a persistent interface. Another con-
tribution of this paper is to strengthen this last claim watformal
proof. Indeed, we used the Coq proof assistant [1, 6] to shativ b
the correctness of our solution and its observational giersce.

There are known techniques to design persistent data struc-
tures based on purely applicative programming [14] butehsr
no efficient solution to the union-find problem in this franoek

There are also techniques to make imperative data strscpae
sistent [12] but, again, they were not applied to the uniad-flata
structure. Moreover, no formal proof of the observationaisis-
tence of an imperative data structure has ever been donerto ou
knowledge.

This paper is organized as follows. Section 2 details a gterst
union-find data structure which is almost as efficient asnitgar-
ative counterpart. Then Section 3 analyzes the efficiencthisf
solution, comparing it to several other implementationsaky,
Section 4 details the formal proof.

2. A Simple Yet Efficient Solution

Our solution to the persistent union-find problem is simmétausly
very simple and very efficient. It mostly consists in keepahgse
to the original algorithm and its path compression, but stuisg
persistent arraysn place of the usual arrays.

2.1 Persistent Arrays

A persistent array is a data structure providing the sameatipas

as a usual array, namely the manipulation of elements imblexe
from 0 ton — 1, with low cost access and update operations, but
where the update operation returns a new persistent arcdgaves

the previous one unchanged. A minimal signature for polyrhior
persistent arrays is:

module type PersistentArray = sig

type o t

val init : int — (int — a) — a t

val get : ot — int — «

val set : ot — int - aa — a t
end

It is easy to implement this signature using purely applieat
dictionaries, such as balanced binary search trees frammMD’s
standard library. But as demonstrated later by our bendksntre
logarithmic cost of the access and update operations ons$uatt
tures is already prohibitive. Fortunately, it is possildecthieve far
better efficiency for persistent arrays, as we will showrl§&ec-
tion 2.3). Meanwhile, we are presenting a persistent versidar-
jan’s algorithm, independently of the implementation ofgi&ent
arrays.

2.2 A Persistent Version of Tarjan’s Union-Find Algorithm

To be independent of persistent arrays, we naturally intreda
parameterized module, a so-calfedctor.

module Make(A : PersistentArray)
: PersistentUnionFind
struct

As in the imperative version, the union-find structure is & pa
of arrays tank containing the ranks of the representatives and
parent containing the links) but here we use persistent arrays:

type t = {

rank: int A.t;

mutable parent: int A.t
}

The mutable nature of the second field will be exploited tdqver
path compression. The creation of a new union-find strudtire
immediate:

let create n = {
rank = A.init n (fun - — 0);
parent = A.init n (fun i — i)

}

To implement path compression, thénd function must perform
modifications on thearent array on its way back, once the rep-
resentative has been found. Here this array is persistehtraus

a new array must be built. For this purpose, we introduce an au
iliary function find_aux returning both the representative and the
new version of thearent array:

let rec find_aux f i =
let fi = A.get £ i in
if fi == i then

f, i
else
let f, r = find_aux f fi in
let £ = A.set £ i r in
f, r

Then we can define a functiofind which callsfind_aux and
then modifies theparent field with a side effect, to allow path
compression in later accesses of this data structure:

let find h x =

let f,cx = find_aux h.parent x in
h.parent « f£;
cx

As we can notice, this function indeed has the expected thpe,
is it returns a single integer, while performing path conspren.
As in the imperative code, the data structure has been naubgte
side effect but the set of representatives remains uncdange

To implement thanion function, we still follow the imperative

code but we return a new data structure, namely a new record of

typet. It contains the new versions of tlhkenk andparent arrays:

let union h x y =
let cx = find h x in
let cy = find h y in
if cx != cy then begin
let rx = A.get h.rank
let ry = A.get h.rank
if rx > ry then
{ h with parent = A.
else if rx < ry then
{ h with parent = A.
else
{ rank = A.set h.rank cx (rx + 1);
parent = A.set h.parent cy cx }
end else
h

cx in
cy in

set h.parent cy cx }

set h.parent cx cy }

We finally get a code which is not longer than its imperativerco
terpart. The most difficult task remains: to feed this funetith an
efficient implementation of persistent arrays.

2.3 Efficient Implementation of Persistent Arrays

An efficient solution to the problem of persistent arraysdasally
been known for a long time. It seems that it is due to H. Bakgr [4
who was using it to implement closures in a Lisp runtime.

2.3.1 Main ldea

The base idea is to use a usual afréyr the last version of the
persistent array and indirections for previous versiorm. this
purpose, we introduce the following mutually recursiveadgpes:

type @ t = o data ref
and « data =

| Arr of « array

3From now on, we use the term “array” for a usual array, thusifieatin
place, and the term “persistent array” otherwise.

| Diff of int X a X a t

The typea t is the type of persistent arrays. It is a reference on a
value of typea data which indicates its nature: either an imme-
diate valueArr a with an arraya, or an indirectiorDiff (i, v,t)
standing for a persistent array which is identical to thesiséznt
arrayt everywhere except at indexwhere it contains. The ref-
erence may seem superfluous but it is actually crucial. @igat
new persistent array is immediate:

let init n f = ref (Arr (Array.init n £f))

The access functioget is also straightforward. Either the persis-
tent array is an immediate array, or we need to consider theei
tion and possibly to recursively access another persisteay:

let rec get t i = match !t with
| Arr a —
a. (i)
| Diff (j, v, t’) —
if i j then v else get t’ i

All the subtlety is concentrated into thest function. The idea
is to keep the efficiency of a usual array on the very last garsi
of the persistent array, while possibly decreasing theieffay of
previous versions. When updating the persistent atrdiiere are
two possible cases:

e either t is a reference to an object of shaper a; in that
case, we are going to replacewith an indirection (which is
possible since it is a reference and not a value of typgata),
modify the array: in place and return a new reference pointing
to Arr a.

e or t is already an indirection, that is pointing tdDaff node;
then we simply create and return a new indirection.

This is done in the following code:

let set t i v = match !t with
| Arr a as n —
let old = a.(i) in
a.(i) « v;

let res = ref n in
t := Diff (i, old, res);
res

| Diff _ —

ref (Diff (i, v, t))

As we can notice, a value of the shajper a can only be created
by theinit function. Thus a sequence of updates only allocates
a single array and an additional space which is proportitmtie
number of updates (sineet clearly runs inO(1) space and time).

If we consider the following definition of four persistentaysao,

al, a2 anda3

let a0 = create 7 0
let al = set a0 1 7
let a2 = set a1l 2 8
let a3 = set al 2 9

then the situation right after these declarations is itatsd in Fig-
ure 1, where each reference is displayed as a circle ahifa
block by a labelled edge. Generally speaking, we have thewel
ing invariant: the graph of references of typet for the various
versions of a persistent array is acyclic and from any ofaheger-
ences there is a unique path to the node.

Such persistent arrays achieve good results when we always
access the last version but efficiency greatly decreases wie
access previous versions. Indeed, a sequence of severatespd
creates a linked list dbiff nodes and then any access from this
list has a cost which is proportional to its length, that isthe

Lol7]s]ofofofo

Figure 1. lllustrating persistent arrays (1/2)

number of updates. This can be dramatic in a context where we
need to backtrack. But this is precisely the reason why wewer
building persistent arrays. Fortunately, there existsrg ganple

way to improve this first implementation.

2.3.2 A Major Improvement

To lower the cost of operations on previous versions of ptast
arrays, H. Baker introduces a very simple improvement [@on

as we try to access a persistent array which is not an imneediat
array we first reverse the linked list leading to ther node, to
move it in front of the list, that is precisely where we want to
access. This operation, that Baker cai®oting can be coded by
the following reroot function which takes a persistent array as
argument and returns nothing; it simply modifies the stmectf
pointers, without modifying the contents of the persistmnays.

let rec reroot t match !t with
| Arr = — QO
| Diff (i, v, t’) —
reroot t’;
begin match !'t’ with
| Arr a as n —

let v’ = a.(i) in
a.(d) <« v;

t := n;

t’ := Diff (i, v’, t)

| Diff _ — assert false
end

After calling this function, we have the property thahow points

to a value of the shaperr. Thus we can modify the access function
so that it now calls theeroot function as soon as the persistent
array is abiff node:

let rec get t i = match !t with
| Arr a —
a. (i)
| Diff _
reroot t;
begin match 't with
| Arr a — a. (i)
| Diff _ — assert false
end

—

We can modify theset function in a similar way:

let set t i v
reroot t;
match !t with
| Arr a as n — ... as previously ...
| Diff _ — assert false

Going back to the situation of Figure 1, let us assume that we
now try to accessl. Thenreroot is going to be called oa1. This
results inal now pointing to theArr node andca2 pointing to an
indirection, the values 0 and 8 at index 2 being swapped legtwe

Figure 2. lllustrating persistent arrays (2/2)

the array and the indirection. This new situation is illattd in
Figure 2.

The reroot operation has a cost proportional to the number
of Diff nodes that must be followed to reach ther node, but
it is only performed the first time we access to an old versibn o
a persistent array. Any subsequent access will be perforimed
constant time. To put it otherwise, we pay only once the cést o
coming back to a previous version. In a backtracking conteig
is a perfect solution. If the number of array operationsiigfaater
than the number of backtracks, then the amortized complexfit
theget andset operations will beD(1) in space and time.

It is important to notice, however, that if we manipulate sita-
neously several versions of a single persistent array tfiiereacy
will decrease since theeroot function is going to spend much
time in list reversals.

Finally, we can also notice that thesroot function is not
tail-recursive. This can be an issue when we manipulateégtens
arrays on which many updates have been performed. It is lawev
easy to solve this issue by rewriting the code into contionat
passing style (CPS), without any real loss of efficiency. Tdsts
which are presented later are performed using such a CPi8ers

2.3.3 Final Improvements

It is possible to further improve this implementation. Thetfidea
is to optimize a call taset ¢t ¢ v wheni is already mapped to

in t. Then we save a useless indirection, and thus the allocation
two blocks. This is especially efficient in the context of theon-
find data structure, since path compression quickly mapthall
elements to the representative and then subsegeendperations
become useless. (We could equivalently unrollthed_aux func-
tion and make a special treatment for paths of length 1.)

The second idea is to notice that in a context whereowly
perform backtrackingit is useless to maintain the contents of
persistent arrays that become unreachable when we go back to
previous point. Indeed, these values are going to be imredgia
reclaimed by the garbage collector. Thus we can still imprihne
efficiency of our persistent arrays, in the particular cabera we
are using them, that is where we go back to a previous vetsién
a persistent array without keeping any pointer to youngesions
of t.

The first modification is to introduce @mvalid node denoting
a persistent array where it is no more possible to access:

type @ t = « data ref
and « data
| Arr of int array
| Diff of int X a X o t
| Invalid

Then we modify theceroot function so that it does not reverse the
list of pointers but simply updates the contents of the array

let rec reroot t match 't with
| Arr = — QO

| Diff (i, v, t’) —

reroot t’;
begin match !t’ with
| Arr a as n —
a.(d) « v;

t := n;
t’ := Invalid
| Diff _ | Invalid — assert false

end
| Invalid — assert false

As we can notice, we save the allocation obaff node. The
remaining of the code is unchanged but is adapted to fail ifrye
to access to abnvalid node.

It is striking to notice that the final data structure we gedds
tually nothing more than a usual array together with an utacks
that is the backtracking design pattern of the imperativgam-
mer. But contrary to an imperative programming style whéee t
stack is made explicit inside the main algorithm, it is heiddbn
behind an abstract data type which createsilthsion of persis-
tence.

3. Performance

We tried to test the efficiency of our solution in a situation a
realistic as possible. For this purpose we looked at the usdem
by the Ergo decision procedure [8] of its internal union-fatata
structure. We distinguish three parameters:

e the number of backtracks;

¢ the total number ofind andunion operations between two
branchings, denotelY’;

¢ the proportion ofunion operations with respect thind oper-
ations, denoteg.

On the tests we made with the decision procedure, it happens

that the number of backtracks is small and that the proportio

4. A Formal Proof of Correctness

Even if our solution is conceptually simple, the data suites
are somewhat complex due to the massive use of (hidden) side
effects, in both persistent arrays and the persistent imgi¢ation
of Tarjan’s algorithm. For this reason, we decided to fotynal
verify the correctness of these two data structures andow #eir
observational persistence. This section gives an overoiethis
formalization, conducted in the Coq proof assistant [1]e Whole
development can be found onlhe

Section 4.1 briefly presents program verification using @oq,
troducing the notations used in the remainder. Sectionesgribes
our Coq modeling of ML references. Then Section 4.3 pregésts
verification of persistent arrays and Section 4.4 that ofpibesis-
tent union-find data structure.

4.1 Program Verification using Coq

Coq is an interactive proof assistant based on the Calculus o
Inductive Constructions, a higher-order logic with polyypiaism,
dependent types and a primitive notion of inductive typés [Ib].

In particular, this logic contains the purely applicativagment

of ML and thus can be used to to define ML programs and to
show their correctness. Here is a short example on Peantahatu
numbers. First, we define the datatype with two constructor®
ands as we would do in ML:

Inductive nat : Set :=
| 0 : nat

| 8 : nat — nat

nat has typeSet which is the sort of datatypes. Predicates may also
be defined inductively. Here is the definition of a unary praté
even on natural numbers:

Inductive even :
| evenO :
evenSS :

nat — Prop :=
even 0
Vn:nat, even n — even (S (S n)).

of union operations is also quite small. Thus we chose to make oyen has typenat — Prop whereProp is the sort of proposi-

some tests following the branchings of a full binary searth o
height 4. Between each node and its two sons we perform gxactl
N operations. This traversal is executed fér = 20000, N =
100000 and N = 500000, with proportionp of union being equal

to 5, 10 and 15%.

Figure 3 displays the timin§gor various implementations. The
first line corresponds to the imperative implementatiorgiasn in
appendix. It is incorrectly used here — we keep the currersior
when backtracking —- but it is shown as a reference. The roext f
lines are the successive refinements of our solution: the/érsion
of Section 2.3.2, the two improvements of Section 2.3.3 arallfi
a manually defunctorized version of the final solution (a@efuThe
last two lines are purely applicative solutions, in a pugposcom-
parison: the first (naive) is an AVL-based implementatiathaut
path compression nor ranks, as described in the introdyciod
the second is the application of the functor from Sectiont@ j2er-
sistent arrays implemented as AVLs.

The results show that our final solution (defun.) is almost as
efficient as the imperative implementation. Note that treirect
use of the imperative code makes path compression on onehbran
to be effective on all successive branches, resulting inimmelx
path compression eventually. Results for the naive impteation
shows that it does not scale at all. The last line emphadizepath
compression and ranking alone are not sufficient to achieeg g
results, but that an efficient implementation of persisterays is
mandatory.

4Timings are CPU time measured in seconds on a Pentium IV 2.4 GH
running Linux.

tions. Such an inductive predicate is equivalent to theofalhg
inference rules:

evenn
even (S (Sn))

ML-like functions are defined in a straightforward way:

(even0) (evenSs)

even 0

Definition plus3 : nat — nat :=
fun n:nat = S (S (S n)).

Then it is possible to state properties about functionsh sisc‘for
any even natural number, the result of(plus3 n) is not even™:

Lemma even_plus3 :
Vn:nat, even n — ~(even (plus3 n)).

Such a lemma declaration must be followed by a proof, whieh is
list of tactic invocations. Proofs are omitted in this paper

The richness of the Coq type system actually allows the wser t
combine a function definition together with its correctnpssof.
To do so, the function is given a type which contains both sype
for its arguments and result and a specification. Here is such
definition-as-proofof a function f taking an even numbet as
argument and returning a resuitgreater tham and even:

Definition f :
Vn:nat, even n — { m:nat | m > n A even m }.

The type{ = : T | P(z) } is a dependent pair of a valueof type
T and a proof ofP(z). The definition body forf is omitted and

Shttp://www.lri.fr/~filliatr/puf/

» 5% 5% 5% | 10% 10% 0% | 15% 5% 5%

N | 20000 | 100000 | 500000 | 20000 | 100000 | 500000 | 20000 | 100000 | 500000
Tarjan | 0.31 2.23| 1250| 033 2.34| 1200 034 2.36| 13.20
232] 052 3.03]| 17.10] o081 478| 26.80] 1.16 6.78| 37.90
2.3.3a| 036 2.08| 12.30| 046 2.76| 1500| 064 358 | 20.70
2.3.3b| 0.34 201| 11.70| 042 254 1490| 052 321| 18.70
defun.| 0.33 190| 11.30| 0.41 2.45| 14.40| 052 314 17.80
naive| 0.76 5.28| 3750 1.22 9.14| 63.80| 40.40| >10mn| >10mn
maps| 1.52| 10.60| 67.90| 2.45| 17.50| 116.00| 3.42| 24.70| 167.00

Figure 3. Performances

replaced by a proof script, which is both the function defmitand
its correctness proof. Once the proof is completed, a mésiman
allows the user to extract an ML program from the definitien-a
proof.

Coq is naturally suited for the verification of purely applive
programs. To deal with imperative programs, we need to mbael
memory and to interpret imperative features as memoryfoams
ers. This is similar to the formalization of operational semics.

4.2 Modelling ML References

To model references, we introduce an abstract fy@emter for
the values of references:

Parameter pointer : Set.

Then the set of all (possibly aliased) references of a giype ts
modelled as a dictionary mapping each reference to the value
is pointing at. This dictionary is simply axiomatized as adule
calledPM declaring a polymorphic abstract type

Module PM.

Parameter t : Set — Set.

ThusPM.t¢ a is the type of a dictionary for references of type
Three operations are provided on this type:

Parameter find : Va, ¢t a — pointer — option a.
Parameter add : Va, t a — pointer — a — t a.
Parameter new : Va, t a — pointer.

find returns the value possibly associated to a pointer (th&tis

if there is no associated value afdme v otherwise);add adds

a new mapping; and finallyew returns a fresh reference (that is
a reference which is not yet mapped to any value). Three axiom
describe the behavior of these three operations:

Axiom find_add_eq :
Ya, Ym:t a, Vp:pointer, Vv:a,
find (add m p v) p = Some v.
Axiom find_add_neq :
Va, Ym:t a, Vp p':pointer, Vv:a,
“p'=p — find (add m p v) p’ = find m p’.
Axiom find_new :
Va, Vm:t a, find m (new m) = None.
End PM.

This axiomatization is obviously consistent, since we doehlize

it using natural numbers for pointers and a finite mepy.(an
association list) for the dictionary.

Then the heap can be viewed as a set of such dictionaries, sinc

ML typing prevents aliasing between references of diffetgpes

(we are not considering polymorphic references here). Eketwo
sections use this memory model to verify both persisteatyarand
persistent union-find data structures.

4.3 Verifying Persistent Arrays

The type of persistent arrays is directly modelled asgtinter
type for references. Théata type is the same sum type as in the
OcAML code:

Inductive data : Set :
| Arr : data

| Diff : Z — Z — pointer — data.

We use the fact that there is a single instance ofathe node to
make it a constant constructor. Indeed, we model thai@. heap
by the pair made of a dictionary mapping pointers to valuegué
data and of the contents of the array designatediby, which is
here modelled as a function fromto Z:

Record mem : Set := { ref : PM.t data; arr : Z—Z }.

It is clear that we only model the part of the heap relative to
a single persistent array and its successive versions,himitis
enough for this formal proof (since there is no operatioringik
several persistent arrays as arguments, which would eequitore
complex model).

As defined above, our model already includes much more possi-
ble situations than allowed by the s@leeate andset operations
(exactly as the ©AML type from Section 2.3.1 does not exclude
a priori the construction of cyclic values for instance). To intro-
duce the structural invariant of persistent arrays, weothice the
following inductive predicatepa_valid, which states that a given
reference is a valid persistent array:

Inductive pa_valid (m: mem)

| array_pa_valid :
Vp, PM.find (ref m) p = Some Arr —
pa_valid m p

| diff_pa_valid :
Vpiovyp,
PM.find (ref m) p = Some (Diff i v p’) —
pa_valid m p’ — pa_valid m p.

: pointer — Prop :

This definition says that the reference points either to aevatr
or to a valueDiff i v p’ with p’ being itself a valid persistent array.
Note that it implies the absence of cycles due to its indeatature.
To express the specifications of tget andset functions, we
relate each persistent array to the function o@rl,...,n — 1}
that it represents. Such a function is directly modelled e ze of
typeZ—Z. We introduce the following inductive predicate relating
a reference to a function:

Inductive pa_model (m: mem)
: pointer — (Z — Z) — Prop :
| pa_model_array :
Vp, PM.find (ref m) p = Some Arr —
pa_model m p (arr m)
| pa_model_diff :

Vpivp,

PM.find (ref m) p = Some (Diff i v p’) —
Vf, pa_model m p’ f —

pa_model m p (upd f i v).

whereupd is the pointwise update of a function, defined as

Definition upd (f:Z2—Z) (i:Z2) (v:Z) :=
fun j = if Z_eq_dec j ¢ then v else f j.

As we can notice, the definition @fa_model is analogous to the
one ofpa_valid. Itis even clear thgta_valid m p holds as soon
aspa_model m p f does for any functiorf. But it is convenient to
distinguish the two notions, as we will see in the following.

We can now give specifications to tiget andset functions.
Opting for a definition-as-proof, a possible type gert is:

Definition get :
VYm, Vp, pa_valid m p —
Vi, { v:Z | Vf, pamodel m p f — v = f i }.

The precondition states that the referepaaust designate a valid
persistent array and the postcondition states that thenedwalue

v must be f v for any function f modelled byp through the
memory layoutm. The correctness proof gfet does not seem
much difficult, due to the tautological nature of its speaifion.
Though it raises a serious issue, namely its terminatiotedd,
get only terminates because we assumed be a valid persistent
array. If not, we could have a circularity on the heap (such as
the one resulting frohet rec p = ref (Diff (0,0,p)))and
some calls tget would not terminate. To express the termination
property,i.e. that reference eventually leads to th&rr node, we
introduce the predicatéist m p n which states that the distance
from p to the Arr node isn. Then we can introduce the relation
R m, for a given memoryn, stating that a pointer is closer to the
Arr node than another one:

Rmpi p2 = dng, Ing, dist mpi niAdist mp2 neAni < ng

Thenget can be defined using a well-founded induction over this
relation. Since it is easy to show thatjifpoints toDiff i v p’
then R m p’ p holds, under the hypothesijs_valid m p, the
termination ofget follows.

The set function has a more complex specification since it
must not only express the assignment but also the persestanc
the initial argument. A possible specification is the foliow:

Definition set :
Vm:mem, Vp:pointer, Vi v:Z,
pa_valid m p —
{ p’:pointer & { m':mem |
Vf, pa_model m p f —
pa_model m' p f A
pa_model m' p’ (upd f i v) } }.

Here the function is returning both the resulting referepcéut
also the new memory layout’. The precondition is still the va-
lidity of the persistent array passed as argument. The podiiton
states that for any functioif that p was modelling in the initial
memorym thenp keeps modellingf in the new memoryn’ and
p’ is modelling the result of the assignment, that is the fumcti
upd f i v.

The proof of correctness fatet only contains a single dif-
ficulty: we need to show that the allocation of a new reference
(through the functio®M.new) does not modify the allocated values
on the heap. This is expressed by the following separatimmia:

Lemma pa_model_sep :
Vm, vp’ Vd: Vf:
pa_model m p f—

pa_model
(Build_mem
(PM.add (ref m) (PM.new (ref m)) d)
(arr m))

p f.

The proofs of correctness fget andset represent a total of 140
lines of Coq script, including all auxiliary lemmas and d#fons.
This proof does not include the verification of functiearoot
(which is only an optimization). In our formalization, tHisnction
would have the following type:

Definition reroot :
Vm:mem, Vp:pointer, pa_valid m p —
{ m':mem |
Vf, pa_model m p f — pa_model m’ p f }.

4.4 Verifying Persistent Union-Find

To model the union-find data structure, we set the number-of el
ements once and for all, as a paramétef type Z. We can omit

the management of ranks without loss of generality, sineg ¢imly
account for the complexity, not for the correctness. Theaithion-

find data structure reduces to a single array fifxent array). We

can reuse the previous memory model and we can model a union-
find data structure as a value of typeinter.

As we did for persistent arrays, we first define a validity pred
cate. Indeed, a union-find data structure is not made of arsjspe
tent array but of one modelling a function mapping each ietég
[0, N — 1] to a representative, in one or several steps. In particu-
lar, this property will ensure the termination. To definestbalidity
predicate, we introduce the notion of representativesa fanction
f modelling the persistent arrgyarent, as a relatiorrepr f 7 j
meaning that the representative:d$;:

Inductive repr (f: Z—2Z)
| repr_zero :
Vi, f i =

| repr_succ :
Yijr, fi=7— 0<j<N —

j=t — repr f jr — repr f i r.

: Z—Z—Prop :=

i — repr f i1

Then we can define the validity notion as both the validityhsf t
persistent array and the existence of a representativajanteger
in[0, N — 1]

Definition reprf (f:Z—Z) :=
Vi, 0<i<N — O<f i<N) A
Vi, 0<i<N — 3Jj, repr [i j).
Definition uf_valid (m:mem) (p:pointer) :=
pa_valid m p A
Vf, pa_model m p f — reprf f.

Specifying thefind function is more complex than simply
saying that the returned value is the representative. thdéwe
find function modifies the memory, due to path compression,
and thus we need to express the invariance of classes tloough
this compression. We first define the property for two funtito
define the same set of representatives:

Definition same_reprs fi fo :=
Vi, 0<i<N — Vj, repr fi i j < repr fo i j.

Then we can specify théind function (actually thefind_aux
function returning the new persistent array, modelled resea
pointerp’):

Definition find :
VYm, Vp, uf_valid m p —
Vr, 0<z<N —
{r:Z & { p:pointer & { m':mem

uf_valid m’ p’ A
Vf, pa_model m p f — repr f x 7 A
Vf', pa_model m' p’ f' — same_reprs f f' } } }.

Once again the proof requires a well-founded inductione taer
the distance fromx to its representative.

To specify theunion function, we need a notion of equivalent
elementsi.e. belonging to the same class:

Definition equiv f z y :=
Vcx cy, repr f x cx — repr f y cy — cx=cy.

Then we can specifyinion (the assignmenh.parent <- £ is
here modelled by the returned pointé):

Definition union :
VYm, Vp, uf_valid m p —
Vr y, 0<z<N — 0<y<N —
{ p':pointer & { pi:pointer & { m':mem |
uf_valid m' p1 A uf_valid m’ p’ A
Vfi, pa_model m p fi —
((Vf2, pa_model m' p1 fo —
same_reprs fi1 f2)
A
Vf', pa_model m’ p’ f —
Va b, 0<a<N — 0<b<N —
(equiv ' a b «
(equiv f1 a b V
(equiv f1 a = A equiv f1 b y) V
(equiv fi1 b o A equiv fi a ¥))))))

-

The slightly complex postcondition states several praggriirst
the persistence of the initial structure (it is still valid the new
memory and defines the same set of representatives); thes-the
lidity of the new structure; finally the behavioral propentyamely
thatunion indeed merges the two classesroindy. We express
this last property by saying that, for any elememtandb, a and
b are in the same class after the merge (functfbnif and only if
they were already in the same class (functfahor a andb were
both in the initial classes of andy.

The proofs of correctness d@find andunion represent a total

of 600 lines of Coq script. Note that, since we omitted the man 1.+ union ({ parent = p; rank =

agement of ranksynion a b always appends the classofs a
subtree of the representative af To be fully correct, we should
also consider the converse asufion was performing a nondeter-
ministic choice.

5. Conclusion

We have presented a persistent data structure for the dinidn-
problem which is as efficient as the imperative Tarjan's algo
rithm [17] on realistic benchmarks. In particular, our dmn is
exactly the same as the imperative one when used lineaxly
without any backtracking.

Our solution is built from a persistent version of Tarjaga
rithm together with an efficient implementation of persigtaerrays
following an idea from Baker [4, 5]. Though persistent, théso
data structures make heavy use of side effects. Contraryidedy
spread idea, persistent data structures are not necggaasely ap-
plicative (even if excellent books such as Okasaki’s [14y docus
on purely applicative solutions). As a consequence, itss leb-
vious to convince oneself of the correctness of the implaatzm
and this is why we also conducted a formal verification of adec

Another consequence of the imperative nature of this gergis
data structure is that it is not thread-safe. Indeed, thigrasent
in function union is atomic but assigments in functiaret are

not (functionreroot makes a lot of assigments all over the data
structure).

The most efficient version we finally obtained actually uses a
rays that are not fully persistent. Indeed, they must onlyde to
come back to previous versions (which is the typical use cfipe
tent structures in a backtracking algorithm). Thé&mi-persistence
currently has a dynamic nature (the data is made invalid wien
do the backtrack) but it would be even more efficient if we ¢leelc
statically the legal use of this semi-persistence. Suchticstnal-
ysis is work in progress [9].

A. Imperative Union-Find Algorithm

The following code implements the optimal imperative solufor
union-find, as described in the introduction. The data tireds a
record containing two arrays:

type t = { parent : int array; rank : int array }

parent links together the elements of each class aadk con-
tains the size of each class. Creation is straightforwasihgu
Array.init to create an array where each element is mapped
to itself:

let create n =
{ parent = Array.init n (fun i — 1i);
rank = Array.create n 0 }

The functionfind recursively follows the links until it finds the
representative (that is an element mapped to itself), paifg path
compression along the way:

let rec find uf i =

let pi = uf.parent.(i) in

if pi == i then
i

else begin
let ci = find uf pi in
uf .parent. (i) « ci; (* path compression *)
ci

end

Finally, union maps the representative of the smallest class to the
one of the largest and updates the rank when necessary:

r}asuf) xy =
let cx = find uf x in
let cy = find uf y in
if cx != cy then begin
if r.(cx) > r.(cy) then
p-(cy) «— cx
else if r.(cx) < r.(cy) then
p-(cx) «— cy
else begin
r.(cx) <« r.(cx) + 1;
p-(cy) « cx
end
end

Acknowledgments

We are grateful to the anonymous reviewers for their helpduh-
ments and suggestions. We also thank the members of thel Prova
project for many discussions related to the persistentnifiral
problem. In particular, we are grateful to Claude Marchénfien-
tioning T.-R. Chuang’s paper [7] and to Christine Paulindbcour-
aging us to perform a verification proof in Coq.

References
[1] The Coq Proof Assistanhttp://coq.inria.fr/.

[2] The Objective Caml Programming Languagéttp://caml.
inria.fr/.

[3] Alfred V. Aho, John E. Hopcroft, and Jeffrey UllmaBata Structures
and Algorithms Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1983.

[4] Henry G. Baker. Shallow binding in Lisp 1.5Commun. ACM
21(7):565-569, 1978.

[5] Henry G. Baker. Shallow binding makes functional arrdgst.
SIGPLAN Not.26(8):145-147, 1991.

[6] Yves Bertot and Pierre Castrarnteractive Theorem Proving and
Program DevelopmentTexts in Theoretical Computer Science. An
EATCS Series. Springer Verlag, 2004ttp://www.labri.fr/
Perso/~casteran/CoqArt/index.html.

[7

—

Tyng-Ruey Chuang. Fully persistent arrays for efficientremental
updates and voluminous reads.HSOP’92: Symposium proceedings
on 4th European symposium on programmipgges 110-129,
London, UK, 1992. Springer-Verlag.

8

-

Sylvain Conchon and Evelyne Contejean. Ergo: A Decision
Procedure for Program Verificatiohttp://ergo.1lri.fr/.

Sylvain Conchon and Jean-Christophe Filliatre. Seéwisistent
Data Structures. Research Report, LRI, Université Pards 3007.
http://www.lri.fr/~filliatr/publis/spds.ps.

[10] Th. Coquand and G. Huet. The Calculus of Constructions.
Information and Computatiqrv6(2/3), 1988.

[11] Thomas H. Cormen, Charles E. Leiserson, and Ronald vesRi
Introduction to AlgorithmsMIT Press/McGraw-Hill, 1990.

[12] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjaaking
Data Structures Persistedburnal of Computer and System Sciences
38(1):86-124, 1989.

[13] G. Nelson and D. C. Oppen. Fast decision proceduresdbase
congruence closurelournal of the ACM27:356—364, 1980.

[14] Chris Okasaki. Purely Functional Data Structures Cambridge
University Press, 1998.

[9

—

[15] Christine Paulin-Mohring. Inductive definitions inglsystem COQ.
In Typed Lambda Calculi and Applicatigngolume 664 of_ecture
Notes in Computer Sciencgeages 328-345. Springer-Verlag, 1993.

[16] R. E. Shostak. Deciding combinations of theoridsurnal of the
ACM, 31:1-12, 1984.

[17] Robert Endre Tarjan. Efficiency of a good but not linear snion
algorithm.J. ACM 22(2):215-225, 1975.

